/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; /////////////////////////// matrix operations ///////////////////////// #ifdef HAVE_CUDA // CUDA implementation #include "cuda/matrix_operations.hpp" namespace { template void cudaSet_(GpuMat& src, Scalar s, cudaStream_t stream) { Scalar_ sf = s; cudev::set(PtrStepSz(src), sf.val, src.channels(), stream); } void cudaSet(GpuMat& src, Scalar s, cudaStream_t stream) { typedef void (*func_t)(GpuMat& src, Scalar s, cudaStream_t stream); static const func_t funcs[] = { cudaSet_, cudaSet_, cudaSet_, cudaSet_, cudaSet_, cudaSet_, cudaSet_ }; funcs[src.depth()](src, s, stream); } template void cudaSet_(GpuMat& src, Scalar s, PtrStepSzb mask, cudaStream_t stream) { Scalar_ sf = s; cudev::set(PtrStepSz(src), sf.val, mask, src.channels(), stream); } void cudaSet(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) { typedef void (*func_t)(GpuMat& src, Scalar s, PtrStepSzb mask, cudaStream_t stream); static const func_t funcs[] = { cudaSet_, cudaSet_, cudaSet_, cudaSet_, cudaSet_, cudaSet_, cudaSet_ }; funcs[src.depth()](src, s, mask, stream); } void cudaCopyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream) { cudev::copyWithMask(src.reshape(1), dst.reshape(1), src.elemSize1(), src.channels(), mask.reshape(1), mask.channels() != 1, stream); } void cudaConvert(const GpuMat& src, GpuMat& dst, cudaStream_t stream) { cudev::convert(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), 1.0, 0.0, stream); } void cudaConvert(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream) { cudev::convert(src.reshape(1), src.depth(), dst.reshape(1), dst.depth(), alpha, beta, stream); } } // NPP implementation namespace { ////////////////////////////////////////////////////////////////////////// // Convert template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI); }; template struct NppConvertFunc { typedef typename NPPTypeTraits::npp_type dst_t; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, dst_t* pDst, int nDstStep, NppiSize oSizeROI, NppRoundMode eRoundMode); }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type src_t; typedef typename NPPTypeTraits::npp_type dst_t; static void call(const GpuMat& src, GpuMat& dst, cudaStream_t stream) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppCvt { typedef typename NPPTypeTraits::npp_type dst_t; static void call(const GpuMat& src, GpuMat& dst, cudaStream_t stream) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz, NPP_RND_NEAR) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; ////////////////////////////////////////////////////////////////////////// // Set template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template struct NppSetFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI); }; template struct NppSetFunc { typedef NppStatus (*func_ptr)(Npp8s values[], Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI); }; template<> struct NppSetFunc { typedef NppStatus (*func_ptr)(Npp8s val, Npp8s* pSrc, int nSrcStep, NppiSize oSizeROI); }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s, cudaStream_t stream) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; NppStreamHandler h(stream); nppSafeCall( func(nppS.val, src.ptr(), static_cast(src.step), sz) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppSet { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s, cudaStream_t stream) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; NppStreamHandler h(stream); nppSafeCall( func(nppS[0], src.ptr(), static_cast(src.step), sz) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t