#include "cv.h" // include standard OpenCV headers, same as before #include "highgui.h" #include "ml.h" #include #include #include using namespace cv; // all the new API is put into "cv" namespace. Export its content using namespace std; using namespace cv::flann; #define RAD2DEG 57.295779513082321 void print32FMat(const CvMat&mat) { float *data = mat.data.fl; for (int r = 0; r < mat.rows; ++r) { for (int c = 0; c < mat.cols; ++c) { printf("%+1.9f\t", data[r*mat.cols+c]); } printf("\n"); } } #if 0 // enable/disable use of mixed API in the code below. #define DEMO_MIXED_API_USE 1 int main( int argc, char** argv ) { const char* imagename = argc > 1 ? argv[1] : "lena.jpg"; #if DEMO_MIXED_API_USE Ptr iplimg = cvLoadImage(imagename); // Ptr is safe ref-conting pointer class if(iplimg.empty()) { fprintf(stderr, "Can not load image %s\n", imagename); return -1; } Mat img(iplimg); // cv::Mat replaces the CvMat and IplImage, but it's easy to convert // between the old and the new data structures (by default, only the header // is converted, while the data is shared) #else Mat img = imread(imagename); // the newer cvLoadImage alternative, MATLAB-style function if(img.empty()) { fprintf(stderr, "Can not load image %s\n", imagename); return -1; } #endif if( !img.data ) // check if the image has been loaded properly return -1; Mat img_yuv; cvtColor(img, img_yuv, CV_BGR2YCrCb); // convert image to YUV color space. The output image will be created automatically vector planes; // Vector is template vector class, similar to STL's vector. It can store matrices too. split(img_yuv, planes); // split the image into separate color planes #if 1 // method 1. process Y plane using an iterator MatIterator_ it = planes[0].begin(), it_end = planes[0].end(); for(; it != it_end; ++it) { double v = *it*1.7 + rand()%21-10; *it = saturate_cast(v*v/255.); } // method 2. process the first chroma plane using pre-stored row pointer. // method 3. process the second chroma plane using individual element access for( int y = 0; y < img_yuv.rows; y++ ) { uchar* Uptr = planes[1].ptr(y); for( int x = 0; x < img_yuv.cols; x++ ) { Uptr[x] = saturate_cast((Uptr[x]-128)/2 + 128); uchar& Vxy = planes[2].at(y, x); Vxy = saturate_cast((Vxy-128)/2 + 128); } } #else Mat noise(img.size(), CV_8U); // another Mat constructor; allocates a matrix of the specified size and type randn(noise, Scalar::all(128), Scalar::all(20)); // fills the matrix with normally distributed random values; // there is also randu() for uniformly distributed random number generation GaussianBlur(noise, noise, Size(3, 3), 0.5, 0.5); // blur the noise a bit, kernel size is 3x3 and both sigma's are set to 0.5 const double brightness_gain = 0; const double contrast_gain = 1.7; #if DEMO_MIXED_API_USE // it's easy to pass the new matrices to the functions that only work with IplImage or CvMat: // step 1) - convert the headers, data will not be copied IplImage cv_planes_0 = planes[0], cv_noise = noise; // step 2) call the function; do not forget unary "&" to form pointers cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1, -128 + brightness_gain, &cv_planes_0); #else addWeighted(planes[0], contrast_gain, noise, 1, -128 + brightness_gain, planes[0]); #endif const double color_scale = 0.5; // Mat::convertTo() replaces cvConvertScale. One must explicitly specify the output matrix type (we keep it intact - planes[1].type()) planes[1].convertTo(planes[1], planes[1].type(), color_scale, 128*(1-color_scale)); // alternative form of cv::convertScale if we know the datatype at compile time ("uchar" here). // This expression will not create any temporary arrays and should be almost as fast as the above variant planes[2] = Mat_(planes[2]*color_scale + 128*(1-color_scale)); // Mat::mul replaces cvMul(). Again, no temporary arrays are created in case of simple expressions. planes[0] = planes[0].mul(planes[0], 1./255); #endif // now merge the results back merge(planes, img_yuv); // and produce the output RGB image cvtColor(img_yuv, img, CV_YCrCb2BGR); // this is counterpart for cvNamedWindow namedWindow("image with grain", CV_WINDOW_AUTOSIZE); #if DEMO_MIXED_API_USE // this is to demonstrate that img and iplimg really share the data - the result of the above // processing is stored in img and thus in iplimg too. cvShowImage("image with grain", iplimg); #else imshow("image with grain", img); #endif waitKey(); return 0; // all the memory will automatically be released by Vector<>, Mat and Ptr<> destructors. } #else int main(int argc, char *argv[]) { /*double a = 56004.409155979447; double b = -15158.994132169822; double c = 215540.83745481662; { double A[4]; double InvA[4]; CvMat matA, matInvA; A[0] = a; A[1] = A[2] = b; A[3] = c; cvInitMatHeader( &matA, 2, 2, CV_64F, A ); cvInitMatHeader( &matInvA, 2, 2, CV_64FC1, InvA ); cvInvert( &matA, &matInvA, CV_SVD ); printf("%g\t%g\n%g\t%g\n", InvA[0], InvA[1], InvA[2], InvA[3]); }*/ //Mat img = imread("/Users/vp/work/ocv/opencv/samples/c/left04.jpg", 1); //Vec v; /*Mat img = Mat::zeros(20, 20, CV_8U); img(Range(0,10),Range(0,10)) = Scalar(255); img.at(10,10)=255; img(Range(11,20),Range(11,20)) = Scalar(255); vector corner(1, Point2f(9.5,9.5)); cornerSubPix(img, corner, Size(5,5), Size(-1,-1), TermCriteria(3, 30, 0.001)); printf("Corner at (%g, %g)", corner[0].x, corner[0].y);*/ /*Mat large, large2, gray; resize(img, large, img.size()*3, 0, 0, CV_INTER_LANCZOS4); cvtColor(large, gray, CV_BGR2GRAY); vector corners; bool found = findChessboardCorners(gray, Size(9,6), corners); cornerSubPix(gray, corners, Size(11,11), Size(-1,-1), TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01)); drawChessboardCorners(large, Size(9,6), Mat(corners), false); //rectangle(img, Point(150,100), Point(250,200), Scalar(0,255,0), 1); resize(large(Rect(150*3,100*3,100*3,100*3)), large2, Size(), 4, 4, CV_INTER_CUBIC); imshow("test", large2); waitKey(0);*/ /*int N=4; CvEM em_model; CvEMParams params; int nsamples=500; for (int D=2; D < 15; D++) { CvMat* samples = cvCreateMat( nsamples, D, CV_32FC1 ); for (int s=0; s < nsamples;s++) for (int d=0; d > objectPoints; vector >imagePoints; cv::FileStorage f("/Users/vp/Downloads/calib_debug.2.yml",cv::FileStorage::READ); cv::FileNodeIterator it = f["img_sz"].begin(); it >> imageSize.width >> imageSize.height; Nimg = (int) f ["NofImages"]; Npts = (int) f["NofPoints"]; for (int i=0; i ov; vector iv; for (int j=0; j> op.x >> op.y >> op.z; cv::FileNodeIterator it = pnt["imgPnt"].begin(); it >> ip.x >> ip.y; iv.push_back(ip); ov.push_back(op); } imagePoints.push_back(iv); objectPoints.push_back(ov); } cv::Mat M,D; vector R,T; cv::calibrateCamera(objectPoints, imagePoints, imageSize, M, D,R,T, CV_CALIB_FIX_ASPECT_RATIO + 1*CV_CALIB_FIX_K3 + 1*CV_CALIB_ZERO_TANGENT_DIST); cv::FileStorage