#include "test_precomp.hpp" using namespace cv; using namespace std; class Core_ReduceTest : public cvtest::BaseTest { public: Core_ReduceTest() {}; protected: void run( int); int checkOp( const Mat& src, int dstType, int opType, const Mat& opRes, int dim ); int checkCase( int srcType, int dstType, int dim, Size sz ); int checkDim( int dim, Size sz ); int checkSize( Size sz ); }; template void testReduce( const Mat& src, Mat& sum, Mat& avg, Mat& max, Mat& min, int dim ) { assert( src.channels() == 1 ); if( dim == 0 ) // row { sum.create( 1, src.cols, CV_64FC1 ); max.create( 1, src.cols, CV_64FC1 ); min.create( 1, src.cols, CV_64FC1 ); } else { sum.create( src.rows, 1, CV_64FC1 ); max.create( src.rows, 1, CV_64FC1 ); min.create( src.rows, 1, CV_64FC1 ); } sum.setTo(Scalar(0)); max.setTo(Scalar(-DBL_MAX)); min.setTo(Scalar(DBL_MAX)); const Mat_& src_ = src; Mat_& sum_ = (Mat_&)sum; Mat_& min_ = (Mat_&)min; Mat_& max_ = (Mat_&)max; if( dim == 0 ) { for( int ri = 0; ri < src.rows; ri++ ) { for( int ci = 0; ci < src.cols; ci++ ) { sum_(0, ci) += src_(ri, ci); max_(0, ci) = std::max( max_(0, ci), (double)src_(ri, ci) ); min_(0, ci) = std::min( min_(0, ci), (double)src_(ri, ci) ); } } } else { for( int ci = 0; ci < src.cols; ci++ ) { for( int ri = 0; ri < src.rows; ri++ ) { sum_(ri, 0) += src_(ri, ci); max_(ri, 0) = std::max( max_(ri, 0), (double)src_(ri, ci) ); min_(ri, 0) = std::min( min_(ri, 0), (double)src_(ri, ci) ); } } } sum.convertTo( avg, CV_64FC1 ); avg = avg * (1.0 / (dim==0 ? (double)src.rows : (double)src.cols)); } void getMatTypeStr( int type, string& str) { str = type == CV_8UC1 ? "CV_8UC1" : type == CV_8SC1 ? "CV_8SC1" : type == CV_16UC1 ? "CV_16UC1" : type == CV_16SC1 ? "CV_16SC1" : type == CV_32SC1 ? "CV_32SC1" : type == CV_32FC1 ? "CV_32FC1" : type == CV_64FC1 ? "CV_64FC1" : "unsupported matrix type"; } int Core_ReduceTest::checkOp( const Mat& src, int dstType, int opType, const Mat& opRes, int dim ) { int srcType = src.type(); bool support = false; if( opType == CV_REDUCE_SUM || opType == CV_REDUCE_AVG ) { if( srcType == CV_8U && (dstType == CV_32S || dstType == CV_32F || dstType == CV_64F) ) support = true; if( srcType == CV_16U && (dstType == CV_32F || dstType == CV_64F) ) support = true; if( srcType == CV_16S && (dstType == CV_32F || dstType == CV_64F) ) support = true; if( srcType == CV_32F && (dstType == CV_32F || dstType == CV_64F) ) support = true; if( srcType == CV_64F && dstType == CV_64F) support = true; } else if( opType == CV_REDUCE_MAX ) { if( srcType == CV_8U && dstType == CV_8U ) support = true; if( srcType == CV_32F && dstType == CV_32F ) support = true; if( srcType == CV_64F && dstType == CV_64F ) support = true; } else if( opType == CV_REDUCE_MIN ) { if( srcType == CV_8U && dstType == CV_8U) support = true; if( srcType == CV_32F && dstType == CV_32F) support = true; if( srcType == CV_64F && dstType == CV_64F) support = true; } if( !support ) return cvtest::TS::OK; double eps = 0.0; if ( opType == CV_REDUCE_SUM || opType == CV_REDUCE_AVG ) { if ( dstType == CV_32F ) eps = 1.e-5; else if( dstType == CV_64F ) eps = 1.e-8; else if ( dstType == CV_32S ) eps = 0.6; } assert( opRes.type() == CV_64FC1 ); Mat _dst, dst, diff; reduce( src, _dst, dim, opType, dstType ); _dst.convertTo( dst, CV_64FC1 ); absdiff( opRes,dst,diff ); bool check = false; if (dstType == CV_32F || dstType == CV_64F) check = countNonZero(diff>eps*dst) > 0; else check = countNonZero(diff>eps) > 0; if( check ) { char msg[100]; const char* opTypeStr = opType == CV_REDUCE_SUM ? "CV_REDUCE_SUM" : opType == CV_REDUCE_AVG ? "CV_REDUCE_AVG" : opType == CV_REDUCE_MAX ? "CV_REDUCE_MAX" : opType == CV_REDUCE_MIN ? "CV_REDUCE_MIN" : "unknown operation type"; string srcTypeStr, dstTypeStr; getMatTypeStr( src.type(), srcTypeStr ); getMatTypeStr( dstType, dstTypeStr ); const char* dimStr = dim == 0 ? "ROWS" : "COLS"; sprintf( msg, "bad accuracy with srcType = %s, dstType = %s, opType = %s, dim = %s", srcTypeStr.c_str(), dstTypeStr.c_str(), opTypeStr, dimStr ); ts->printf( cvtest::TS::LOG, msg ); return cvtest::TS::FAIL_BAD_ACCURACY; } return cvtest::TS::OK; } int Core_ReduceTest::checkCase( int srcType, int dstType, int dim, Size sz ) { int code = cvtest::TS::OK, tempCode; Mat src, sum, avg, max, min; src.create( sz, srcType ); randu( src, Scalar(0), Scalar(100) ); if( srcType == CV_8UC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_8SC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_16UC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_16SC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_32SC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_32FC1 ) testReduce( src, sum, avg, max, min, dim ); else if( srcType == CV_64FC1 ) testReduce( src, sum, avg, max, min, dim ); else assert( 0 ); // 1. sum tempCode = checkOp( src, dstType, CV_REDUCE_SUM, sum, dim ); code = tempCode != cvtest::TS::OK ? tempCode : code; // 2. avg tempCode = checkOp( src, dstType, CV_REDUCE_AVG, avg, dim ); code = tempCode != cvtest::TS::OK ? tempCode : code; // 3. max tempCode = checkOp( src, dstType, CV_REDUCE_MAX, max, dim ); code = tempCode != cvtest::TS::OK ? tempCode : code; // 4. min tempCode = checkOp( src, dstType, CV_REDUCE_MIN, min, dim ); code = tempCode != cvtest::TS::OK ? tempCode : code; return code; } int Core_ReduceTest::checkDim( int dim, Size sz ) { int code = cvtest::TS::OK, tempCode; // CV_8UC1 tempCode = checkCase( CV_8UC1, CV_8UC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_8UC1, CV_32SC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_8UC1, CV_32FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_8UC1, CV_64FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; // CV_16UC1 tempCode = checkCase( CV_16UC1, CV_32FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_16UC1, CV_64FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; // CV_16SC1 tempCode = checkCase( CV_16SC1, CV_32FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_16SC1, CV_64FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; // CV_32FC1 tempCode = checkCase( CV_32FC1, CV_32FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkCase( CV_32FC1, CV_64FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; // CV_64FC1 tempCode = checkCase( CV_64FC1, CV_64FC1, dim, sz ); code = tempCode != cvtest::TS::OK ? tempCode : code; return code; } int Core_ReduceTest::checkSize( Size sz ) { int code = cvtest::TS::OK, tempCode; tempCode = checkDim( 0, sz ); // rows code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkDim( 1, sz ); // cols code = tempCode != cvtest::TS::OK ? tempCode : code; return code; } void Core_ReduceTest::run( int ) { int code = cvtest::TS::OK, tempCode; tempCode = checkSize( Size(1,1) ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkSize( Size(1,100) ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkSize( Size(100,1) ); code = tempCode != cvtest::TS::OK ? tempCode : code; tempCode = checkSize( Size(1000,500) ); code = tempCode != cvtest::TS::OK ? tempCode : code; ts->set_failed_test_info( code ); } #define CHECK_C class Core_PCATest : public cvtest::BaseTest { public: Core_PCATest() {} protected: void run(int) { const Size sz(200, 500); double diffPrjEps, diffBackPrjEps, prjEps, backPrjEps, evalEps, evecEps; int maxComponents = 100; double retainedVariance = 0.95; Mat rPoints(sz, CV_32FC1), rTestPoints(sz, CV_32FC1); RNG& rng = ts->get_rng(); rng.fill( rPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) ); rng.fill( rTestPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) ); PCA rPCA( rPoints, Mat(), CV_PCA_DATA_AS_ROW, maxComponents ), cPCA; // 1. check C++ PCA & ROW Mat rPrjTestPoints = rPCA.project( rTestPoints ); Mat rBackPrjTestPoints = rPCA.backProject( rPrjTestPoints ); Mat avg(1, sz.width, CV_32FC1 ); reduce( rPoints, avg, 0, CV_REDUCE_AVG ); Mat Q = rPoints - repeat( avg, rPoints.rows, 1 ), Qt = Q.t(), eval, evec; Q = Qt * Q; Q = Q /(float)rPoints.rows; eigen( Q, eval, evec ); /*SVD svd(Q); evec = svd.vt; eval = svd.w;*/ Mat subEval( maxComponents, 1, eval.type(), eval.data ), subEvec( maxComponents, evec.cols, evec.type(), evec.data ); #ifdef CHECK_C Mat prjTestPoints, backPrjTestPoints, cPoints = rPoints.t(), cTestPoints = rTestPoints.t(); CvMat _points, _testPoints, _avg, _eval, _evec, _prjTestPoints, _backPrjTestPoints; #endif // check eigen() double eigenEps = 1e-6; double err; for(int i = 0; i < Q.rows; i++ ) { Mat v = evec.row(i).t(); Mat Qv = Q * v; Mat lv = eval.at(i,0) * v; err = norm( Qv, lv ); if( err > eigenEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of eigen(); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } } // check pca eigenvalues evalEps = 1e-6, evecEps = 1e-3; err = norm( rPCA.eigenvalues, subEval ); if( err > evalEps ) { ts->printf( cvtest::TS::LOG, "pca.eigenvalues is incorrect (CV_PCA_DATA_AS_ROW); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } // check pca eigenvectors for(int i = 0; i < subEvec.rows; i++) { Mat r0 = rPCA.eigenvectors.row(i); Mat r1 = subEvec.row(i); err = norm( r0, r1, CV_L2 ); if( err > evecEps ) { r1 *= -1; double err2 = norm(r0, r1, CV_L2); if( err2 > evecEps ) { Mat tmp; absdiff(rPCA.eigenvectors, subEvec, tmp); double mval = 0; Point mloc; minMaxLoc(tmp, 0, &mval, 0, &mloc); ts->printf( cvtest::TS::LOG, "pca.eigenvectors is incorrect (CV_PCA_DATA_AS_ROW); err = %f\n", err ); ts->printf( cvtest::TS::LOG, "max diff is %g at (i=%d, j=%d) (%g vs %g)\n", mval, mloc.y, mloc.x, rPCA.eigenvectors.at(mloc.y, mloc.x), subEvec.at(mloc.y, mloc.x)); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } } } prjEps = 1.265, backPrjEps = 1.265; for( int i = 0; i < rTestPoints.rows; i++ ) { // check pca project Mat subEvec_t = subEvec.t(); Mat prj = rTestPoints.row(i) - avg; prj *= subEvec_t; err = norm(rPrjTestPoints.row(i), prj, CV_RELATIVE_L2); if( err > prjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_ROW); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } // check pca backProject Mat backPrj = rPrjTestPoints.row(i) * subEvec + avg; err = norm( rBackPrjTestPoints.row(i), backPrj, CV_RELATIVE_L2 ); if( err > backPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_ROW); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } } // 2. check C++ PCA & COL cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, maxComponents ); diffPrjEps = 1, diffBackPrjEps = 1; Mat ocvPrjTestPoints = cPCA.project(rTestPoints.t()); err = norm(cv::abs(ocvPrjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 ); if( err > diffPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_COL); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } err = norm(cPCA.backProject(ocvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 ); if( err > diffBackPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } // 3. check C++ PCA w/retainedVariance cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, retainedVariance ); diffPrjEps = 1, diffBackPrjEps = 1; Mat rvPrjTestPoints = cPCA.project(rTestPoints.t()); if( cPCA.eigenvectors.rows > maxComponents) err = norm(cv::abs(rvPrjTestPoints.rowRange(0,maxComponents)), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 ); else err = norm(cv::abs(rvPrjTestPoints), cv::abs(rPrjTestPoints.colRange(0,cPCA.eigenvectors.rows).t()), CV_RELATIVE_L2 ); if( err > diffPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_COL); retainedVariance=0.95; err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } err = norm(cPCA.backProject(rvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 ); if( err > diffBackPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); retainedVariance=0.95; err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } #ifdef CHECK_C // 4. check C PCA & ROW _points = rPoints; _testPoints = rTestPoints; _avg = avg; _eval = eval; _evec = evec; prjTestPoints.create(rTestPoints.rows, maxComponents, rTestPoints.type() ); backPrjTestPoints.create(rPoints.size(), rPoints.type() ); _prjTestPoints = prjTestPoints; _backPrjTestPoints = backPrjTestPoints; cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_ROW ); cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints ); cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints ); err = norm(prjTestPoints, rPrjTestPoints, CV_RELATIVE_L2); if( err > diffPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } err = norm(backPrjTestPoints, rBackPrjTestPoints, CV_RELATIVE_L2); if( err > diffBackPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } // 5. check C PCA & COL _points = cPoints; _testPoints = cTestPoints; avg = avg.t(); _avg = avg; eval = eval.t(); _eval = eval; evec = evec.t(); _evec = evec; prjTestPoints = prjTestPoints.t(); _prjTestPoints = prjTestPoints; backPrjTestPoints = backPrjTestPoints.t(); _backPrjTestPoints = backPrjTestPoints; cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_COL ); cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints ); cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints ); err = norm(cv::abs(prjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 ); if( err > diffPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } err = norm(backPrjTestPoints, rBackPrjTestPoints.t(), CV_RELATIVE_L2); if( err > diffBackPrjEps ) { ts->printf( cvtest::TS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err ); ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY ); return; } #endif } }; class Core_ArrayOpTest : public cvtest::BaseTest { public: Core_ArrayOpTest(); ~Core_ArrayOpTest(); protected: void run(int); }; Core_ArrayOpTest::Core_ArrayOpTest() { } Core_ArrayOpTest::~Core_ArrayOpTest() {} static string idx2string(const int* idx, int dims) { char buf[256]; char* ptr = buf; for( int k = 0; k < dims; k++ ) { sprintf(ptr, "%4d ", idx[k]); ptr += strlen(ptr); } ptr[-1] = '\0'; return string(buf); } static const int* string2idx(const string& s, int* idx, int dims) { const char* ptr = s.c_str(); for( int k = 0; k < dims; k++ ) { int n = 0; sscanf(ptr, "%d%n", idx + k, &n); ptr += n; } return idx; } static double getValue(SparseMat& M, const int* idx, RNG& rng) { int d = M.dims(); size_t hv = 0, *phv = 0; if( (unsigned)rng % 2 ) { hv = d == 2 ? M.hash(idx[0], idx[1]) : d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx); phv = &hv; } const uchar* ptr = d == 2 ? M.ptr(idx[0], idx[1], false, phv) : d == 3 ? M.ptr(idx[0], idx[1], idx[2], false, phv) : M.ptr(idx, false, phv); return !ptr ? 