/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Fangfang Bai, fangfang@multicorewareinc.com // Jin Ma, jin@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "perf_precomp.hpp" using namespace perf; using std::tr1::get; using std::tr1::tuple; ///////////// Lut //////////////////////// typedef Size_MatType LUTFixture; PERF_TEST_P(LUTFixture, LUT, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC3))) { // getting params const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); // creating src data Mat src(srcSize, type), lut(1, 256, CV_8UC1); int dstType = CV_MAKETYPE(lut.depth(), src.channels()); Mat dst(srcSize, dstType); randu(lut, 0, 2); declare.in(src, WARMUP_RNG).in(lut).out(dst); // select implementation if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclLut(lut), oclDst(srcSize, dstType); TEST_CYCLE() cv::ocl::LUT(oclSrc, oclLut, oclDst); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::LUT(src, lut, dst); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// Exp //////////////////////// typedef TestBaseWithParam ExpFixture; PERF_TEST_P(ExpFixture, Exp, OCL_TYPICAL_MAT_SIZES) { // getting params const Size srcSize = GetParam(); const double eps = 3e-1; // creating src data Mat src(srcSize, CV_32FC1), dst(srcSize, CV_32FC1); declare.in(src).out(dst); randu(src, 5, 16); // select implementation if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclDst(srcSize, src.type()); TEST_CYCLE() cv::ocl::exp(oclSrc, oclDst); oclDst.download(dst); SANITY_CHECK(dst, eps); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::exp(src, dst); SANITY_CHECK(dst, eps); } else OCL_PERF_ELSE } ///////////// LOG //////////////////////// typedef TestBaseWithParam LogFixture; PERF_TEST_P(LogFixture, Log, OCL_TYPICAL_MAT_SIZES) { // getting params const Size srcSize = GetParam(); const double eps = 1e-5; // creating src data Mat src(srcSize, CV_32F), dst(srcSize, src.type()); randu(src, 1, 10); declare.in(src).out(dst); if (srcSize == OCL_SIZE_4000) declare.time(3.6); // select implementation if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclDst(srcSize, src.type()); TEST_CYCLE() cv::ocl::log(oclSrc, oclDst); oclDst.download(dst); SANITY_CHECK(dst, eps); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::log(src, dst); SANITY_CHECK(dst, eps); } else OCL_PERF_ELSE } ///////////// Add //////////////////////// typedef Size_MatType AddFixture; PERF_TEST_P(AddFixture, Add, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32FC1))) { // getting params const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); // creating src data Mat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type); randu(src1, 0, 1); randu(src2, 0, 1); declare.in(src1, src2).out(dst); // select implementation if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst(srcSize, type); TEST_CYCLE() cv::ocl::add(oclSrc1, oclSrc2, oclDst); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::add(src1, src2, dst); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// Mul //////////////////////// typedef Size_MatType MulFixture; PERF_TEST_P(MulFixture, Mul, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC4))) { // getting params const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); // creating src data Mat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type); randu(src1, 0, 256); randu(src2, 0, 256); declare.in(src1, src2).out(dst); // select implementation if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst(srcSize, type); TEST_CYCLE() cv::ocl::multiply(oclSrc1, oclSrc2, oclDst); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::multiply(src1, src2, dst); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// Div //////////////////////// typedef Size_MatType DivFixture; PERF_TEST_P(DivFixture, Div, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC4))) { // getting params const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); // creating src data Mat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type); declare.in(src1, src2).out(dst); randu(src1, 