#include "precomp.hpp" using namespace perf; void randu(cv::Mat& m) { const int bigValue = 0x00000FFF; if (m.depth() < CV_32F) { int minmax[] = {0, 256}; cv::Mat mr = cv::Mat(m.rows, m.cols * m.elemSize(), CV_8U, m.ptr(), m.step[0]); cv::randu(mr, cv::Mat(1, 1, CV_32S, minmax), cv::Mat(1, 1, CV_32S, minmax + 1)); } else if (m.depth() == CV_32F) { //float minmax[] = {-FLT_MAX, FLT_MAX}; float minmax[] = {-bigValue, bigValue}; cv::Mat mr = m.reshape(1); cv::randu(mr, cv::Mat(1, 1, CV_32F, minmax), cv::Mat(1, 1, CV_32F, minmax + 1)); } else { //double minmax[] = {-DBL_MAX, DBL_MAX}; double minmax[] = {-bigValue, bigValue}; cv::Mat mr = m.reshape(1); cv::randu(mr, cv::Mat(1, 1, CV_64F, minmax), cv::Mat(1, 1, CV_64F, minmax + 1)); } } /*****************************************************************************************\ * inner exception class for early termination \*****************************************************************************************/ class PerfEarlyExitException: public cv::Exception {}; /*****************************************************************************************\ * ::perf::Regression \*****************************************************************************************/ Regression& Regression::instance() { static Regression single; return single; } Regression& Regression::add(const std::string& name, cv::InputArray array, double eps, ERROR_TYPE err) { return instance()(name, array, eps, err); } void Regression::Init(const std::string& testSuitName, const std::string& ext) { instance().init(testSuitName, ext); } void Regression::init(const std::string& testSuitName, const std::string& ext) { if (!storageInPath.empty()) { LOGE("Subsequent initialisation of Regression utility is not allowed."); return; } const char *data_path_dir = getenv("OPENCV_TEST_DATA_PATH"); const char *path_separator = "/"; if (data_path_dir) { int len = strlen(data_path_dir)-1; if (len < 0) len = 0; std::string path_base = (data_path_dir[0] == 0 ? std::string(".") : std::string(data_path_dir)) + (data_path_dir[len] == '/' || data_path_dir[len] == '\\' ? "" : path_separator) + "perf" + path_separator; storageInPath = path_base + testSuitName + ext; storageOutPath = path_base + testSuitName; } else { storageInPath = testSuitName + ext; storageOutPath = testSuitName; } if (storageIn.open(storageInPath, cv::FileStorage::READ)) { rootIn = storageIn.root(); if (storageInPath.length() > 3 && storageInPath.substr(storageInPath.length()-3) == ".gz") storageOutPath += "_new"; storageOutPath += ext; } else storageOutPath = storageInPath; } Regression::Regression() : regRNG(cv::getTickCount())//this rng should be really random { } Regression::~Regression() { if (storageIn.isOpened()) storageIn.release(); if (storageOut.isOpened()) { if (!currentTestNodeName.empty()) storageOut << "}"; storageOut.release(); } } cv::FileStorage& Regression::write() { if (!storageOut.isOpened() && !storageOutPath.empty()) { int mode = (storageIn.isOpened() && storageInPath == storageOutPath) ? cv::FileStorage::APPEND : cv::FileStorage::WRITE; storageOut.open(storageOutPath, mode); if (!storageOut.isOpened()) { LOGE("Could not open \"%s\" file for writing", storageOutPath.c_str()); storageOutPath.clear(); } else if (mode == cv::FileStorage::WRITE && !rootIn.empty()) { //TODO: write content of rootIn node into the storageOut } } return storageOut; } std::string Regression::getCurrentTestNodeName() { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); if (test_info == 0) return "undefined"; std::string nodename = std::string(test_info->test_case_name()) + "--" + test_info->name(); size_t idx = nodename.find_first_of('/'); if (idx != std::string::npos) nodename.erase(idx); const char* type_param = test_info->type_param(); if (type_param != 