0 : M.type() == CV_32F ? *(float*)ptr : M.type() == CV_64F ? *(double*)ptr : 0; } static double getValue(const CvSparseMat* M, const int* idx) { int type = 0; const uchar* ptr = cvPtrND(M, idx, &type, 0); return !ptr ? 0 : type == CV_32F ? *(float*)ptr : type == CV_64F ? *(double*)ptr : 0; } static void eraseValue(SparseMat& M, const int* idx, RNG& rng) { int d = M.dims(); size_t hv = 0, *phv = 0; if( (unsigned)rng % 2 ) { hv = d == 2 ? M.hash(idx[0], idx[1]) : d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx); phv = &hv; } if( d == 2 ) M.erase(idx[0], idx[1], phv); else if( d == 3 ) M.erase(idx[0], idx[1], idx[2], phv); else M.erase(idx, phv); } static void eraseValue(CvSparseMat* M, const int* idx) { cvClearND(M, idx); } static void setValue(SparseMat& M, const int* idx, double value, RNG& rng) { int d = M.dims(); size_t hv = 0, *phv = 0; if( (unsigned)rng % 2 ) { hv = d == 2 ? M.hash(idx[0], idx[1]) : d == 3 ? M.hash(idx[0], idx[1], idx[2]) : M.hash(idx); phv = &hv; } uchar* ptr = d == 2 ? M.ptr(idx[0], idx[1], true, phv) : d == 3 ? M.ptr(idx[0], idx[1], idx[2], true, phv) : M.ptr(idx, true, phv); if( M.type() == CV_32F ) *(float*)ptr = (float)value; else if( M.type() == CV_64F ) *(double*)ptr = value; else CV_Error(CV_StsUnsupportedFormat, ""); } void Core_ArrayOpTest::run( int /* start_from */) { int errcount = 0; // dense matrix operations { int sz3[] = {5, 10, 15}; MatND A(3, sz3, CV_32F), B(3, sz3, CV_16SC4); CvMatND matA = A, matB = B; RNG rng; rng.fill(A, CV_RAND_UNI, Scalar::all(-10), Scalar::all(10)); rng.fill(B, CV_RAND_UNI, Scalar::all(-10), Scalar::all(10)); int idx0[] = {3,4,5}, idx1[] = {0, 9, 7}; float val0 = 130; Scalar val1(-1000, 30, 3, 8); cvSetRealND(&matA, idx0, val0); cvSetReal3D(&matA, idx1[0], idx1[1], idx1[2], -val0); cvSetND(&matB, idx0, val1); cvSet3D(&matB, idx1[0], idx1[1], idx1[2], -val1); Ptr matC = cvCloneMatND(&matB); if( A.at(idx0[0], idx0[1], idx0[2]) != val0 || A.at(idx1[0], idx1[1], idx1[2]) != -val0 || cvGetReal3D(&matA, idx0[0], idx0[1], idx0[2]) != val0 || cvGetRealND(&matA, idx1) != -val0 || Scalar(B.at(idx0[0], idx0[1], idx0[2])) != val1 || Scalar(B.at(idx1[0], idx1[1], idx1[2])) != -val1 || Scalar(cvGet3D(matC, idx0[0], idx0[1], idx0[2])) != val1 || Scalar(cvGetND(matC, idx1)) != -val1 ) { ts->printf(cvtest::TS::LOG, "one of cvSetReal3D, cvSetRealND, cvSet3D, cvSetND " "or the corresponding *Get* functions is not correct\n"); errcount++; } } RNG rng; const int MAX_DIM = 5, MAX_DIM_SZ = 10; // sparse matrix operations for( int si = 0; si < 10; si++ ) { int depth = (unsigned)rng % 2 == 0 ? CV_32F : CV_64F; int dims = ((unsigned)rng % MAX_DIM) + 1; int i, k, size[MAX_DIM]={0}, idx[MAX_DIM]={0}; vector all_idxs; vector all_vals; vector all_vals2; string sidx, min_sidx, max_sidx; double min_val=0, max_val=0; int p = 1; for( k = 0; k < dims; k++ ) { size[k] = ((unsigned)rng % MAX_DIM_SZ) + 1; p *= size[k]; } SparseMat M( dims, size, depth ); map M0; int nz0 = (unsigned)rng % max(p/5,10); nz0 = min(max(nz0, 1), p); all_vals.resize(nz0); all_vals2.resize(nz0); Mat_ _all_vals(all_vals), _all_vals2(all_vals2); rng.fill(_all_vals, CV_RAND_UNI, Scalar(-1000), Scalar(1000)); if( depth == CV_32F ) { Mat _all_vals_f; _all_vals.convertTo(_all_vals_f, CV_32F); _all_vals_f.convertTo(_all_vals, CV_64F); } _all_vals.convertTo(_all_vals2, _all_vals2.type(), 