fo("calib_output.yml",cv::FileStorage::WRITE); //fo << "M" << M; cout << "M: " << M;*/ /*Mat img = imread("/Users/vp/Downloads/test5.tif", CV_LOAD_IMAGE_ANYDEPTH|CV_LOAD_IMAGE_COLOR), img16; cout << "img.depth()=" << img.depth() << endl; if(img.depth() == CV_16U) img16 = img; else img.convertTo(img16, CV_16U, 256, 0); imshow("test", img16); imwrite("/Users/vp/tmp/test16_2.png", img16); waitKey();*/ /*Mat img(600,800,CV_8UC3); img = Scalar::all(0); IplImage _img = img; CvFont font = cvFont(2,1); cvPutText(&_img, "Test", cvPoint(100, 100), &font, cvScalar(0,0,255)); imshow("test", img); waitKey();*/ /*IplImage* img = cvCreateImage(cvSize(800,600), 8, 3); cvZero(img); CvFont font = cvFont(2,1); cvPutText(img, "Test", cvPoint(100, 100), &font, cvScalar(0,0,255)); cvNamedWindow("test", 1); cvShowImage("test", img); cvWaitKey(0);*/ /*int sz[] = {1, 5, 5}; CvMatND* src = cvCreateMatND(3, sz, CV_64F); CvMatND* dst = cvCreateMatND(3, sz, CV_64F); CvRNG rng = cvRNG(-1); cvRandArr(&rng, src, CV_RAND_UNI, cvScalarAll(-100), cvScalarAll(100)); cvAddS(src, cvScalar(100), dst, 0); cvSave("_input.xml", src); cvSave("_output.xml", dst);*/ /* /// random data generation : Mat data(100,10,CV_32FC1); randn(data, 0.0, 1.0); /// Creating the ANN engine AutotunedIndexParams autoParams(0.9,0.5,0.2,1); Index index(data,autoParams); /// Creating a query SearchParams searchParams(5); vector query, dist; vector foundIndice; foundIndice.push_back(0); dist.push_back(0); for(int i = 0 ; i < 10 ; i++) { query.push_back(data.at(2,i)); } /// Do a reaserch : result must be equal to 2. index.knnSearch(query, foundIndice, dist, 1, searchParams); cout << "Found indice (must be 2) : " << foundIndice[0] << endl; /// save params index.save(string("test")); */ /*namedWindow("orig", CV_WINDOW_AUTOSIZE); namedWindow("canny", CV_WINDOW_AUTOSIZE); namedWindow("hough", CV_WINDOW_AUTOSIZE); Mat orig = cv::imread("/Users/vp/Downloads/1.jpg", 0); //equalizeHist(orig, orig); Mat hough; cvtColor(orig, hough, CV_GRAY2BGR); Mat canny; Canny(orig, canny, 100, 50); // reproduce Canny-Filtering as in Hough-Circles int bestRad = 20; int minRad = bestRad / 1.3; int maxRad = bestRad * 1.3; vector circles; // detect circles HoughCircles(orig, circles, CV_HOUGH_GRADIENT, 1, // accu-scaling 20, // minDist 100, // CannyParam 10, // minAccuCount minRad, maxRad); // Draw Circles into image in gray for( size_t i = 0; i < circles.size(); i++ ) { Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); int radius = cvRound(circles[i][2]); // draw the circle center circle( hough, center, 3, Scalar(0,0,255), -1, 8, 0 ); // draw the circle outline circle( hough, center, radius, Scalar(0,255,255), 1, 8, 0 ); } // Draw reference circles Point c(bestRad * 3, bestRad * 3); circle(hough, c, bestRad, 255); circle(hough, c, minRad, 255); circle(hough, c, maxRad, 255); cv::imshow("orig", orig); cv::imshow("canny", canny); cv::imshow("hough", hough); cv::waitKey();*/ /*int npoints = 4; CvMat *OP = cvCreateMat(1, npoints, CV_32FC3); CvPoint3D32f *op = (CvPoint3D32f *)OP->data.fl; CvMat *OP2 = cvCreateMat(1, npoints, CV_32FC3); CvPoint3D32f *op2 = (CvPoint3D32f *)OP2->data.fl; CvMat *IP = cvCreateMat(1, npoints, CV_32FC2); CvPoint2D32f *ip = (CvPoint2D32f *)IP->data.fl; CvMat *IP2 = cvCreateMat(1, npoints, CV_32FC2); CvPoint2D32f *ip2 = (CvPoint2D32f *)IP2->data.fl; CvMat *IP0 = cvCreateMat(1, npoints, CV_32FC2); float