/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" namespace cv { Mat getDefaultNewCameraMatrix( const Mat& cameraMatrix, Size imgsize, bool centerPrincipalPoint ) { if( !centerPrincipalPoint && cameraMatrix.type() == CV_64F ) return cameraMatrix; Mat newCameraMatrix; cameraMatrix.convertTo(newCameraMatrix, CV_64F); if( centerPrincipalPoint ) { ((double*)newCameraMatrix.data)[2] = (imgsize.width-1)*0.5; ((double*)newCameraMatrix.data)[5] = (imgsize.height-1)*0.5; } return newCameraMatrix; } void initUndistortRectifyMap( const Mat& _cameraMatrix, const Mat& _distCoeffs, const Mat& matR, const Mat& _newCameraMatrix, Size size, int m1type, Mat& map1, Mat& map2 ) { if( m1type <= 0 ) m1type = CV_16SC2; CV_Assert( m1type == CV_16SC2 || m1type == CV_32FC1 || m1type == CV_32FC2 ); map1.create( size, m1type ); if( m1type != CV_32FC2 ) map2.create( size, m1type == CV_16SC2 ? CV_16UC1 : CV_32FC1 ); else map2.release(); Mat_ R = Mat_::eye(3, 3), distCoeffs; Mat_ A = Mat_(_cameraMatrix), Ar; if( _newCameraMatrix.data ) Ar = Mat_(_newCameraMatrix); else Ar = getDefaultNewCameraMatrix( A, size, true ); if( matR.data ) R = Mat_(matR); if( _distCoeffs.data ) distCoeffs = Mat_(_distCoeffs); else { distCoeffs.create(5, 1); distCoeffs = 0.; } CV_Assert( A.size() == Size(3,3) && A.size() == R.size() ); CV_Assert( Ar.size() == Size(3,3) || Ar.size() == Size(4, 3)); Mat_ iR = (Ar.colRange(0,3)*R).inv(DECOMP_LU); const double* ir = &iR(0,0); double u0 = A(0, 2), v0 = A(1, 2); double fx = A(0, 0), fy = A(1, 1); CV_Assert( distCoeffs.size() == Size(1, 4) || distCoeffs.size() == Size(1, 5) || distCoeffs.size() == Size(4, 1) || distCoeffs.size() == Size(5, 1)); if( distCoeffs.rows != 1 && !distCoeffs.isContinuous() ) distCoeffs = distCoeffs.t(); double k1 = ((double*)distCoeffs.data)[0]; double k2 = ((double*)distCoeffs.data)[1]; double p1 = ((double*)distCoeffs.data)[2]; double p2 = ((double*)distCoeffs.data)[3]; double k3 = distCoeffs.cols + distCoeffs.rows - 1 == 5 ? ((double*)distCoeffs.data)[4] : 0.; for( int i = 0; i < size.height; i++ ) { float* m1f = (float*)(map1.data + map1.step*i); float* m2f = (float*)(map2.data + map2.step*i); short* m1 = (short*)m1f; ushort* m2 = (ushort*)m2f; double _x = i*ir[1] + ir[2], _y = i*ir[4] + ir[5], _w = i*ir[7] + ir[8]; for( int j = 0; j < size.width; j++, _x += ir[0], _y += ir[3], _w += ir[6] ) { double w = 1./_w, x = _x*w, y = _y*w; double x2 = x*x, y2 = y*y; double r2 = x2 + y2, _2xy = 2*x*y; double kr = 1 + ((k3*r2 + k2)*r2 + k1)*r2; double u = fx*(x*kr + p1*_2xy + p2*(r2 + 2*x2)) + u0; double v = fy*(y*kr + p1*(r2 + 2*y2) + p2*_2xy) + v0; if( m1type == CV_16SC2 ) { int iu = saturate_cast(u*INTER_TAB_SIZE); int iv = saturate_cast(v*INTER_TAB_SIZE); m1[j*2] = (short)(iu >> INTER_BITS); m1[j*2+1] = (short)(iv >> INTER_BITS); m2[j] = (ushort)((iv & (INTER_TAB_SIZE-1))*INTER_TAB_SIZE + (iu & (INTER_TAB_SIZE-1))); } else if( m1type == CV_32FC1 ) { m1f[j] = (float)u; m2f[j] = (float)v; } else { m1f[j*2] = (float)u; m1f[j*2+1] = (float)v; } } } } void undistort( const Mat& src, Mat& dst, const Mat& _cameraMatrix, const Mat& _distCoeffs, const Mat& _newCameraMatrix ) { dst.create( src.size(), src.type() ); CV_Assert( dst.data != src.data ); int stripe_size0 = std::min(std::max(1, (1 << 12) / std::max(src.cols, 