2); if( depth == CV_32F ) { Mat _all_vals2_f; _all_vals2.convertTo(_all_vals2_f, CV_32F); _all_vals2_f.convertTo(_all_vals2, CV_64F); } minMaxLoc(_all_vals, &min_val, &max_val); double _norm0 = norm(_all_vals, CV_C); double _norm1 = norm(_all_vals, CV_L1); double _norm2 = norm(_all_vals, CV_L2); for( i = 0; i < nz0; i++ ) { for(;;) { for( k = 0; k < dims; k++ ) idx[k] = (unsigned)rng % size[k]; sidx = idx2string(idx, dims); if( M0.count(sidx) == 0 ) break; } all_idxs.push_back(sidx); M0[sidx] = all_vals[i]; if( all_vals[i] == min_val ) min_sidx = sidx; if( all_vals[i] == max_val ) max_sidx = sidx; setValue(M, idx, all_vals[i], rng); double v = getValue(M, idx, rng); if( v != all_vals[i] ) { ts->printf(cvtest::TS::LOG, "%d. immediately after SparseMat[%s]=%.20g the current value is %.20g\n", i, sidx.c_str(), all_vals[i], v); errcount++; break; } } Ptr M2 = (CvSparseMat*)M; MatND Md; M.copyTo(Md); SparseMat M3; SparseMat(Md).convertTo(M3, Md.type(), 2); int nz1 = (int)M.nzcount(), nz2 = (int)M3.nzcount(); double norm0 = norm(M, CV_C); double norm1 = norm(M, CV_L1); double norm2 = norm(M, CV_L2); double eps = depth == CV_32F ? FLT_EPSILON*100 : DBL_EPSILON*1000; if( nz1 != nz0 || nz2 != nz0) { errcount++; ts->printf(cvtest::TS::LOG, "%d: The number of non-zero elements before/after converting to/from dense matrix is not correct: %d/%d (while it should be %d)\n", si, nz1, nz2, nz0 ); break; } if( fabs(norm0 - _norm0) > fabs(_norm0)*eps || fabs(norm1 - _norm1) > fabs(_norm1)*eps || fabs(norm2 - _norm2) > fabs(_norm2)*eps ) { errcount++; ts->printf(cvtest::TS::LOG, "%d: The norms are different: %.20g/%.20g/%.20g vs %.20g/%.20g/%.20g\n", si, norm0, norm1, norm2, _norm0, _norm1, _norm2 ); break; } int n = (unsigned)rng % max(p/5,10); n = min(max(n, 1), p) + nz0; for( i = 0; i < n; i++ ) { double val1, val2, val3, val0; if(i < nz0) { sidx = all_idxs[i]; string2idx(sidx, idx, dims); val0 = all_vals[i]; } else { for( k = 0; k < dims; k++ ) idx[k] = (unsigned)rng % size[k]; sidx = idx2string(idx, dims); val0 = M0[sidx]; } val1 = getValue(M, idx, rng); val2 = getValue(M2, idx); val3 = getValue(M3, idx, rng); if( val1 != val0 || val2 != val0 || fabs(val3 - val0*2) > fabs(val0*2)*FLT_EPSILON ) { errcount++; ts->printf(cvtest::TS::LOG, "SparseMat M[%s] = %g/%g/%g (while it should be %g)\n", sidx.c_str(), val1, val2, val3, val0 ); break; } } for( i = 0; i < n; i++ ) { double val1, val2; if(i < nz0) { sidx = all_idxs[i]; string2idx(sidx, idx, dims); } else { for( k = 0; k < dims; k++ ) idx[k] = (unsigned)rng % size[k]; sidx = idx2string(idx, dims); } eraseValue(M, idx, rng); eraseValue(M2, idx); val1 = getValue(M, idx, rng); val2 = getValue(M2, idx); if( val1 != 0 || val2 != 0 ) { errcount++; ts->printf(cvtest::TS::LOG, "SparseMat: after deleting M[%s], it is =%g/%g (while it should be 0)\n", sidx.c_str(), val1, val2 ); break; } } int nz = (int)M.nzcount(); if( nz != 0 ) { errcount++; ts->printf(cvtest::TS::LOG, "The number of non-zero elements after removing all the elements = %d (while it should be 0)\n", nz ); break; } int idx1[MAX_DIM], idx2[MAX_DIM]; double val1 = 0, val2 = 0; M3 = SparseMat(Md); minMaxLoc(M3, &val1, &val2, idx1, idx2); string s1 = idx2string(idx1, dims), s2 = idx2string(idx2, dims); if( val1 != min_val || val2 != max_val || s1 != min_sidx || s2 != max_sidx ) { errcount++; ts->printf(cvtest::TS::LOG, "%d. Sparse: The value and positions of minimum/maximum elements are different from the reference values and positions:\n\t" "(%g, %g, %s, %s) vs (%g, %g, %s, %s)\n", si, val1, val2, s1.c_str(), s2.c_str(), min_val, max_val, min_sidx.c_str(), max_sidx.c_str()); break; } minMaxIdx(Md, &val1, &val2, idx1, idx2); s1 = idx2string(idx1, dims), s2 = idx2string(idx2, dims); if( (min_val < 0 && (val1 != min_val || s1 != min_sidx)) || (max_val > 0 && (val2 != max_val || s2 != max_sidx)) ) { errcount++; ts->printf(cvtest::TS::LOG, "%d. Dense: The value and positions of minimum/maximum elements are different from the reference values and positions:\n\t" "(%g, %g, %s, %s) vs (%g, %g, %s, %s)\n", si, val1, val2, s1.c_str(), s2.c_str(), min_val, max_val, min_sidx.c_str(), max_sidx.c_str()); break; } } ts->set_failed_test_info(errcount == 0 ? cvtest::TS::OK : cvtest::TS::FAIL_INVALID_OUTPUT); } template int calcDiffElemCountImpl(const vector& mv, const Mat& m) { int diffElemCount = 0; const int mChannels = m.channels(); for(int y = 0; y < m.rows; y++) { for(int x = 0; x < m.cols; x++) { const ElemType* mElem = &m.at(y,x*mChannels); int loc = 0; for(size_t i = 0; i < mv.size(); i++) { const size_t mvChannel = mv[i].channels(); const ElemType* mvElem = &mv[i].at(y,x*(int)mvChannel); for(size_t li = 0; li < mvChannel; li++) if(mElem[loc + li] != mvElem[li]) diffElemCount++; loc += mvChannel; } CV_Assert(loc == mChannels); } } return diffElemCount; } static int calcDiffElemCount(const vector& mv, const Mat& m) { int depth = m.depth(); switch (depth) { case CV_8U: return calcDiffElemCountImpl(mv, m); case CV_8S: return calcDiffElemCountImpl(mv, m); case CV_16U: return calcDiffElemCountImpl(mv, m); case CV_16S: return calcDiffElemCountImpl(mv, m); case CV_32S: return calcDiffElemCountImpl(mv, m); case CV_32F: return calcDiffElemCountImpl(mv, m); case CV_64F: return calcDiffElemCountImpl(mv, m); } return INT_MAX; } class Core_MergeSplitBaseTest : public cvtest::BaseTest { protected: virtual int run_case(int depth, size_t channels, const Size& size, RNG& rng) = 0; virtual void run(int) { // m is Mat // mv is vector const int minMSize = 1; const int maxMSize = 100; const size_t maxMvSize = 10; RNG& rng = theRNG(); Size mSize(rng.uniform(minMSize, maxMSize), rng.uniform(minMSize, maxMSize)); size_t mvSize = rng(maxMvSize); int res = cvtest::TS::OK, curRes = res; curRes = run_case(CV_8U, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_8S, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_16U, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_16S, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_32S, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_32F, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; curRes = run_case(CV_64F, mvSize, mSize, rng); res = curRes != cvtest::TS::OK ? curRes : res; ts->set_failed_test_info(res); } }; class Core_MergeTest : public Core_MergeSplitBaseTest { public: Core_MergeTest() {} ~Core_MergeTest() {} protected: virtual int run_case(int depth, size_t matCount, const Size& size, RNG& rng) { const int maxMatChannels = 10; vector src(matCount); int channels = 0; for(size_t i = 0; i < src.size(); i++) { Mat m(size, CV_MAKETYPE(depth, rng.uniform(1,maxMatChannels))); rng.fill(m, RNG::UNIFORM, 0, 100, true); channels += m.channels(); src[i] = m; } Mat dst; merge(src, dst); // check result stringstream commonLog; commonLog << "Depth " << depth << " :"; if(dst.depth() != depth) { ts->printf(cvtest::TS::LOG, "%s incorrect depth of dst (%d instead of %d)\n", commonLog.str().c_str(), dst.depth(), depth); return cvtest::TS::FAIL_INVALID_OUTPUT; } if(dst.size() != size) { ts->printf(cvtest::TS::LOG, "%s