values[], src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template struct NppSetMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(src_t val, src_t* pSrc, int nSrcStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; NppStreamHandler h(stream); nppSafeCall( func(nppS.val, src.ptr(), static_cast(src.step), sz, mask.ptr(), static_cast(mask.step)) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func> struct NppSetMask { typedef typename NPPTypeTraits::npp_type src_t; static void call(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; Scalar_ nppS = s; NppStreamHandler h(stream); nppSafeCall( func(nppS[0], src.ptr(), static_cast(src.step), sz, mask.ptr(), static_cast(mask.step)) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; ////////////////////////////////////////////////////////////////////////// // CopyMasked template struct NppCopyWithMaskFunc { typedef typename NPPTypeTraits::npp_type src_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, src_t* pDst, int nDstStep, NppiSize oSizeROI, const Npp8u* pMask, int nMaskStep); }; template::func_ptr func> struct NppCopyWithMask { typedef typename NPPTypeTraits::npp_type src_t; static void call(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream) { NppiSize sz; sz.width = src.cols; sz.height = src.rows; NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), static_cast(src.step), dst.ptr(), static_cast(dst.step), sz, mask.ptr(), static_cast(mask.step)) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; } // Dispatcher namespace { void copyWithMask(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream = 0) { CV_DbgAssert( src.size() == dst.size() && src.type() == dst.type() ); CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 ); CV_Assert( src.size() == mask.size() && mask.depth() == CV_8U && (mask.channels() == 1 || mask.channels() == src.channels()) ); if (src.depth() == CV_64F) { CV_Assert( deviceSupports(NATIVE_DOUBLE) ); } typedef void (*func_t)(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream); static const func_t funcs[7][4] = { /* 8U */ {NppCopyWithMask::call, cudaCopyWithMask, NppCopyWithMask::call, NppCopyWithMask::call}, /* 8S */ {cudaCopyWithMask , cudaCopyWithMask, cudaCopyWithMask , cudaCopyWithMask }, /* 16U */ {NppCopyWithMask::call, cudaCopyWithMask, NppCopyWithMask::call, NppCopyWithMask::call}, /* 16S */ {NppCopyWithMask::call, cudaCopyWithMask, NppCopyWithMask::call, NppCopyWithMask::call}, /* 32S */ {NppCopyWithMask::call, cudaCopyWithMask, NppCopyWithMask::call, NppCopyWithMask::call}, /* 32F */ {NppCopyWithMask::call, cudaCopyWithMask, NppCopyWithMask::call, NppCopyWithMask::call}, /* 64F */ {cudaCopyWithMask , cudaCopyWithMask, cudaCopyWithMask , cudaCopyWithMask } }; const func_t func = mask.channels() == src.channels() ? funcs[src.depth()][src.channels() - 1] : cudaCopyWithMask; func(src, dst, mask, stream); } void convert(const GpuMat& src, GpuMat& dst, cudaStream_t stream = 0) { CV_DbgAssert( src.size() == dst.size() && src.channels() == dst.channels() ); CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 ); CV_Assert( dst.depth() <= CV_64F ); if (src.depth() == CV_64F || dst.depth() == CV_64F) { CV_Assert( deviceSupports(NATIVE_DOUBLE) ); } typedef void (*func_t)(const GpuMat& src, GpuMat& dst, cudaStream_t stream); static const func_t funcs[7][7][4] = { { /* 8U -> 8U */ {0, 0, 0, 0}, /* 8U -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }, /* 8U -> 16U */ {NppCvt::call, cudaConvert, cudaConvert, NppCvt::call}, /* 8U -> 16S */ {NppCvt::call, cudaConvert, cudaConvert, NppCvt::call}, /* 8U -> 32S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }, /* 8U -> 32F */ {NppCvt::call, cudaConvert, cudaConvert, cudaConvert }, /* 8U -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert } }, { /* 8S -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 8S -> 8S */ {0,0,0,0}, /* 8S -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 8S -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 8S -> 32S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 8S -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 8S -> 64F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert} }, { /* 16U -> 8U */ {NppCvt::call, cudaConvert, cudaConvert, NppCvt::call}, /* 16U -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }, /* 16U -> 16U */ {0,0,0,0}, /* 16U -> 16S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }, /* 16U -> 32S */ {NppCvt::call, cudaConvert, cudaConvert, cudaConvert }, /* 16U -> 32F */ {NppCvt::call, cudaConvert, cudaConvert, cudaConvert }, /* 16U -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert } }, { /* 16S -> 8U */ {NppCvt::call, cudaConvert, cudaConvert, NppCvt::call}, /* 16S -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }, /* 16S -> 16U */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert }, /* 16S -> 16S */ {0,0,0,0}, /* 16S -> 32S */ {NppCvt::call, cudaConvert, cudaConvert, cudaConvert }, /* 16S -> 32F */ {NppCvt::call, cudaConvert, cudaConvert, cudaConvert }, /* 16S -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert } }, { /* 32S -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 32S -> 8S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 32S -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 32S -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 32S -> 32S */ {0,0,0,0}, /* 32S -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 32S -> 64F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert} }, { /* 32F -> 8U */ {NppCvt::call, cudaConvert, cudaConvert, cudaConvert}, /* 32F -> 8S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert}, /* 32F -> 16U */ {NppCvt::call, cudaConvert, cudaConvert, cudaConvert}, /* 32F -> 16S */ {NppCvt::call, cudaConvert, cudaConvert, cudaConvert}, /* 32F -> 32S */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert}, /* 32F -> 32F */ {0,0,0,0}, /* 32F -> 64F */ {cudaConvert , cudaConvert, cudaConvert, cudaConvert} }, { /* 64F -> 8U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 64F -> 8S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 64F -> 16U */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 64F -> 16S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 64F -> 32S */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 64F -> 32F */ {cudaConvert, cudaConvert, cudaConvert, cudaConvert}, /* 64F -> 64F */ {0,0,0,0} } }; const bool aligned = isAligned(src.data, 16) && isAligned(dst.data, 16); if (!aligned) { cudaConvert(src, dst, stream); return; } const func_t func = funcs[src.depth()][dst.depth()][src.channels() - 1]; CV_DbgAssert( func != 0 ); func(src, dst, stream); } void convert(const GpuMat& src, GpuMat& dst, double alpha, double beta, cudaStream_t stream = 0) { CV_DbgAssert( src.size() == dst.size() && src.channels() == dst.channels() ); CV_Assert( src.depth() <= CV_64F && src.channels() <= 4 ); CV_Assert( dst.depth() <= CV_64F ); if (src.depth() == CV_64F || dst.depth() == CV_64F) { CV_Assert( deviceSupports(NATIVE_DOUBLE) ); } cudaConvert(src, dst, alpha, beta, stream); } void