0) (nodename += "--") += type_param; const char* value_param = test_info->value_param(); if (value_param != 0) (nodename += "--") += value_param; for(size_t i = 0; i < nodename.length(); ++i) if (!isalnum(nodename[i]) && '_' != nodename[i]) nodename[i] = '-'; return nodename; } bool Regression::isVector(cv::InputArray a) { return a.kind() == cv::_InputArray::STD_VECTOR_MAT || a.kind() == cv::_InputArray::STD_VECTOR_VECTOR; } double Regression::getElem(cv::Mat& m, int y, int x, int cn) { switch (m.depth()) { case CV_8U: return *(m.ptr(y, x) + cn); case CV_8S: return *(m.ptr(y, x) + cn); case CV_16U: return *(m.ptr(y, x) + cn); case CV_16S: return *(m.ptr(y, x) + cn); case CV_32S: return *(m.ptr(y, x) + cn); case CV_32F: return *(m.ptr(y, x) + cn); case CV_64F: return *(m.ptr(y, x) + cn); default: return 0; } } void Regression::write(cv::Mat m) { double min, max; cv::minMaxLoc(m, &min, &max); write() << "min" << min << "max" << max; write() << "last" << "{" << "x" << m.cols-1 << "y" << m.rows-1 << "val" << getElem(m, m.rows-1, m.cols-1, m.channels()-1) << "}"; int x, y, cn; x = regRNG.uniform(0, m.cols); y = regRNG.uniform(0, m.rows); cn = regRNG.uniform(0, m.channels()); write() << "rng1" << "{" << "x" << x << "y" << y; if(cn > 0) write() << "cn" << cn; write() << "val" << getElem(m, y, x, cn) << "}"; x = regRNG.uniform(0, m.cols); y = regRNG.uniform(0, m.rows); cn = regRNG.uniform(0, m.channels()); write() << "rng2" << "{" << "x" << x << "y" << y; if (cn > 0) write() << "cn" << cn; write() << "val" << getElem(m, y, x, cn) << "}"; } static double evalEps(double expected, double actual, double _eps, ERROR_TYPE err) { if (err == ERROR_ABSOLUTE) return _eps; else if (err == ERROR_RELATIVE) return std::max(std::abs(expected), std::abs(actual)) * err; return 0; } void Regression::verify(cv::FileNode node, cv::Mat actual, double _eps, std::string argname, ERROR_TYPE err) { double actual_min, actual_max; cv::minMaxLoc(actual, &actual_min, &actual_max); double eps = evalEps((double)node["min"], actual_min, _eps, err); ASSERT_NEAR((double)node["min"], actual_min, eps) << " " << argname << " has unexpected minimal value"; eps = evalEps((double)node["max"], actual_max, _eps, err); ASSERT_NEAR((double)node["max"], actual_max, eps) << " " << argname << " has unexpected maximal value"; cv::FileNode last = node["last"]; double actualLast = getElem(actual, actual.rows - 1, actual.cols - 1, actual.channels() - 1); ASSERT_EQ((int)last["x"], actual.cols - 1) << " " << argname << " has unexpected number of columns"; ASSERT_EQ((int)last["y"], actual.rows - 1) << " " << argname << " has unexpected number of rows"; eps = evalEps((double)last["val"], actualLast, _eps, err); ASSERT_NEAR((double)last["val"], actualLast, eps) << " " << argname << " has unexpected value of last element"; cv::FileNode rng1 = node["rng1"]; int x1 = rng1["x"]; int y1 = rng1["y"]; int cn1 = rng1["cn"]; eps = evalEps((double)rng1["val"], getElem(actual, y1, x1, cn1), _eps, err); ASSERT_NEAR((double)rng1["val"], getElem(actual, y1, x1, cn1), eps) << " " << argname << " has unexpected value of ["<< x1 << ":" << y1 << ":" << cn1 <<"] element"; cv::FileNode rng2 = node["rng2"]; int x2 = rng2["x"]; int y2 = rng2["y"]; int cn2 = rng2["cn"]; eps = evalEps((double)rng2["val"], getElem(actual, y2, x2, cn2), _eps, err); ASSERT_NEAR((double)rng2["val"], getElem(actual, y2, x2, cn2), eps) << " " << argname << " has unexpected value of ["<< x2 << ":" << y2 << ":" << cn2 <<"] element"; } void Regression::write(cv::InputArray array) { write() << "kind" << array.kind(); write() << "type" << array.type(); if (isVector(array)) { int total = array.total(); int idx = regRNG.uniform(0, total); write() << "len" << total; write() << "idx" << idx; cv::Mat m = array.getMat(idx); if (m.total() * m.channels() < 26) //5x5 or smaller write() << "val" << m; else write(m); } else { if (array.total() * array.channels() < 26) //5x5 or smaller write() << "val" << array.getMat(); else write(array.getMat()); } } static int countViolations(const cv::Mat& expected, const cv::Mat& actual, const cv::Mat& diff, double eps, double* max_violation = 0, double* max_allowed = 0) { cv::Mat diff64f; diff.reshape(1).convertTo(diff64f, CV_64F); cv::Mat expected_abs = cv::abs(expected.reshape(1)); cv::Mat actual_abs = cv::abs(actual.reshape(1)); cv::Mat maximum, mask; cv::max(expected_abs, actual_abs, maximum); cv::multiply(maximum, cv::Vec(eps), maximum, CV_64F); cv::compare(diff64f, maximum, mask, cv::CMP_GT); int v = cv::countNonZero(mask); if (v > 0 && max_violation != 0 && max_allowed != 0) { int loc[10]; cv::minMaxIdx(maximum, 0, max_allowed, 0, loc, mask); *max_violation = diff64f.at(loc[1], loc[0]); } return v; } void Regression::verify(cv::FileNode node, cv::InputArray array, double eps, ERROR_TYPE err) { ASSERT_EQ((int)node["kind"], array.kind()) << " Argument \"" << node.name() << "\" has unexpected kind"; ASSERT_EQ((int)node["type"], array.type()) << " Argument \"" << node.name() << "\" has unexpected type"; cv::FileNode valnode = node["val"]; if (isVector(array)) { ASSERT_EQ((int)node["len"], (int)array.total()) << " Vector \"" << node.name() << "\" has unexpected length"; int idx = node["idx"]; cv::Mat actual = array.getMat(idx); if (valnode.isNone()) { ASSERT_LE((size_t)26, actual.total() * (size_t)actual.channels()) << " \"" << node.name() << "[" << idx << "]\" has unexpected number of elements"; verify(node, actual, eps, cv::format("%s[%d]", node.name().c_str(), idx), err); } else { cv::Mat expected; valnode >> expected; ASSERT_EQ(expected.size(), actual.size()) << " " << node.name() << "[" << idx<< "] has unexpected size"; cv::Mat diff; cv::absdiff(expected, actual, diff); if (err == ERROR_ABSOLUTE) { if (!cv::checkRange(diff, true, 0, 0, eps)) { double max; cv::minMaxLoc(diff.reshape(1), 0, &max); FAIL() << " Absolute difference (=" << max << ") between argument \"" << node.name() << "[" << idx << "]\" and expected value is bugger than " << eps; } } else if (err == ERROR_RELATIVE) { double maxv, maxa; int violations = countViolations(expected, actual, diff, eps, &maxv, &maxa); if (violations > 0) { FAIL() << " Relative difference (" << maxv << " of " << maxa << " allowed) between argument \"" << node.name() << "[" << idx << "]\" and expected value is bugger than " << eps << " in " << violations << " points"; } } } } else { if (valnode.isNone()) { ASSERT_LE((size_t)26, array.total() * (size_t)array.channels()) << " Argument \"" << node.name() << "\" has unexpected number of elements"; verify(node, array.getMat(), eps, "Argument " + node.name(), err); } else { cv::Mat expected; valnode >> expected; cv::Mat actual = array.getMat(); ASSERT_EQ(expected.size(), actual.size()) << " Argument \"" << node.name() << "\" has unexpected size"; cv::Mat diff; cv::absdiff(expected, actual, diff); if (err == ERROR_ABSOLUTE) { if (!cv::checkRange(diff, true, 0, 0, eps)) { double max; cv::minMaxLoc(diff.reshape(1), 0, &max); FAIL() << " Difference (=" << max << ") between argument \"" << node.name() << "\" and expected value is bugger than " << eps; } } else if (err == ERROR_RELATIVE) { double maxv, maxa; int violations = countViolations(expected, actual, diff, eps, &maxv, &maxa); if (violations > 0) { FAIL() << " Relative difference (" << maxv << " of " << maxa << " allowed) between argument \"" << node.name() << "\" and expected value is bugger than " << eps << " in " << violations << " points"; } } } } } Regression& Regression::operator() (const std::string& name, cv::InputArray array, double eps, ERROR_TYPE err) { std::string