/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective icvers. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_FAST_NLMEANS_DENOISING_INVOKER_HPP__ #define __OPENCV_FAST_NLMEANS_DENOISING_INVOKER_HPP__ #include "precomp.hpp" #include #include #include #include #include "fast_nlmeans_denoising_invoker_commons.hpp" #include "arrays.hpp" using namespace std; using namespace cv; template struct FastNlMeansDenoisingInvoker { public: FastNlMeansDenoisingInvoker(const Mat& src, Mat& dst, int template_window_size, int search_window_size, const double h); void operator() (const BlockedRange& range) const; private: void operator= (const FastNlMeansDenoisingInvoker&); const Mat& src_; Mat& dst_; Mat extended_src_; int border_size_; int template_window_size_; int search_window_size_; int template_window_half_size_; int search_window_half_size_; int fixed_point_mult_; int almost_template_window_size_sq_bin_shift_; vector almost_dist2weight_; void calcDistSumsForFirstElementInRow( int i, Array2d& dist_sums, Array3d& col_dist_sums, Array3d& up_col_dist_sums) const; void calcDistSumsForElementInFirstRow( int i, int j, int first_col_num, Array2d& dist_sums, Array3d& col_dist_sums, Array3d& up_col_dist_sums) const; }; inline int getNearestPowerOf2(int value) { int p = 0; while( 1 << p < value) ++p; return p; } template FastNlMeansDenoisingInvoker::FastNlMeansDenoisingInvoker( const cv::Mat& src, cv::Mat& dst, int template_window_size, int search_window_size, const double h) : src_(src), dst_(dst) { CV_Assert(src.channels() == sizeof(T)); //T is Vec1b or Vec2b or Vec3b template_window_half_size_ = template_window_size / 2; search_window_half_size_ = search_window_size / 2; template_window_size_ = template_window_half_size_ * 2 + 1; search_window_size_ = search_window_half_size_ * 2 + 1; border_size_ = search_window_half_size_ + template_window_half_size_; copyMakeBorder(src_, extended_src_, border_size_, border_size_, border_size_, border_size_, cv::BORDER_DEFAULT); const int max_estimate_sum_value = search_window_size_ * search_window_size_ * 255; fixed_point_mult_ = numeric_limits::max() / max_estimate_sum_value; // precalc weight for every possible l2 dist between blocks // additional optimization of precalced weights to replace division(averaging) by binary shift CV_Assert(template_window_size_ <= 46340 ); // sqrt(INT_MAX) int template_window_size_sq = template_window_size_ * template_window_size_; almost_template_window_size_sq_bin_shift_ = getNearestPowerOf2(template_window_size_sq); double almost_dist2actual_dist_multiplier = ((double)(1 << almost_template_window_size_sq_bin_shift_)) / template_window_size_sq; int max_dist = 256 * 256 * src_.channels(); int almost_max_dist = (int) (max_dist / almost_dist2actual_dist_multiplier + 1); almost_dist2weight_.resize(almost_max_dist); const double WEIGHT_THRESHOLD = 0.001; for (int almost_dist = 0; almost_dist < almost_max_dist; almost_dist++) { double dist = almost_dist * almost_dist2actual_dist_multiplier; int weight = cvRound(fixed_point_mult_ * std::exp(- dist / (h * h * src_.channels()))); if (weight < WEIGHT_THRESHOLD * fixed_point_mult_) { weight = 0; } almost_dist2weight_[almost_dist] = weight; } // additional optimization init end if (dst_.empty()) { dst_ = Mat::zeros(src_.size(), src_.type()); } } template void FastNlMeansDenoisingInvoker::operator() (const BlockedRange& range) const { int row_from = range.begin(); int row_to = range.end() - 1; Array2d dist_sums(search_window_size_, search_window_size_); // for lazy calc optimization Array3d col_dist_sums(template_window_size_, search_window_size_, search_window_size_); int first_col_num = -1; Array3d up_col_dist_sums(src_.cols, search_window_size_, search_window_size_); for (int i = row_from; i <= row_to; i++) { for (int j = 0; j < src_.cols; j++) { int search_window_y = i - search_window_half_size_; int search_window_x = j - search_window_half_size_; // calc dist_sums if (j == 0) { calcDistSumsForFirstElementInRow(i, dist_sums, col_dist_sums, up_col_dist_sums); first_col_num = 0; } else { // calc cur dist_sums using previous dist_sums if (i == row_from) { calcDistSumsForElementInFirstRow(i, j, first_col_num, dist_sums, col_dist_sums, up_col_dist_sums); } else { int ay = border_size_ + i; int ax = border_size_ + j + template_window_half_size_; int start_by = border_size_ + i - search_window_half_size_; int start_bx = border_size_ + j - search_window_half_size_ + template_window_half_size_; T a_up = extended_src_.at(ay - template_window_half_size_ - 1, ax); T a_down = extended_src_.at(ay + template_window_half_size_, ax); // copy class member to local variable for optimization int search_window_size = search_window_size_; for (int y = 0; y < search_window_size; y++) { int* dist_sums_row = dist_sums.row_ptr(y); int* col_dist_sums_row = col_dist_sums.row_ptr(first_col_num,y); int* up_col_dist_sums_row = up_col_dist_sums.row_ptr(j, y); const T* b_up_ptr = extended_src_.ptr(start_by - template_window_half_size_ - 1 + y); const T* b_down_ptr = extended_src_.ptr(start_by + template_window_half_size_ + y); for (int x = 0; x < search_window_size; x++) { dist_sums_row[x] -= col_dist_sums_row[x]; col_dist_sums_row[x] = up_col_dist_sums_row[x] + calcUpDownDist( a_up, a_down, b_up_ptr[start_bx + x], b_down_ptr[start_bx + x] ); dist_sums_row[x] += col_dist_sums_row[x]; up_col_dist_sums_row[x] = col_dist_sums_row[x]; } } } first_col_num = (first_col_num + 1) % template_window_size_; } // calc weights int weights_sum = 0; int estimation[3]; for (int channel_num = 0; channel_num < src_.channels(); channel_num++) { estimation[channel_num] = 0; } for (int y = 0; y < search_window_size_; y++) { const T* cur_row_ptr = extended_src_.ptr(border_size_ + search_window_y + y); int* dist_sums_row = dist_sums.row_ptr(y); for (int x = 0; x < search_window_size_; x++) { int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_; int weight = almost_dist2weight_[almostAvgDist]; weights_sum += weight; T p = cur_row_ptr[border_size_ + search_window_x + x]; incWithWeight(estimation, weight, p); } } if (weights_sum > 0) { for (int channel_num = 0; channel_num < src_.channels(); channel_num++) estimation[channel_num] = (estimation[channel_num] + weights_sum/2) / weights_sum; dst_.at(i,j) = saturateCastFromArray(estimation); } else { // weights_sum == 0 dst_.at(i,j) = src_.at(i,j); } } } } template inline void FastNlMeansDenoisingInvoker::calcDistSumsForFirstElementInRow( int i, Array2d& dist_sums, Array3d& col_dist_sums, Array3d& up_col_dist_sums) const { int j = 0; for (int y = 0; y < search_window_size_; y++) { for (int x = 0; x < search_window_size_; x++) { dist_sums[y][x] = 0; for (int tx = 0; tx < template_window_size_; tx++) { col_dist_sums[tx][y][x] = 0; } int start_y = i + y - search_window_half_size_; int start_x = j + x - search_window_half_size_; for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) { for (int tx = -template_window_half_size_; tx <= template_window_half_size_; tx++) { int dist = calcDist(extended_src_, border_size_ + i + ty, border_size_ + j + tx, border_size_ + start_y + ty, border_size_ + start_x + tx); dist_sums[y][x] += dist; col_dist_sums[tx + template_window_half_size_][y][x] += dist; } } up_col_dist_sums[j][y][x] = col_dist_sums[template_window_size_ - 1][y][x]; } } } template inline void FastNlMeansDenoisingInvoker::calcDistSumsForElementInFirstRow( int i, int j, int first_col_num, Array2d& dist_sums, Array3d& col_dist_sums, Array3d& up_col_dist_sums) const { int ay = border_size_ + i; int ax = border_size_ + j + template_window_half_size_; int start_by = border_size_ + i - search_window_half_size_; int start_bx = border_size_ + j - search_window_half_size_ + template_window_half_size_; int new_last_col_num = first_col_num; for (int y = 0; y < search_window_size_; y++) { for (int x = 0; x < search_window_size_; x++) { dist_sums[y][x] -= col_dist_sums[first_col_num][y][x]; col_dist_sums[new_last_col_num][y][x] = 0; int by = start_by + y; int bx = start_bx + x; for (int ty = -template_window_half_size_; ty <= template_window_half_size_; ty++) { col_dist_sums[new_last_col_num][y][x] += calcDist(extended_src_, ay + ty, ax, by + ty, bx); } dist_sums[y][x] += col_dist_sums[new_last_col_num][y][x]; up_col_dist_sums[j][y][x] = col_dist_sums[new_last_col_num][y][x]; } } } #endif