set(GpuMat& m, Scalar s, cudaStream_t stream = 0) { if (s[0] == 0.0 && s[1] == 0.0 && s[2] == 0.0 && s[3] == 0.0) { if (stream) cudaSafeCall( cudaMemset2DAsync(m.data, m.step, 0, m.cols * m.elemSize(), m.rows, stream) ); else cudaSafeCall( cudaMemset2D(m.data, m.step, 0, m.cols * m.elemSize(), m.rows) ); return; } if (m.depth() == CV_8U) { int cn = m.channels(); if (cn == 1 || (cn == 2 && s[0] == s[1]) || (cn == 3 && s[0] == s[1] && s[0] == s[2]) || (cn == 4 && s[0] == s[1] && s[0] == s[2] && s[0] == s[3])) { int val = saturate_cast(s[0]); if (stream) cudaSafeCall( cudaMemset2DAsync(m.data, m.step, val, m.cols * m.elemSize(), m.rows, stream) ); else cudaSafeCall( cudaMemset2D(m.data, m.step, val, m.cols * m.elemSize(), m.rows) ); return; } } typedef void (*func_t)(GpuMat& src, Scalar s, cudaStream_t stream); static const func_t funcs[7][4] = { {NppSet::call, cudaSet , cudaSet , NppSet::call}, {NppSet::call, NppSet::call, NppSet::call, NppSet::call}, {NppSet::call, NppSet::call, cudaSet , NppSet::call}, {NppSet::call, NppSet::call, cudaSet , NppSet::call}, {NppSet::call, cudaSet , cudaSet , NppSet::call}, {NppSet::call, cudaSet , cudaSet , NppSet::call}, {cudaSet , cudaSet , cudaSet , cudaSet } }; CV_Assert( m.depth() <= CV_64F && m.channels() <= 4 ); if (m.depth() == CV_64F) { CV_Assert( deviceSupports(NATIVE_DOUBLE) ); } funcs[m.depth()][m.channels() - 1](m, s, stream); } void set(GpuMat& m, Scalar s, const GpuMat& mask, cudaStream_t stream = 0) { CV_DbgAssert( !mask.empty() ); CV_Assert( m.depth() <= CV_64F && m.channels() <= 4 ); if (m.depth() == CV_64F) { CV_Assert( deviceSupports(NATIVE_DOUBLE) ); } typedef void (*func_t)(GpuMat& src, Scalar s, const GpuMat& mask, cudaStream_t stream); static const func_t funcs[7][4] = { {NppSetMask::call, cudaSet, cudaSet, NppSetMask::call}, {cudaSet , cudaSet, cudaSet, cudaSet }, {NppSetMask::call, cudaSet, cudaSet, NppSetMask::call}, {NppSetMask::call, cudaSet, cudaSet, NppSetMask::call}, {NppSetMask::call, cudaSet, cudaSet, NppSetMask::call}, {NppSetMask::call, cudaSet, cudaSet, NppSetMask::call}, {cudaSet , cudaSet, cudaSet, cudaSet } }; funcs[m.depth()][m.channels() - 1](m, s, mask, stream); } } #endif // HAVE_CUDA cv::gpu::GpuMat::GpuMat(int rows_, int cols_, int type_, void* data_, size_t step_) : flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_), step(step_), data((uchar*)data_), refcount(0), datastart((uchar*)data_), dataend((uchar*)data_) { size_t minstep = cols * elemSize(); if (step == Mat::AUTO_STEP) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if (rows == 1) step = minstep; CV_DbgAssert( step >= minstep ); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step * (rows - 1) + minstep; } cv::gpu::GpuMat::GpuMat(Size size_, int type_, void* data_, size_t step_) : flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(size_.height), cols(size_.width), step(step_), data((uchar*)data_), refcount(0), datastart((uchar*)data_), dataend((uchar*)data_) { size_t minstep = cols * elemSize(); if (step == Mat::AUTO_STEP) { step = minstep; flags |= Mat::CONTINUOUS_FLAG; } else { if (rows == 1) step = minstep; CV_DbgAssert( step >= minstep ); flags |= step == minstep ? Mat::CONTINUOUS_FLAG : 0; } dataend += step * (rows - 1) + minstep; } cv::gpu::GpuMat::GpuMat(const GpuMat& m, Range rowRange_, Range colRange_) { flags = m.flags; step = m.step; refcount = m.refcount; data = m.data; datastart = m.datastart; dataend = m.dataend; if (rowRange_ == Range::all()) { rows = m.rows; } else { CV_Assert( 0 <= rowRange_.start && rowRange_.start <= rowRange_.end && rowRange_.end <= m.rows ); rows = rowRange_.size(); data += step*rowRange_.start; } if (colRange_ == Range::all()) { cols = m.cols; } else { CV_Assert( 0 <= colRange_.start && colRange_.start <= colRange_.end && colRange_.end <= m.cols ); cols = colRange_.size(); data += colRange_.start*elemSize(); flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; } if (rows == 1) flags |= Mat::CONTINUOUS_FLAG; if (refcount) CV_XADD(refcount, 1); if (rows <= 0 || cols <= 0) rows = cols = 0; } cv::gpu::GpuMat::GpuMat(const GpuMat& m, Rect roi) : flags(m.flags), rows(roi.height), cols(roi.width), step(m.step), data(m.data + roi.y*step), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend) { flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1; data += roi.x * elemSize(); CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows ); if (refcount) CV_XADD(refcount, 1); if (rows <= 0 || cols <= 0) rows = cols = 0; } void cv::gpu::GpuMat::create(int _rows, int _cols, int _type) { #ifndef HAVE_CUDA (void) _rows; (void) _cols; (void) _type; throw_no_cuda(); #else _type &= Mat::TYPE_MASK; if (rows == _rows && cols == _cols && type() == _type && data) return; if (data) release(); CV_DbgAssert( _rows >= 0 && _cols >= 0 ); if (_rows > 0 && _cols > 0) { flags = Mat::MAGIC_VAL + _type; rows = _rows; cols = _cols; size_t esz = elemSize(); void* devPtr; if (rows > 1 && cols > 1) { cudaSafeCall( cudaMallocPitch(&devPtr, &step, esz * cols, rows) ); } else { // Single row or single column must be continuous cudaSafeCall( cudaMalloc(&devPtr, esz * cols * rows) ); step = esz * cols; } if (esz * cols == step) flags |= Mat::CONTINUOUS_FLAG; int64 _nettosize = static_cast(step) * rows; size_t nettosize = static_cast(_nettosize); datastart = data = static_cast(devPtr); dataend = data + nettosize; refcount = static_cast(fastMalloc(sizeof(*refcount))); *refcount = 1; } #endif } void cv::gpu::GpuMat::release() { #ifdef HAVE_CUDA if (refcount && CV_XADD(refcount, -1) == 1) { cudaFree(datastart); fastFree(refcount); } data = datastart = dataend = 0; step = rows = cols = 0; refcount = 0; #endif } void cv::gpu::GpuMat::upload(InputArray arr) { #ifndef HAVE_CUDA (void) arr; throw_no_cuda(); #else Mat mat = arr.getMat(); CV_DbgAssert( !mat.empty() ); create(mat.size(), mat.type()); cudaSafeCall( cudaMemcpy2D(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice) ); #endif } void cv::gpu::GpuMat::upload(InputArray arr, Stream& _stream) { #ifndef HAVE_CUDA (void) arr; (void) _stream; throw_no_cuda(); #else Mat mat = arr.getMat(); CV_DbgAssert( !mat.empty() ); create(mat.size(), mat.type()); cudaStream_t stream = StreamAccessor::getStream(_stream); cudaSafeCall( cudaMemcpy2DAsync(data, step, mat.data, mat.step, cols * elemSize(), rows, cudaMemcpyHostToDevice, stream) ); #endif } void cv::gpu::GpuMat::download(OutputArray _dst) const { #ifndef HAVE_CUDA (void) _dst; throw_no_cuda(); #else CV_DbgAssert( !empty() ); _dst.create(size(), type()); Mat dst = _dst.getMat(); cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost) ); #endif } void cv::gpu::GpuMat::download(OutputArray _dst, Stream& _stream) const { #ifndef HAVE_CUDA (void) _dst; (void) _stream; throw_no_cuda(); #else CV_DbgAssert( !empty() ); _dst.create(size(), type()); Mat dst = _dst.getMat(); cudaStream_t stream = StreamAccessor::getStream(_stream); cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToHost, stream) ); #endif } void cv::gpu::GpuMat::copyTo(OutputArray _dst) const { #ifndef HAVE_CUDA (void) _dst; throw_no_cuda(); #else