/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Peng Xiao, pengxiao@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_OPENCV_OCL using namespace std; using std::tr1::get; static bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2) { const double maxPtDif = 1.0; const double maxSizeDif = 1.0; const double maxAngleDif = 2.0; const double maxResponseDif = 0.1; double dist = cv::norm(p1.pt - p2.pt); if (dist < maxPtDif && fabs(p1.size - p2.size) < maxSizeDif && abs(p1.angle - p2.angle) < maxAngleDif && abs(p1.response - p2.response) < maxResponseDif && p1.octave == p2.octave && p1.class_id == p2.class_id) { return true; } return false; } #define ASSERT_KEYPOINTS_EQ(gold, actual) EXPECT_PRED_FORMAT2(assertKeyPointsEquals, gold, actual); static int getMatchedPointsCount(std::vector& gold, std::vector& actual) { std::sort(actual.begin(), actual.end(), perf::comparators::KeypointGreater()); std::sort(gold.begin(), gold.end(), perf::comparators::KeypointGreater()); int validCount = 0; for (size_t i = 0; i < gold.size(); ++i) { const cv::KeyPoint& p1 = gold[i]; const cv::KeyPoint& p2 = actual[i]; if (keyPointsEquals(p1, p2)) ++validCount; } return validCount; } static int getMatchedPointsCount(const std::vector& keypoints1, const std::vector& keypoints2, const std::vector& matches) { int validCount = 0; for (size_t i = 0; i < matches.size(); ++i) { const cv::DMatch& m = matches[i]; const cv::KeyPoint& p1 = keypoints1[m.queryIdx]; const cv::KeyPoint& p2 = keypoints2[m.trainIdx]; if (keyPointsEquals(p1, p2)) ++validCount; } return validCount; } #define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > > #define IMPLEMENT_PARAM_CLASS(name, type) \ namespace { \ class name \ { \ public: \ name ( type arg = type ()) : val_(arg) {} \ operator type () const {return val_;} \ private: \ type val_; \ }; \ inline void PrintTo( name param, std::ostream* os) \ { \ *os << #name << "(" << testing::PrintToString(static_cast< type >(param)) << ")"; \ }} IMPLEMENT_PARAM_CLASS(HessianThreshold, double) IMPLEMENT_PARAM_CLASS(Octaves, int) IMPLEMENT_PARAM_CLASS(OctaveLayers, int) IMPLEMENT_PARAM_CLASS(Extended, bool) IMPLEMENT_PARAM_CLASS(Upright, bool) PARAM_TEST_CASE(SURF, HessianThreshold, Octaves, OctaveLayers, Extended, Upright) { double hessianThreshold; int nOctaves; int nOctaveLayers; bool extended; bool upright; virtual void SetUp() { hessianThreshold = get<0>(GetParam()); nOctaves = get<1>(GetParam()); nOctaveLayers = get<2>(GetParam()); extended = get<3>(GetParam()); upright = get<4>(GetParam()); } }; TEST_P(SURF, Detector) { cv::Mat image = cv::imread(string(cvtest::TS::ptr()->get_data_path()) + "shared/fruits.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(image.empty()); cv::ocl::SURF_OCL surf; surf.hessianThreshold = static_cast(hessianThreshold); surf.nOctaves = nOctaves; surf.nOctaveLayers = nOctaveLayers; surf.extended = extended; surf.upright = upright; surf.keypointsRatio = 0.05f; std::vector keypoints; surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints); cv::SURF surf_gold; surf_gold.hessianThreshold = hessianThreshold; surf_gold.nOctaves = nOctaves; surf_gold.nOctaveLayers = nOctaveLayers; surf_gold.extended = extended; surf_gold.upright = upright; std::vector keypoints_gold; surf_gold(image, cv::noArray(), keypoints_gold); ASSERT_EQ(keypoints_gold.size(), keypoints.size()); int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints); double matchedRatio = static_cast(matchedCount) / keypoints_gold.size(); EXPECT_GT(matchedRatio, 0.95); } TEST_P(SURF, Descriptor) { cv::Mat image = cv::imread(string(cvtest::TS::ptr()->get_data_path()) + "shared/fruits.png", cv::IMREAD_GRAYSCALE); ASSERT_FALSE(image.empty()); cv::ocl::SURF_OCL surf; surf.hessianThreshold = static_cast(hessianThreshold); surf.nOctaves = nOctaves; surf.nOctaveLayers = nOctaveLayers; surf.extended = extended; surf.upright = upright; surf.keypointsRatio = 0.05f; cv::SURF surf_gold; surf_gold.hessianThreshold = hessianThreshold; surf_gold.nOctaves = nOctaves; surf_gold.nOctaveLayers = nOctaveLayers; surf_gold.extended = extended; surf_gold.upright = upright; std::vector keypoints; surf_gold(image, cv::noArray(), keypoints); cv::ocl::oclMat descriptors; surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints, descriptors, true); cv::Mat descriptors_gold; surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true); cv::BFMatcher matcher(cv::NORM_L2); std::vector matches; matcher.match(descriptors_gold, cv::Mat(descriptors), matches); int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches); double matchedRatio = static_cast(matchedCount) / keypoints.size(); EXPECT_GT(matchedRatio, 0.35); } INSTANTIATE_TEST_CASE_P(OCL_Features2D, SURF, testing::Combine( testing::Values(HessianThreshold(500.0), HessianThreshold(1000.0)), testing::Values(Octaves(3), Octaves(4)), testing::Values(OctaveLayers(2), OctaveLayers(3)), testing::Values(Extended(false), Extended(true)), testing::Values(Upright(false), Upright(true)))); #endif // HAVE_OPENCV_OCL