nodename = getCurrentTestNodeName(); cv::FileNode n = rootIn[nodename]; if(n.isNone()) { if (nodename != currentTestNodeName) { if (!currentTestNodeName.empty()) write() << "}"; currentTestNodeName = nodename; write() << nodename << "{"; } write() << name << "{"; write(array); write() << "}"; } else { cv::FileNode this_arg = n[name]; if (!this_arg.isMap()) ADD_FAILURE() << " No regression data for " << name << " argument"; else verify(this_arg, array, eps, err); } return *this; } /*****************************************************************************************\ * ::perf::performance_metrics \*****************************************************************************************/ performance_metrics::performance_metrics() { bytesIn = 0; bytesOut = 0; samples = 0; outliers = 0; gmean = 0; gstddev = 0; mean = 0; stddev = 0; median = 0; min = 0; frequency = 0; terminationReason = TERM_UNKNOWN; } /*****************************************************************************************\ * ::perf::TestBase \*****************************************************************************************/ int64 TestBase::timeLimitDefault = 0; unsigned int TestBase::iterationsLimitDefault = (unsigned int)(-1); int64 TestBase::_timeadjustment = 0; const char *command_line_keys = { "{ |perf_max_outliers |8 |percent of allowed outliers}" "{ |perf_min_samples |10 |minimal required numer of samples}" "{ |perf_force_samples |100 |force set maximum number of samples for all tests}" "{ |perf_seed |809564 |seed for random numbers generator}" "{ |perf_tbb_nthreads |-1 |if TBB is enabled, the number of TBB threads}" #if ANDROID "{ |perf_time_limit |6.0 |default time limit for a single test (in seconds)}" "{ |perf_affinity_mask |0 |set affinity mask for the main thread}" #else "{ |perf_time_limit |3.0 |default time limit for a single test (in seconds)}" #endif "{ |perf_max_deviation |1.0 |}" "{h |help |false |}" }; double param_max_outliers; double param_max_deviation; unsigned int param_min_samples; unsigned int perf_force_samples; uint64 param_seed; double param_time_limit; int param_tbb_nthreads; #if ANDROID int param_affinity_mask; #include #include static void setCurrentThreadAffinityMask(int mask) { pid_t pid=gettid(); int syscallres=syscall(__NR_sched_setaffinity, pid, sizeof(mask), &mask); if (syscallres) { int err=errno; err=err;//to avoid warnings about unused variables LOGE("Error in the syscall setaffinity: mask=%d=0x%x err=%d=0x%x", mask, mask, err, err); } } #endif void TestBase::Init(int argc, const char* const argv[]) { cv::CommandLineParser args(argc, argv, command_line_keys); param_max_outliers = std::min(100., std::max(0., args.get("perf_max_outliers"))); param_min_samples = std::max(1u, args.get("perf_min_samples")); param_max_deviation = std::max(0., args.get("perf_max_deviation")); param_seed = args.get("perf_seed"); param_time_limit = std::max(0., args.get("perf_time_limit")); perf_force_samples = args.get("perf_force_samples"); param_tbb_nthreads = args.get("perf_tbb_nthreads"); #if ANDROID param_affinity_mask = args.get("perf_affinity_mask"); #endif if (args.get("help")) { args.printParams(); printf("\n\n"); return; } timeLimitDefault = param_time_limit == 0.0 ? 