1)), src.rows); Mat map1(stripe_size0, src.cols, CV_16SC2), map2(stripe_size0, src.cols, CV_16UC1); Mat_ A, distCoeffs, Ar, I = Mat_::eye(3,3); _cameraMatrix.convertTo(A, CV_64F); if( _distCoeffs.data ) distCoeffs = Mat_(_distCoeffs); else { distCoeffs.create(5, 1); distCoeffs = 0.; } if( _newCameraMatrix.data ) _newCameraMatrix.convertTo(Ar, CV_64F); else A.copyTo(Ar); double v0 = Ar(1, 2); for( int y = 0; y < src.rows; y += stripe_size0 ) { int stripe_size = std::min( stripe_size0, src.rows - y ); Ar(1, 2) = v0 - y; Mat map1_part = map1.rowRange(0, stripe_size), map2_part = map2.rowRange(0, stripe_size), dst_part = dst.rowRange(y, y + stripe_size); initUndistortRectifyMap( A, distCoeffs, I, Ar, Size(src.cols, stripe_size), map1_part.type(), map1_part, map2_part ); remap( src, dst_part, map1_part, map2_part, INTER_LINEAR, BORDER_CONSTANT ); } } } CV_IMPL void cvUndistort2( const CvArr* srcarr, CvArr* dstarr, const CvMat* Aarr, const CvMat* dist_coeffs, const CvMat* newAarr ) { cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst; cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs), newA; if( newAarr ) newA = cv::cvarrToMat(newAarr); CV_Assert( src.size() == dst.size() && src.type() == dst.type() ); cv::undistort( src, dst, A, distCoeffs, newA ); } CV_IMPL void cvInitUndistortMap( const CvMat* Aarr, const CvMat* dist_coeffs, CvArr* mapxarr, CvArr* mapyarr ) { cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs = cv::cvarrToMat(dist_coeffs); cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0; if( mapyarr ) mapy0 = mapy = cv::cvarrToMat(mapyarr); cv::initUndistortRectifyMap( A, distCoeffs, cv::Mat(), A, mapx.size(), mapx.type(), mapx, mapy ); CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data ); } void cvInitUndistortRectifyMap( const CvMat* Aarr, const CvMat* dist_coeffs, const CvMat *Rarr, const CvMat* ArArr, CvArr* mapxarr, CvArr* mapyarr ) { cv::Mat A = cv::cvarrToMat(Aarr), distCoeffs, R, Ar; cv::Mat mapx = cv::cvarrToMat(mapxarr), mapy, mapx0 = mapx, mapy0; if( mapyarr ) mapy0 = mapy = cv::cvarrToMat(mapyarr); if( dist_coeffs ) distCoeffs = cv::cvarrToMat(dist_coeffs); if( Rarr ) R = cv::cvarrToMat(Rarr); if( ArArr ) Ar = cv::cvarrToMat(ArArr); cv::initUndistortRectifyMap( A, distCoeffs, R, Ar, mapx.size(), mapx.type(), mapx, mapy ); CV_Assert( mapx0.data == mapx.data && mapy0.data == mapy.data ); } void cvUndistortPoints( const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix, const CvMat* _distCoeffs, const CvMat* matR, const CvMat* matP ) { double A[3][3], RR[3][3], k[5]={0,0,0,0,0}, fx, fy, ifx, ify, cx, cy; CvMat matA=cvMat(3, 3, CV_64F, A), _Dk; CvMat _RR=cvMat(3, 3, CV_64F, RR); const CvPoint2D32f* srcf; const CvPoint2D64f* srcd; CvPoint2D32f* dstf; CvPoint2D64f* dstd; int stype, dtype; int sstep, dstep; int i, j, n, iters = 1; CV_Assert( CV_IS_MAT(_src) && CV_IS_MAT(_dst) && (_src->rows == 1 || _src->cols == 1) && (_dst->rows == 1 || _dst->cols == 1) && _src->cols + _src->rows - 1 == _dst->rows + _dst->cols - 1 && (CV_MAT_TYPE(_src->type) == CV_32FC2 || CV_MAT_TYPE(_src->type) == CV_64FC2) && (CV_MAT_TYPE(_dst->type) == CV_32FC2 || CV_MAT_TYPE(_dst->type) == CV_64FC2)); CV_Assert( CV_IS_MAT(_cameraMatrix) && _cameraMatrix->rows == 3 && _cameraMatrix->cols == 3 ); cvConvert( _cameraMatrix, &matA ); if( _distCoeffs ) { CV_Assert( CV_IS_MAT(_distCoeffs) && (_distCoeffs->rows == 1 || _distCoeffs->cols == 1) && (_distCoeffs->rows*_distCoeffs->cols == 4 || _distCoeffs->rows*_distCoeffs->cols == 5) ); _Dk = cvMat( _distCoeffs->rows, _distCoeffs->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(_distCoeffs->type)), k); cvConvert( _distCoeffs, &_Dk ); iters = 5; } if( matR ) { CV_Assert( CV_IS_MAT(matR) && matR->rows == 3 && matR->cols == 3 ); cvConvert( matR, &_RR ); } else cvSetIdentity(&_RR); if( matP ) { double PP[3][3]; CvMat _P3x3, _PP=cvMat(3, 3, CV_64F, PP); CV_Assert( CV_IS_MAT(matP) && matP->rows == 3 && (matP->cols == 3 || matP->cols == 4)); cvConvert( cvGetCols(matP, &_P3x3, 0, 3), &_PP ); cvMatMul( &_PP, &_RR, &_RR ); } srcf = (const CvPoint2D32f*)_src->data.ptr; srcd = (const CvPoint2D64f*)_src->data.ptr; dstf = (CvPoint2D32f*)_dst->data.ptr; dstd = (CvPoint2D64f*)_dst->data.ptr; stype = CV_MAT_TYPE(_src->type); dtype = CV_MAT_TYPE(_dst->type); sstep = _src->rows == 1 ? 1 : _src->step/CV_ELEM_SIZE(stype); dstep = _dst->rows == 1 ? 1 : _dst->step/CV_ELEM_SIZE(dtype); n = _src->rows + _src->cols - 1; fx = A[0][0]; fy = A[1][1]; ifx = 1./fx; ify = 1./fy; cx = A[0][2]; cy = A[1][2]; for( i = 0; i < n; i++ ) { double x, y, x0, y0; if( stype == CV_32FC2 ) { x = srcf[i*sstep].x; y = srcf[i*sstep].y; } else { x = srcd[i*sstep].x; y = srcd[i*sstep].y; } x0 = x = (x - cx)*ifx; y0 = y = (y - cy)*ify; // compensate distortion iteratively for( j = 0; j < iters; j++ ) { double r2 = x*x + y*y; double icdist = 1./(1 + ((k[4]*r2 + k[1])*r2 + k[0])*r2); double deltaX = 2*k[2]*x*y + k[3]*(r2 + 2*x*x); double deltaY = k[2]*(r2 + 2*y*y) + 2*k[3]*x*y; x = (x0 - deltaX)*icdist; y = (y0 - deltaY)*icdist; } double xx = RR[0][0]*x + RR[0][1]*y + RR[0][2]; double yy = RR[1][0]*x + RR[1][1]*y + RR[1][2]; double ww = 1./(RR[2][0]*x + RR[2][1]*y + RR[2][2]); x = xx*ww; y = yy*ww; if( dtype == CV_32FC2 ) { dstf[i*dstep].x = (float)x; dstf[i*dstep].y = (float)y; } else { dstd[i*dstep].x = x; dstd[i*dstep].y = y; } } } void cv::undistortPoints( const Mat& src, Mat& dst, const Mat& cameraMatrix, const Mat& distCoeffs, const Mat& R, const Mat& P ) { CV_Assert( src.isContinuous() && src.depth() == CV_32F && ((src.rows == 1 && src.channels() == 2) || src.cols*src.channels() == 2)); dst.create(src.size(), src.type()); CvMat _src = src, _dst = dst, _cameraMatrix = cameraMatrix; CvMat matR, matP, _distCoeffs, *pR=0, *pP=0, *pD=0; if( R.data ) pR = &(matR = R); if( P.data ) pP = &(matP = P); if( distCoeffs.data ) pD = &(_distCoeffs = distCoeffs); cvUndistortPoints(&_src, &_dst, &_cameraMatrix, pD, pR, pP); } void cv::undistortPoints( const Mat& src, std::vector& dst, const Mat& cameraMatrix, const Mat& distCoeffs, const Mat& R, const Mat& P ) { size_t sz = src.cols*src.rows*src.channels()/2; CV_Assert( src.isContinuous() && src.depth() == CV_32F && ((src.rows == 1 && src.channels() == 2) || src.cols*src.channels() == 2)); dst.resize(sz); CvMat _src = src, _dst = Mat(dst), _cameraMatrix = cameraMatrix; CvMat matR, matP, _distCoeffs, *pR=0, *pP=0, *pD=0; if( R.data ) pR = &(matR = R); if( P.data ) pP = &(matP = P); if( distCoeffs.data ) pD = &(_distCoeffs = distCoeffs); cvUndistortPoints(&_src, &_dst, &_cameraMatrix, pD, pR, pP); } /* End of file */