rv[3], rv2[3]; float rotMat[9]; float t[3], t2[3]; float tRotMat[16]; double kMat[9]; CvMat K = cvMat(3, 3, CV_64F, kMat); CvMat T = cvMat(3, 1, CV_32F, t); CvMat RV = cvMat(3, 1, CV_32F, rv); CvMat T2 = cvMat(3, 1, CV_32F, t2); CvMat RV2 = cvMat(3, 1, CV_32F, rv2); CvMat R = cvMat(3, 3, CV_32F, rotMat); float r0, r1, r2; kMat[0] = 659.88; kMat[1] = 0.00; kMat[2] = 320.40; kMat[3] = 0.00; kMat[4] = 657.53; kMat[5] = 240.98; kMat[6] = 0.00; kMat[7] = 0.00; kMat[8] = 1.00; ip[0].x = 277.56; ip[0].y = 184.03; ip[1].x = 329.00; ip[1].y = 199.04; ip[2].x = 405.96; ip[2].y = 205.96; ip[3].x = 364.00; ip[3].y = 187.97; op[0].x = -189.00; op[0].y = 171.00; op[1].x = -280.00; op[1].y = 265.00; op[2].x = -436.00; op[2].y = 316.00; op[3].x = -376.00; op[3].y = 209.00; ip2[0].x = 277.56; ip2[0].y = 184.03; ip2[1].x = 328.00; ip2[1].y = 199.11; ip2[2].x = 405.89; ip2[2].y = 206.89; ip2[3].x = 366.00; ip2[3].y = 187.93; op2[0].x = -194.00; op2[0].y = 168.00; op2[1].x = -281.00; op2[1].y = 267.00; op2[2].x = -433.00; op2[2].y = 321.00; op2[3].x = -372.00; op2[3].y = 208.00; //ip[4].x = 405.89; ip[4].y = 206.89; //op[4].x = -433.00; op[4].y = 321.00; //ip2[4].x = 364.00; ip2[4].y = 187.97; //op2[4].x = -376.00; op2[4].y = 209.00; cvFindExtrinsicCameraParams2(OP, IP, &K, NULL, //&D, &RV, &T, 0); cvRodrigues2(&RV, &R, 0); printf("--first--\n"); print32FMat(R); cvFindExtrinsicCameraParams2(OP2, IP2, &K, NULL, //&D, &RV2, &T2, 0); cvRodrigues2(&RV2, &R, 0); printf("---second---\n"); print32FMat(R); double err; cvProjectPoints2(OP, &RV, &T, &K, NULL, IP0); err = cvNorm(IP, IP0, CV_L2); printf("\n\nfirst avg reprojection error = %g\n", sqrt(err*err/npoints)); cvProjectPoints2(OP2, &RV2, &T2, &K, NULL, IP0); err = cvNorm(IP2, IP0, CV_L2); printf("second avg reprojection error = %g\n", sqrt(err*err/npoints)); cvProjectPoints2(OP, &RV2, &T2, &K, NULL, IP0); err = cvNorm(IP, IP0, CV_L2); printf("\n\nsecond->first cross reprojection error = %g\n", sqrt(err*err/npoints)); cvProjectPoints2(OP2, &RV, &T, &K, NULL, IP0); err = cvNorm(IP2, IP0, CV_L2); printf("first->second cross reprojection error = %g\n", sqrt(err*err/npoints)); */ /*Mat img = imread("/Users/vp/work/ocv/opencv/samples/c/baboon.jpg", 1); vector corners; double t0 = 0, t; for( size_t i = 0; i < 50; i++ ) { corners.clear(); t = (double)getTickCount(); goodFeaturesToTrack(img, corners, 1000, 0.01, 10); t = (double)getTickCount() - t; if( i == 0 || t0 > t ) t0 = t; } printf("minimum running time = %gms\n", t0*1000./getTickFrequency()); Mat imgc; cvtColor(img, imgc, CV_GRAY2BGR); for( size_t i = 0; i < corners.size(); i++ ) { circle(imgc, corners[i], 3, Scalar(0,255,0), -1); } imshow("corners", imgc);*/ /*Mat imgf, imgf2, img2; img.convertTo(imgf, CV_64F, 1./255); resize(imgf, imgf2, Size(), 0.7, 0.7, CV_INTER_LANCZOS4); imgf2.convertTo(img2, CV_8U, 255); imshow("test", img2); waitKey();*/ /*Mat src = imread("/Users/vp/work/ocv/opencv/samples/c/fruits.jpg", 1); //if( argc != 2 || !