0, 256); randu(src2, 0, 256); if ((srcSize == OCL_SIZE_4000 && type == CV_8UC1) || (srcSize == OCL_SIZE_2000 && type == CV_8UC4)) declare.time(4.2); else if (srcSize == OCL_SIZE_4000 && type == CV_8UC4) declare.time(16.6); // select implementation if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst(srcSize, type); TEST_CYCLE() cv::ocl::divide(oclSrc1, oclSrc2, oclDst); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::divide(src1, src2, dst); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// Absdiff //////////////////////// typedef Size_MatType AbsDiffFixture; PERF_TEST_P(AbsDiffFixture, Absdiff, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC4))) { const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type); declare.in(src1, src2).in(dst); randu(src1, 0, 256); randu(src2, 0, 256); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst(srcSize, type); TEST_CYCLE() cv::ocl::absdiff(oclSrc1, oclSrc2, oclDst); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::absdiff(src1, src2, dst); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// CartToPolar //////////////////////// typedef TestBaseWithParam CartToPolarFixture; PERF_TEST_P(CartToPolarFixture, CartToPolar, OCL_TYPICAL_MAT_SIZES) { const Size srcSize = GetParam(); const double eps = 8e-3; Mat src1(srcSize, CV_32FC1), src2(srcSize, CV_32FC1), dst1(srcSize, CV_32FC1), dst2(srcSize, CV_32FC1); declare.in(src1, src2).out(dst1, dst2); randu(src1, 0, 256); randu(src2, 0, 256); if (srcSize == OCL_SIZE_4000) declare.time(3.6); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst1(srcSize, src1.type()), oclDst2(srcSize, src1.type()); TEST_CYCLE() cv::ocl::cartToPolar(oclSrc1, oclSrc2, oclDst1, oclDst2); oclDst1.download(dst1); oclDst2.download(dst2); SANITY_CHECK(dst1, eps); SANITY_CHECK(dst2, eps); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::cartToPolar(src1, src2, dst1, dst2); SANITY_CHECK(dst1, eps); SANITY_CHECK(dst2, eps); } else OCL_PERF_ELSE } ///////////// PolarToCart //////////////////////// typedef TestBaseWithParam PolarToCartFixture; PERF_TEST_P(PolarToCartFixture, PolarToCart, OCL_TYPICAL_MAT_SIZES) { const Size srcSize = GetParam(); Mat src1(srcSize, CV_32FC1), src2(srcSize, CV_32FC1), dst1(srcSize, CV_32FC1), dst2(srcSize, CV_32FC1); declare.in(src1, src2).out(dst1, dst2); randu(src1, 0, 256); randu(src2, 0, 256); if (srcSize == OCL_SIZE_4000) declare.time(5.4); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst1(srcSize, src1.type()), oclDst2(srcSize, src1.type()); TEST_CYCLE() cv::ocl::polarToCart(oclSrc1, oclSrc2, oclDst1, oclDst2); oclDst1.download(dst1); oclDst2.download(dst2); SANITY_CHECK(dst1, 5e-5); SANITY_CHECK(dst2, 5e-5); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::polarToCart(src1, src2, dst1, dst2); SANITY_CHECK(dst1, 5e-5); SANITY_CHECK(dst2, 5e-5); } else OCL_PERF_ELSE } ///////////// Magnitude //////////////////////// typedef TestBaseWithParam MagnitudeFixture; PERF_TEST_P(MagnitudeFixture, Magnitude, OCL_TYPICAL_MAT_SIZES) { const Size srcSize = GetParam(); Mat src1(srcSize, CV_32FC1), src2(srcSize, CV_32FC1), dst(srcSize, CV_32FC1); randu(src1, 0, 1); randu(src2, 0, 1); declare.in(src1, src2).out(dst); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst(srcSize, src1.type()); TEST_CYCLE() cv::ocl::magnitude(oclSrc1, oclSrc2, oclDst); oclDst.download(dst); SANITY_CHECK(dst, 1e-6); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::magnitude(src1, src2, dst); SANITY_CHECK(dst, 1e-6); } else OCL_PERF_ELSE } ///////////// Transpose //////////////////////// typedef Size_MatType TransposeFixture; PERF_TEST_P(TransposeFixture, Transpose, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC4))) { const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src(srcSize, type), dst(srcSize, type); declare.in(src, WARMUP_RNG).out(dst); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclDst(srcSize, type); TEST_CYCLE() cv::ocl::transpose(oclSrc, oclDst); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::transpose(src, dst); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// Flip //////////////////////// typedef Size_MatType FlipFixture; PERF_TEST_P(FlipFixture, Flip, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC4))) { const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src(srcSize, type), dst(srcSize, type); declare.in(src, WARMUP_RNG).out(dst); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclDst(srcSize, type); TEST_CYCLE() cv::ocl::flip(oclSrc, oclDst, 0); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::flip(src, dst, 0); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// minMax //////////////////////// typedef Size_MatType minMaxFixture; PERF_TEST_P(minMaxFixture, minMax, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32FC1))) { const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src(srcSize, type); declare.in(src, WARMUP_RNG); double min_val = std::numeric_limits::max(), max_val = std::numeric_limits::min(); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src); TEST_CYCLE() cv::ocl::minMax(oclSrc, &min_val, &max_val); ASSERT_GE(max_val, min_val); SANITY_CHECK(min_val); SANITY_CHECK(max_val); } else if (RUN_PLAIN_IMPL) { Point min_loc, max_loc; TEST_CYCLE() cv::minMaxLoc(src, &min_val, &max_val, &min_loc, &max_loc); ASSERT_GE(max_val, min_val); SANITY_CHECK(min_val); SANITY_CHECK(max_val); } else OCL_PERF_ELSE } ///////////// minMaxLoc //////////////////////// typedef Size_MatType minMaxLocFixture; PERF_TEST_P(minMaxLocFixture, minMaxLoc, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32FC1))) { const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src(srcSize, type); randu(src, 0, 1); declare.in(src); double min_val = 0.0, max_val = 0.0; Point min_loc, max_loc; if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src); TEST_CYCLE() cv::ocl::minMaxLoc(oclSrc, &min_val, &max_val, &min_loc, &max_loc); ASSERT_GE(max_val, min_val); SANITY_CHECK(min_val); SANITY_CHECK(max_val); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::minMaxLoc(src, &min_val, &max_val, &min_loc, &max_loc); ASSERT_GE(max_val, min_val); SANITY_CHECK(min_val); SANITY_CHECK(max_val); } else OCL_PERF_ELSE } ///////////// Sum //////////////////////// typedef Size_MatType SumFixture; PERF_TEST_P(SumFixture, Sum, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32SC1))) { const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src(srcSize, type); Scalar result; randu(src, 0, 60); declare.in(src); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src); TEST_CYCLE() result = cv::ocl::sum(oclSrc); SANITY_CHECK(result); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() result = cv::sum(src); SANITY_CHECK(result); } else OCL_PERF_ELSE } ///////////// countNonZero //////////////////////// typedef Size_MatType countNonZeroFixture; PERF_TEST_P(countNonZeroFixture, countNonZero, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32FC1))) { const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src(srcSize, type); int result = 0; randu(src, 0, 256); declare.in(src); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src); TEST_CYCLE() result = cv::ocl::countNonZero(oclSrc); SANITY_CHECK(result); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() result = cv::countNonZero(src); SANITY_CHECK(result); } else OCL_PERF_ELSE } ///////////// Phase //////////////////////// typedef TestBaseWithParam PhaseFixture; PERF_TEST_P(PhaseFixture, Phase, OCL_TYPICAL_MAT_SIZES) { const Size srcSize = GetParam(); Mat src1(srcSize, CV_32FC1), src2(srcSize, CV_32FC1), dst(srcSize, CV_32FC1); declare.in(src1, src2).out(dst); randu(src1, 0, 256); randu(src2, 0, 256); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst(srcSize, src1.type()); TEST_CYCLE() cv::ocl::phase(oclSrc1, oclSrc2, oclDst, 1); oclDst.download(dst); SANITY_CHECK(dst, 1e-2); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::phase(src1, src2, dst, 1); SANITY_CHECK(dst, 1e-2); } else OCL_PERF_ELSE } ///////////// bitwise_and//////////////////////// typedef Size_MatType