1 : (int64)(param_time_limit * cv::getTickFrequency()); iterationsLimitDefault = perf_force_samples == 0 ? (unsigned)(-1) : perf_force_samples; _timeadjustment = _calibrate(); } int64 TestBase::_calibrate() { class _helper : public ::perf::TestBase { public: performance_metrics& getMetrics() { return calcMetrics(); } virtual void TestBody() {} virtual void PerfTestBody() { //the whole system warmup SetUp(); cv::Mat a(2048, 2048, CV_32S, cv::Scalar(1)); cv::Mat b(2048, 2048, CV_32S, cv::Scalar(2)); declare.time(30); double s = 0; for(declare.iterations(20); startTimer(), next(); stopTimer()) s+=a.dot(b); declare.time(s); //self calibration SetUp(); for(declare.iterations(1000); startTimer(), next(); stopTimer()){} } }; _timeadjustment = 0; _helper h; h.PerfTestBody(); double compensation = h.getMetrics().min; LOGD("Time compensation is %.0f", compensation); return (int64)compensation; } TestBase::TestBase(): declare(this) { } void TestBase::declareArray(SizeVector& sizes, cv::InputOutputArray a, int wtype) { if (!a.empty()) { sizes.push_back(std::pair(getSizeInBytes(a), getSize(a))); warmup(a, wtype); } else if (a.kind() != cv::_InputArray::NONE) ADD_FAILURE() << " Uninitialized input/output parameters are not allowed for performance tests"; } void TestBase::warmup(cv::InputOutputArray a, int wtype) { if (a.empty()) return; if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR) warmup_impl(a.getMat(), wtype); else { size_t total = a.total(); for (size_t i = 0; i < total; ++i) warmup_impl(a.getMat(i), wtype); } } int TestBase::getSizeInBytes(cv::InputArray a) { if (a.empty()) return 0; int total = (int)a.total(); if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR) return total * CV_ELEM_SIZE(a.type()); int size = 0; for (int i = 0; i < total; ++i) size += (int)a.total(i) * CV_ELEM_SIZE(a.type(i)); return size; } cv::Size TestBase::getSize(cv::InputArray a) { if (a.kind() != cv::_InputArray::STD_VECTOR_MAT && a.kind() != cv::_InputArray::STD_VECTOR_VECTOR) return a.size(); return cv::Size(); } bool TestBase::next() { return ++currentIter < nIters && totalTime < timeLimit; } void TestBase::warmup_impl(cv::Mat m, int wtype) { switch(wtype) { case WARMUP_READ: cv::sum(m.reshape(1)); return; case WARMUP_WRITE: m.reshape(1).setTo(cv::Scalar::all(0)); return; case WARMUP_RNG: randu(m); return; default: return; } } unsigned int TestBase::getTotalInputSize() const { unsigned int res = 0; for (SizeVector::const_iterator i = inputData.begin(); i != inputData.end(); ++i) res += i->first; return res; } unsigned int TestBase::getTotalOutputSize() const { unsigned int res = 0; for (SizeVector::const_iterator i = outputData.begin(); i != outputData.end(); ++i) res += i->first; return res; } void TestBase::startTimer() { lastTime = cv::getTickCount(); } void TestBase::stopTimer() { int64 time = cv::getTickCount(); if (lastTime == 0) ADD_FAILURE() << " stopTimer() is called before startTimer()"; lastTime = time - lastTime; totalTime += lastTime; lastTime -= _timeadjustment; if (lastTime < 0) lastTime = 0; times.push_back(lastTime); lastTime = 0; } performance_metrics& TestBase::calcMetrics() { if ((metrics.samples == (unsigned int)currentIter) || times.size() == 0) return metrics; metrics.bytesIn = getTotalInputSize(); metrics.bytesOut = getTotalOutputSize(); metrics.frequency = cv::getTickFrequency(); metrics.samples = (unsigned int)times.size(); metrics.outliers = 0; if (metrics.terminationReason != performance_metrics::TERM_INTERRUPT && metrics.terminationReason != performance_metrics::TERM_EXCEPTION) { if (currentIter == nIters) metrics.terminationReason = performance_metrics::TERM_ITERATIONS; else if (totalTime >= timeLimit) metrics.terminationReason = performance_metrics::TERM_TIME; else metrics.terminationReason = performance_metrics::TERM_UNKNOWN; } std::sort(times.begin(), times.end()); //estimate mean and stddev for log(time) double gmean = 0; double gstddev = 0; int n = 0; for(TimeVector::const_iterator i = times.begin(); i != times.end(); ++i) { double x = (double)*i; if (x < DBL_EPSILON) continue; double lx = log(x); ++n; double delta = lx - gmean; gmean += delta / n; gstddev += delta * (lx - gmean); } gstddev = n > 1 ? sqrt(gstddev / (n - 1)) : 0; TimeVector::const_iterator start = times.begin(); TimeVector::const_iterator end = times.end(); //filter outliers assuming