CV_DbgAssert( !empty() ); _dst.create(size(), type()); GpuMat dst = _dst.getGpuMat(); cudaSafeCall( cudaMemcpy2D(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice) ); #endif } void cv::gpu::GpuMat::copyTo(OutputArray _dst, Stream& _stream) const { #ifndef HAVE_CUDA (void) _dst; (void) _stream; throw_no_cuda(); #else CV_DbgAssert( !empty() ); _dst.create(size(), type()); GpuMat dst = _dst.getGpuMat(); cudaStream_t stream = StreamAccessor::getStream(_stream); cudaSafeCall( cudaMemcpy2DAsync(dst.data, dst.step, data, step, cols * elemSize(), rows, cudaMemcpyDeviceToDevice, stream) ); #endif } void cv::gpu::GpuMat::copyTo(OutputArray _dst, InputArray _mask, Stream& _stream) const { #ifndef HAVE_CUDA (void) _dst; (void) _mask; (void) _stream; throw_no_cuda(); #else CV_DbgAssert( !empty() ); _dst.create(size(), type()); GpuMat dst = _dst.getGpuMat(); GpuMat mask = _mask.getGpuMat(); cudaStream_t stream = StreamAccessor::getStream(_stream); ::copyWithMask(*this, dst, mask, stream); #endif } GpuMat& cv::gpu::GpuMat::setTo(Scalar s, Stream& _stream) { #ifndef HAVE_CUDA (void) s; (void) _stream; throw_no_cuda(); #else CV_DbgAssert( !empty() ); cudaStream_t stream = StreamAccessor::getStream(_stream); ::set(*this, s, stream); #endif return *this; } GpuMat& cv::gpu::GpuMat::setTo(Scalar s, InputArray _mask, Stream& _stream) { #ifndef HAVE_CUDA (void) s; (void) _mask; (void) _stream; throw_no_cuda(); #else CV_DbgAssert( !empty() ); GpuMat mask = _mask.getGpuMat(); cudaStream_t stream = StreamAccessor::getStream(_stream); ::set(*this, s, mask, stream); #endif return *this; } void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, Stream& _stream) const { #ifndef HAVE_CUDA (void) _dst; (void) rtype; (void) _stream; throw_no_cuda(); #else if (rtype < 0) rtype = type(); else rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels()); const int sdepth = depth(); const int ddepth = CV_MAT_DEPTH(rtype); if (sdepth == ddepth) { if (_stream) copyTo(_dst, _stream); else copyTo(_dst); return; } GpuMat src = *this; _dst.create(size(), rtype); GpuMat dst = _dst.getGpuMat(); cudaStream_t stream = StreamAccessor::getStream(_stream); ::convert(src, dst, stream); #endif } void cv::gpu::GpuMat::convertTo(OutputArray _dst, int rtype, double alpha, double beta, Stream& _stream) const { #ifndef HAVE_CUDA (void) _dst; (void) rtype; (void) alpha; (void) beta; (void) _stream; throw_no_cuda(); #else if (rtype < 0) rtype = type(); else rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels()); GpuMat src = *this; _dst.create(size(), rtype); GpuMat dst = _dst.getGpuMat(); cudaStream_t stream = StreamAccessor::getStream(_stream); ::convert(src, dst, alpha, beta, stream); #endif } GpuMat cv::gpu::GpuMat::reshape(int new_cn, int new_rows) const { GpuMat hdr = *this; int cn = channels(); if (new_cn == 0) new_cn = cn; int total_width = cols * cn; if ((new_cn > total_width || total_width % new_cn != 0) && new_rows == 0) new_rows = rows * total_width / new_cn; if (new_rows != 0 && new_rows != rows) { int total_size = total_width * rows; if (!isContinuous()) CV_Error(cv::Error::BadStep, "The matrix is not continuous, thus its number of rows can not be changed"); if ((unsigned)new_rows > (unsigned)total_size) CV_Error(cv::Error::StsOutOfRange, "Bad new number of rows"); total_width = total_size / new_rows; if (total_width * new_rows != total_size) CV_Error(cv::Error::StsBadArg, "The total number of matrix elements is not divisible by the new number of rows"); hdr.rows = new_rows; hdr.step = total_width * elemSize1(); } int new_width = total_width / new_cn; if (new_width * new_cn != total_width) CV_Error(cv::Error::BadNumChannels, "The total width is not divisible by the new number of channels"); hdr.cols = new_width; hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((new_cn - 1) << CV_CN_SHIFT); return hdr; } void cv::gpu::GpuMat::locateROI(Size& wholeSize, Point& ofs) const { CV_DbgAssert( step > 0 ); size_t esz = elemSize(); ptrdiff_t delta1 = data - datastart; ptrdiff_t delta2 = dataend - datastart; if (delta1 == 0) { ofs.x = ofs.y = 0; } else { ofs.y = static_cast(delta1 / step); ofs.x = static_cast((delta1 - step * ofs.y) / esz); CV_DbgAssert( data == datastart + ofs.y * step + ofs.x * esz ); } size_t minstep = (ofs.x + cols) * esz; wholeSize.height = std::max(static_cast((delta2 - minstep) / step + 1), ofs.y + rows); wholeSize.width = std::max(static_cast((delta2 - step * (wholeSize.height - 1)) / esz), ofs.x + cols); } GpuMat& cv::gpu::GpuMat::adjustROI(int dtop, int dbottom, int dleft, int dright) { Size wholeSize; Point ofs; locateROI(wholeSize, ofs); size_t esz = elemSize(); int row1 = std::max(ofs.y - dtop, 0); int row2 = std::min(ofs.y + rows + dbottom, wholeSize.height); int col1 = std::max(ofs.x - dleft, 0); int col2 = std::min(ofs.x + cols + dright, wholeSize.width); data += (row1 - ofs.y) * step + (col1 - ofs.x) * esz; rows = row2 - row1; cols = col2 - col1; if (esz * cols == step || rows == 1) flags |= Mat::CONTINUOUS_FLAG; else flags &= ~Mat::CONTINUOUS_FLAG; return *this; } namespace { template void createContinuousImpl(int rows, int cols, int type, ObjType& obj) { const int area = rows * cols; if (obj.empty() || obj.type() != type || !obj.isContinuous() || obj.size().area() < area) obj.create(1, area, type); obj = obj.reshape(obj.channels(), rows); } } void cv::gpu::createContinuous(int rows, int cols, int type, OutputArray arr) { switch (arr.kind()) { case _InputArray::MAT: ::createContinuousImpl(rows, cols, type, arr.getMatRef()); break; case _InputArray::GPU_MAT: ::createContinuousImpl(rows, cols, type, arr.getGpuMatRef()); break; case _InputArray::CUDA_MEM: ::createContinuousImpl(rows, cols, type, arr.getCudaMemRef()); break; default: arr.create(rows, cols, type); } } namespace { template void ensureSizeIsEnoughImpl(int rows, int cols, int type, ObjType& obj) { if (obj.empty() || obj.type() != type || obj.data != obj.datastart) { obj.create(rows, cols, type); } else { const size_t esz = obj.elemSize(); const ptrdiff_t delta2 = obj.dataend - obj.datastart; const size_t minstep = obj.cols * esz; Size wholeSize; wholeSize.height = std::max(static_cast((delta2 - minstep) / static_cast(obj.step) + 1), obj.rows); wholeSize.width = std::max(static_cast((delta2 - static_cast(obj.step) * (wholeSize.height - 1)) / esz), obj.cols); if (wholeSize.height < rows || wholeSize.width < cols) { obj.create(rows, cols, type); } else { obj.cols = cols; obj.rows = rows; } } } } void cv::gpu::ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr) { switch (arr.kind()) { case _InputArray::MAT: ::ensureSizeIsEnoughImpl(rows, cols, type, arr.getMatRef()); break; case _InputArray::GPU_MAT: ::ensureSizeIsEnoughImpl(rows, cols, type, arr.getGpuMatRef()); break; case _InputArray::CUDA_MEM: ::ensureSizeIsEnoughImpl(rows, cols, type, arr.getCudaMemRef()); break; default: arr.create(rows, cols, type); } } GpuMat cv::gpu::allocMatFromBuf(int rows, int cols, int type, GpuMat& mat) { if (!mat.empty() && mat.type() == type && mat.rows >= rows && mat.cols >= cols) return mat(Rect(0, 0, cols, rows)); return mat = GpuMat(rows, cols, type); }