(src=imread(argv[1], 1)).data ) // return -1; Mat hsv; cvtColor(src, hsv, CV_BGR2HSV); // let's quantize the hue to 30 levels // and the saturation to 32 levels int hbins = 30, sbins = 32; int histSize[] = {hbins, sbins}; // hue varies from 0 to 179, see cvtColor float hranges[] = { 0, 180 }; // saturation varies from 0 (black-gray-white) to // 255 (pure spectrum color) float sranges[] = { 0, 256 }; const float* ranges[] = { hranges, sranges }; MatND hist; // we compute the histogram from the 0-th and 1-st channels int channels[] = {0, 1}; calcHist( &hsv, 1, channels, Mat(), // do not use mask hist, 2, histSize, ranges, true, // the histogram is uniform false ); double maxVal=0; minMaxLoc(hist, 0, &maxVal, 0, 0); int scale = 10; Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3); for( int h = 0; h < hbins; h++ ) for( int s = 0; s < sbins; s++ ) { float binVal = hist.at(h, s); int intensity = cvRound(binVal*255/maxVal); rectangle( histImg, Point(h*scale, s*scale), Point( (h+1)*scale - 1, (s+1)*scale - 1), Scalar::all(intensity), CV_FILLED ); } namedWindow( "Source", 1 ); imshow( "Source", src ); namedWindow( "H-S Histogram", 1 ); imshow( "H-S Histogram", histImg ); waitKey();*/ /*Mat_ a(3, 3); a << 1, 0, 0, 0, 1, 0, 0, 0, 1; Mat_ b(3, 1); b << 1, 2, 3; Mat c; hconcat(a, b, c); cout << c;*/ /*Mat img = imread("/Users/vp/work/ocv/opencv/samples/c/lena.jpg", 1), img2; cv::imshow( "Original Image D", img ); if( img.channels()==3 ) { Mat L,u,v; Mat luv; vector splitted; Mat img_float0, img_float; img.convertTo( img_float0, CV_32F, 1./255, 0 ); cvtColor( img_float0, luv, CV_BGR2Luv); cv::split( luv, splitted ); L = (Mat)splitted[0]; u = (Mat)splitted[1]; v = (Mat)splitted[2]; vector res; res.push_back( L ); res.push_back( u ); res.push_back( v ); cv::merge( res, luv ); cvtColor( luv, img_float, CV_Luv2BGR ); printf("diff = %g\n", cv::norm(img_float0, img_float, CV_C)); img_float.convertTo( img2, CV_8U, 255. ); } cv::imshow( "After Darken", img2 ); cv::absdiff(img, img2, img2); img2 *= 255; cv::imshow("Magnified difference", img2); waitKey();*/ /*const char* imgFilename = "/Users/vp/Downloads/tsukuba.png"; Mat bgr = imread( imgFilename ); Mat gray = imread( imgFilename, 0 ), gray_; cvtColor( bgr, gray_, CV_BGR2GRAY ); int N = countNonZero( gray != gray_ ); printf( "Count non zero = %d / %d\n", N, gray.cols * gray.rows ); Mat diff = abs( gray-gray_ ); double maxVal = 0; minMaxLoc( diff, 0, &maxVal, 0, 0); printf( "Max abs diff = %f\n", maxVal);*/ /*Mat img = imread("/Users/vp/Downloads/r_forearm_cam_rect_crop.png", 1); vector corners; Mat big; resize(img, big, Size(), 1, 1); bool found = findChessboardCorners(big, Size(5,4), corners); drawChessboardCorners(big, Size(5,4), Mat(corners), found); imshow("test", big); waitKey();*/ /*float x[] = {0, 1}; float y[] = {0, 1}; CvMat mx = cvMat(2, 1, CV_32F, x); CvMat my = cvMat(2, 1, CV_32F, y); CvNormalBayesClassifier b; bool s = b.train(&mx, &my, 0, 0, false);*/ /*float responseData[] = {1, 1, 1, 0, 0, 0}; float intdata[] = { 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0}; CvMat data = cvMat(6, 4, CV_32FC1, intdata); CvMat responses = cvMat(6, 1, CV_32FC1, responseData); CvNormalBayesClassifier bc; bool succ = bc.train(&data, &responses, 0, 0, false); float testData[] = {1.0, 1, 0, 0}; float dummy[] = {0}; CvMat test = cvMat(1, 4, CV_32FC1, testData); CvMat testResults = cvMat(1, 6, CV_32FC1, 0); float whatsthis = bc.predict(&test, &testResults);*/ int sz[] = {10, 20, 30}; Mat m(3, sz, CV_32F); randu(m, Scalar::all(-10), Scalar::all(10)); double maxVal0, maxVal = -FLT_MAX; minMaxIdx(m, 0, &maxVal0, 0, 0); MatConstIterator_ it = m.begin(), it_end = m.end(); for( ; it != it_end; ++it ) { if( maxVal < *it ) maxVal = *it; } printf("maxval(minmaxloc) = %g, maxval(iterator) = %g\n", maxVal0, maxVal); return 0; } #endif