BitwiseAndFixture; PERF_TEST_P(BitwiseAndFixture, bitwise_and, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32SC1))) { const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type); declare.in(src1, src2).out(dst); randu(src1, 0, 256); randu(src2, 0, 256); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst(srcSize, src1.type()); TEST_CYCLE() cv::ocl::bitwise_and(oclSrc1, oclSrc2, oclDst); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::bitwise_and(src1, src2, dst); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// bitwise_not//////////////////////// typedef Size_MatType BitwiseNotFixture; PERF_TEST_P(BitwiseAndFixture, bitwise_not, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32SC1))) { const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src(srcSize, type), dst(srcSize, type); declare.in(src, WARMUP_RNG).out(dst); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclDst(srcSize, type); TEST_CYCLE() cv::ocl::bitwise_not(oclSrc, oclDst); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::bitwise_not(src, dst); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// compare//////////////////////// typedef Size_MatType CompareFixture; PERF_TEST_P(CompareFixture, compare, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32FC1))) { const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src1(srcSize, type), src2(srcSize, type), dst(srcSize, CV_8UC1); declare.in(src1, src2, WARMUP_RNG).out(dst); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst(srcSize, CV_8UC1); TEST_CYCLE() cv::ocl::compare(oclSrc1, oclSrc2, oclDst, CMP_EQ); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::compare(src1, src2, dst, CMP_EQ); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// pow //////////////////////// typedef TestBaseWithParam PowFixture; PERF_TEST_P(PowFixture, pow, OCL_TYPICAL_MAT_SIZES) { const Size srcSize = GetParam(); Mat src(srcSize, CV_32F), dst(srcSize, CV_32F); declare.in(src, WARMUP_RNG).out(dst); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclDst(srcSize, src.type()); TEST_CYCLE() cv::ocl::pow(oclSrc, -2.0, oclDst); oclDst.download(dst); SANITY_CHECK(dst, 5e-2); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::pow(src, -2.0, dst); SANITY_CHECK(dst, 5e-2); } else OCL_PERF_ELSE } ///////////// MagnitudeSqr//////////////////////// typedef TestBaseWithParam MagnitudeSqrFixture; PERF_TEST_P(MagnitudeSqrFixture, MagnitudeSqr, OCL_TYPICAL_MAT_SIZES) { const Size srcSize = GetParam(); Mat src1(srcSize, CV_32FC1), src2(srcSize, CV_32FC1), dst(srcSize, CV_32FC1); declare.in(src1, src2, WARMUP_RNG).out(dst); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst(srcSize, src1.type()); TEST_CYCLE() cv::ocl::magnitudeSqr(oclSrc1, oclSrc2, oclDst); oclDst.download(dst); SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); } else if (RUN_PLAIN_IMPL) { ASSERT_EQ(1, src1.channels()); TEST_CYCLE() { for (int y = 0; y < srcSize.height; ++y) { const float * const src1Data = reinterpret_cast(src1.data + src1.step * y); const float * const src2Data = reinterpret_cast(src2.data + src2.step * y); float * const dstData = reinterpret_cast(dst.data + dst.step * y); for (int x = 0; x < srcSize.width; ++x) { float t0 = src1Data[x] * src1Data[x]; float t1 = src2Data[x] * src2Data[x]; dstData[x] = t0 + t1; } } } SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE); } else OCL_PERF_ELSE } ///////////// AddWeighted//////////////////////// typedef Size_MatType AddWeightedFixture; PERF_TEST_P(AddWeightedFixture, AddWeighted, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32FC1))) { const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src1(srcSize, type), src2(srcSize, type), dst(srcSize, type); declare.in(src1, src2, WARMUP_RNG).out(dst); double alpha = 2.0, beta = 1.0, gama = 3.0; if (RUN_OCL_IMPL) { ocl::oclMat oclSrc1(src1), oclSrc2(src2), oclDst(srcSize, type); TEST_CYCLE() cv::ocl::addWeighted(oclSrc1, alpha, oclSrc2, beta, gama, oclDst); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::addWeighted(src1, alpha, src2, beta, gama, dst); SANITY_CHECK(dst); } else OCL_PERF_ELSE }