incorrect size of dst (%d x %d instead of %d x %d)\n", commonLog.str().c_str(), dst.rows, dst.cols, size.height, size.width); return cvtest::TS::FAIL_INVALID_OUTPUT; } if(dst.channels() != channels) { ts->printf(cvtest::TS::LOG, "%s: incorrect channels count of dst (%d instead of %d)\n", commonLog.str().c_str(), dst.channels(), channels); return cvtest::TS::FAIL_INVALID_OUTPUT; } int diffElemCount = calcDiffElemCount(src, dst); if(diffElemCount > 0) { ts->printf(cvtest::TS::LOG, "%s: there are incorrect elements in dst (part of them is %f)\n", commonLog.str().c_str(), static_cast(diffElemCount)/(channels*size.area())); return cvtest::TS::FAIL_INVALID_OUTPUT; } return cvtest::TS::OK; } }; class Core_SplitTest : public Core_MergeSplitBaseTest { public: Core_SplitTest() {} ~Core_SplitTest() {} protected: virtual int run_case(int depth, size_t channels, const Size& size, RNG& rng) { Mat src(size, CV_MAKETYPE(depth, (int)channels)); rng.fill(src, RNG::UNIFORM, 0, 100, true); vector dst; split(src, dst); // check result stringstream commonLog; commonLog << "Depth " << depth << " :"; if(dst.size() != channels) { ts->printf(cvtest::TS::LOG, "%s incorrect count of matrices in dst (%d instead of %d)\n", commonLog.str().c_str(), dst.size(), channels); return cvtest::TS::FAIL_INVALID_OUTPUT; } for(size_t i = 0; i < dst.size(); i++) { if(dst[i].size() != size) { ts->printf(cvtest::TS::LOG, "%s incorrect size of dst[%d] (%d x %d instead of %d x %d)\n", commonLog.str().c_str(), i, dst[i].rows, dst[i].cols, size.height, size.width); return cvtest::TS::FAIL_INVALID_OUTPUT; } if(dst[i].depth() != depth) { ts->printf(cvtest::TS::LOG, "%s: incorrect depth of dst[%d] (%d instead of %d)\n", commonLog.str().c_str(), i, dst[i].depth(), depth); return cvtest::TS::FAIL_INVALID_OUTPUT; } if(dst[i].channels() != 1) { ts->printf(cvtest::TS::LOG, "%s: incorrect channels count of dst[%d] (%d instead of %d)\n", commonLog.str().c_str(), i, dst[i].channels(), 1); return cvtest::TS::FAIL_INVALID_OUTPUT; } } int diffElemCount = calcDiffElemCount(dst, src); if(diffElemCount > 0) { ts->printf(cvtest::TS::LOG, "%s: there are incorrect elements in dst (part of them is %f)\n", commonLog.str().c_str(), static_cast(diffElemCount)/(channels*size.area())); return cvtest::TS::FAIL_INVALID_OUTPUT; } return cvtest::TS::OK; } }; TEST(Core_PCA, accuracy) { Core_PCATest test; test.safe_run(); } TEST(Core_Reduce, accuracy) { Core_ReduceTest test; test.safe_run(); } TEST(Core_Array, basic_operations) { Core_ArrayOpTest test; test.safe_run(); } TEST(Core_Merge, shape_operations) { Core_MergeTest test; test.safe_run(); } TEST(Core_Split, shape_operations) { Core_SplitTest test; test.safe_run(); } TEST(Core_IOArray, submat_assignment) { Mat1f A = Mat1f::zeros(2,2); Mat1f B = Mat1f::ones(1,3); EXPECT_THROW( B.colRange(0,3).copyTo(A.row(0)), cv::Exception ); EXPECT_NO_THROW( B.colRange(0,2).copyTo(A.row(0)) ); EXPECT_EQ( 1.0f, A(0,0) ); EXPECT_EQ( 1.0f, A(0,1) ); } void OutputArray_create1(OutputArray m) { m.create(1, 2, CV_32S); } void OutputArray_create2(OutputArray m) { m.create(1, 3, CV_32F); } TEST(Core_IOArray, submat_create) { Mat1f A = Mat1f::zeros(2,2); EXPECT_THROW( OutputArray_create1(A.row(0)), cv::Exception ); EXPECT_THROW( OutputArray_create2(A.row(0)), cv::Exception ); } TEST(Core_Mat, reshape_1942) { cv::Mat A = (cv::Mat_(2,3) << 3.4884074, 1.4159607, 0.78737736, 2.3456569, -0.88010466, 0.3009364); int cn = 0; ASSERT_NO_THROW( cv::Mat_ M = A.reshape(3); cn = M.channels(); ); ASSERT_EQ(1, cn); }