log-normal distribution //http://stackoverflow.com/questions/1867426/modeling-distribution-of-performance-measurements int offset = 0; if (gstddev > DBL_EPSILON) { double minout = exp(gmean - 3 * gstddev); double maxout = exp(gmean + 3 * gstddev); while(*start < minout) ++start, ++metrics.outliers, ++offset; do --end, ++metrics.outliers; while(*end > maxout); ++end, --metrics.outliers; } metrics.min = (double)*start; //calc final metrics n = 0; gmean = 0; gstddev = 0; double mean = 0; double stddev = 0; int m = 0; for(; start != end; ++start) { double x = (double)*start; if (x > DBL_EPSILON) { double lx = log(x); ++m; double gdelta = lx - gmean; gmean += gdelta / m; gstddev += gdelta * (lx - gmean); } ++n; double delta = x - mean; mean += delta / n; stddev += delta * (x - mean); } metrics.mean = mean; metrics.gmean = exp(gmean); metrics.gstddev = m > 1 ? sqrt(gstddev / (m - 1)) : 0; metrics.stddev = n > 1 ? sqrt(stddev / (n - 1)) : 0; metrics.median = n % 2 ? (double)times[offset + n / 2] : 0.5 * (times[offset + n / 2] + times[offset + n / 2 - 1]); return metrics; } void TestBase::validateMetrics() { performance_metrics& m = calcMetrics(); if (HasFailure()) return; ASSERT_GE(m.samples, 1u) << " No time measurements was performed.\nstartTimer() and stopTimer() commands are required for performance tests."; EXPECT_GE(m.samples, param_min_samples) << " Only a few samples are collected.\nPlease increase number of iterations or/and time limit to get reliable performance measurements."; if (m.gstddev > DBL_EPSILON) { EXPECT_GT(/*m.gmean * */1., /*m.gmean * */ 2 * sinh(m.gstddev * param_max_deviation)) << " Test results are not reliable ((mean-sigma,mean+sigma) deviation interval is bigger than measured time interval)."; } EXPECT_LE(m.outliers, std::max((unsigned int)cvCeil(m.samples * param_max_outliers / 100.), 1u)) << " Test results are not reliable (too many outliers)."; } void TestBase::reportMetrics(bool toJUnitXML) { performance_metrics& m = calcMetrics(); if (toJUnitXML) { RecordProperty("bytesIn", (int)m.bytesIn); RecordProperty("bytesOut", (int)m.bytesOut); RecordProperty("term", m.terminationReason); RecordProperty("samples", (int)m.samples); RecordProperty("outliers", (int)m.outliers); RecordProperty("frequency", cv::format("%.0f", m.frequency).c_str()); RecordProperty("min", cv::format("%.0f", m.min).c_str()); RecordProperty("median", cv::format("%.0f", m.median).c_str()); RecordProperty("gmean", cv::format("%.0f", m.gmean).c_str()); RecordProperty("gstddev", cv::format("%.6f", m.gstddev).c_str()); RecordProperty("mean", cv::format("%.0f", m.mean).c_str()); RecordProperty("stddev", cv::format("%.0f", m.stddev).c_str()); } else { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); const char* type_param = test_info->type_param(); const char* value_param = test_info->value_param(); #if defined(ANDROID) && defined(USE_ANDROID_LOGGING) LOGD("[ FAILED ] %s.%s", test_info->test_case_name(), test_info->name()); #endif if (type_param) LOGD("type = %11s", type_param); if (value_param) LOGD("params = %11s", value_param); switch (m.terminationReason) { case performance_metrics::TERM_ITERATIONS: LOGD("termination reason: reached maximum number of iterations"); break; case performance_metrics::TERM_TIME: LOGD("termination reason: reached time limit"); break; case performance_metrics::TERM_INTERRUPT: LOGD("termination reason: aborted by the performance testing framework"); break; case performance_metrics::TERM_EXCEPTION: LOGD("termination reason: unhandled exception"); break; case performance_metrics::TERM_UNKNOWN: default: LOGD("termination reason: unknown"); break; }; LOGD("bytesIn =%11lu", (unsigned long)m.bytesIn); LOGD("bytesOut =%11lu", (unsigned long)m.bytesOut); if (nIters == (unsigned int)-1 || m.terminationReason == performance_metrics::TERM_ITERATIONS) LOGD("samples =%11u", m.samples); else LOGD("samples =%11u of %u", m.samples, nIters); LOGD("outliers =%11u", m.outliers); LOGD("frequency =%11.0f", m.frequency); if (m.samples > 0) { LOGD("min =%11.0f = %.2fms", m.min, m.min * 1e3 / m.frequency); LOGD("median =%11.0f = %.2fms", m.median, m.median * 1e3 / m.frequency); LOGD("gmean =%11.0f = %.2fms", m.gmean, m.gmean * 1e3 / m.frequency); LOGD("gstddev =%11.8f = %.2fms for 97%% dispersion interval", m.gstddev, m.gmean * 2 * sinh(m.gstddev * 3) * 1e3 / m.frequency); LOGD("mean =%11.0f = %.2fms", m.mean, m.mean * 1e3 / m.frequency); LOGD("stddev =%11.0f = %.2fms", m.stddev, m.stddev * 1e3 / m.frequency); } } } void TestBase::SetUp() { #ifdef HAVE_TBB if (param_tbb_nthreads > 0) { p_tbb_initializer.release(); p_tbb_initializer=new tbb::task_scheduler_init(param_tbb_nthreads); } #endif #if ANDROID if (param_affinity_mask) setCurrentThreadAffinityMask(param_affinity_mask); #endif lastTime = 0; totalTime = 0; nIters = iterationsLimitDefault; currentIter = (unsigned int)-1; timeLimit = timeLimitDefault; times.clear(); cv::theRNG().state = param_seed;//this rng should generate same numbers for each run } void TestBase::TearDown() { validateMetrics(); if (HasFailure()) reportMetrics(false); else { const ::testing::TestInfo* const test_info = ::testing::UnitTest::GetInstance()->current_test_info(); const char* type_param = test_info->type_param(); const char* value_param = test_info->value_param(); if (value_param) printf("[ VALUE ] \t%s\n", value_param), fflush(stdout); if (type_param) printf("[ TYPE ] \t%s\n", type_param), fflush(stdout); reportMetrics(true); } #ifdef HAVE_TBB p_tbb_initializer.release(); #endif } std::string TestBase::getDataPath(const std::string& relativePath) { if (relativePath.empty()) { ADD_FAILURE() << " Bad path to test resource"; throw PerfEarlyExitException(); } const char *data_path_dir = getenv("OPENCV_TEST_DATA_PATH"); const char *path_separator = "/"; std::string path; if (data_path_dir) { int len = strlen(data_path_dir) - 1; if (len < 0) len = 0; path = (data_path_dir[0] == 0 ? std::string(".") : std::string(data_path_dir)) + (data_path_dir[len] == '/' || data_path_dir[len] == '\\' ? "" : path_separator); } else { path = "."; path += path_separator; } if (relativePath[0] == '/' || relativePath[0] == '\\') path += relativePath.substr(1); else path += relativePath; FILE* fp = fopen(path.c_str(), "r"); if (fp) fclose(fp); else { ADD_FAILURE() << " Requested file \"" << path << "\" does not exist."; throw PerfEarlyExitException(); } return path; } void TestBase::RunPerfTestBody() { try { this->PerfTestBody(); } catch(PerfEarlyExitException) { metrics.terminationReason = performance_metrics::TERM_INTERRUPT; return;//no additional failure logging } catch(cv::Exception e) { metrics.terminationReason = performance_metrics::TERM_EXCEPTION; FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n Actual: it throws:\n " << e.what(); } catch(...) { metrics.terminationReason = performance_metrics::TERM_EXCEPTION; FAIL() << "Expected: PerfTestBody() doesn't throw an exception.\n Actual: it throws."; } } /*****************************************************************************************\ * ::perf::TestBase::_declareHelper \*****************************************************************************************/ TestBase::_declareHelper& TestBase::_declareHelper::iterations(unsigned int n) { test->times.clear(); test->times.reserve(n); test->nIters = std::min(n, TestBase::iterationsLimitDefault); test->currentIter = (unsigned int)-1; return *this; } TestBase::_declareHelper& TestBase::_declareHelper::time(double timeLimitSecs) { test->times.clear(); test->currentIter = (unsigned int)-1; test->timeLimit = (int64)(timeLimitSecs * cv::getTickFrequency()); return *this; } TestBase::_declareHelper& TestBase::_declareHelper::tbb_threads(int n) { #ifdef HAVE_TBB test->p_tbb_initializer.release(); if (n > 0) test->p_tbb_initializer=new tbb::task_scheduler_init(n); #endif (void)n; return *this; } TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, int wtype) { if (!test->times.empty()) return *this; TestBase::declareArray(test->inputData, a1, wtype); return *this; } TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, int wtype) { if (!test->times.empty()) return *this; TestBase::declareArray(test->inputData, a1, wtype); TestBase::declareArray(test->inputData, a2, wtype); return *this; } TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, int wtype) { if (!test->times.empty()) return *this; TestBase::declareArray(test->inputData, a1, wtype); TestBase::declareArray(test->inputData, a2, wtype); TestBase::declareArray(test->inputData, a3, wtype); return *this; } TestBase::_declareHelper& TestBase::_declareHelper::in(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, cv::InputOutputArray a4, int wtype) { if (!test->times.empty()) return *this; TestBase::declareArray(test->inputData, a1, wtype); TestBase::declareArray(test->inputData, a2, wtype); TestBase::declareArray(test->inputData, a3, wtype); TestBase::declareArray(test->inputData, a4, wtype); return *this; } TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, int wtype) { if (!test->times.empty()) return *this; TestBase::declareArray(test->outputData, a1, wtype); return *this; } TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, int wtype) { if (!test->times.empty()) return *this; TestBase::declareArray(test->outputData, a1, wtype); TestBase::declareArray(test->outputData, a2, wtype); return *this; } TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, int wtype) { if (!test->times.empty()) return *this; TestBase::declareArray(test->outputData, a1, wtype); TestBase::declareArray(test->outputData, a2, wtype); TestBase::declareArray(test->outputData, a3, wtype); return *this; } TestBase::_declareHelper& TestBase::_declareHelper::out(cv::InputOutputArray a1, cv::InputOutputArray a2, cv::InputOutputArray a3, cv::InputOutputArray a4, int wtype) { if (!test->times.empty()) return *this; TestBase::declareArray(test->outputData, a1, wtype); TestBase::declareArray(test->outputData, a2, wtype); TestBase::declareArray(test->outputData, a3, wtype); TestBase::declareArray(test->outputData, a4, wtype); return *this; } TestBase::_declareHelper::_declareHelper(TestBase* t) : test(t) { } /*****************************************************************************************\ * ::perf::PrintTo \*****************************************************************************************/ namespace perf { void PrintTo(const MatType& t, ::std::ostream* os) { switch( CV_MAT_DEPTH((int)t) ) { case CV_8U: *os << "8U"; break; case CV_8S: *os << "8S"; break; case CV_16U: *os << "16U"; break; case CV_16S: *os << "16S"; break; case CV_32S: *os << "32S"; break; case CV_32F: *os << "32F"; break; case CV_64F: *os << "64F"; break; case CV_USRTYPE1: *os << "USRTYPE1"; break; default: *os << "INVALID_TYPE"; break; } *os << 'C' << CV_MAT_CN((int)t); } } //namespace perf /*****************************************************************************************\ * ::cv::PrintTo \*****************************************************************************************/ namespace cv { void PrintTo(const Size& sz, ::std::ostream* os) { *os << /*"Size:" << */sz.width << "x" << sz.height; } } // namespace cv /*****************************************************************************************\ * ::cv::PrintTo \*****************************************************************************************/