/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace std; class CV_PyrSegmentationTest : public cvtest::BaseTest { public: CV_PyrSegmentationTest(); protected: void run(int); }; #define SCAN 0 CV_PyrSegmentationTest::CV_PyrSegmentationTest() { } void CV_PyrSegmentationTest::run( int /*start_from*/ ) { Mat _image_f, _image, _image_s; const int level = 5; const double range = 15; int code = cvtest::TS::OK; CvPoint _cp[] ={ CvPoint(33,33), CvPoint(43,33), CvPoint(43,43), CvPoint(33,43)}; CvPoint _cp2[] ={CvPoint(50,50), CvPoint(70,50), CvPoint(70,70), CvPoint(50,70)}; CvPoint* cp = _cp; CvPoint* cp2 = _cp2; CvConnectedComp *dst_comp[3]; CvRect rect[3] = {{50,50,21,21}, {0,0,128,128}, {33,33,11,11}}; double a[3] = {441.0, 15822.0, 121.0}; /* ippiPoint cp3[] ={130,130, 150,130, 150,150, 130,150}; */ /* CvPoint cp[] ={0,0, 5,5, 5,0, 10,5, 10,0, 15,5, 15,0}; */ int nPoints = 4; int block_size = 1000; CvMemStorage *storage; /* storage for connected component writing */ CvSeq *comp; RNG& rng = ts->get_rng(); int i, j, iter; IplImage *image, *image_f, *image_s; CvSize size = {128, 128}; const int threshold1 = 50, threshold2 = 50; rect[1].width = size.width; rect[1].height = size.height; a[1] = size.width*size.height - a[0] - a[2]; OPENCV_CALL( storage = cvCreateMemStorage( block_size ) ); for( iter = 0; iter < 2; iter++ ) { int channels = iter == 0 ? 1 : 3; int mask[] = {0,0,0}; image = cvCreateImage(size, 8, channels ); image_s = cvCloneImage( image ); image_f = cvCloneImage( image ); if( channels == 1 ) { int color1 = 30, color2 = 110, color3 = 190; cvSet( image, cvScalarAll(color1)); cvFillPoly( image, &cp, &nPoints, 1, cvScalar(color2)); cvFillPoly( image, &cp2, &nPoints, 1, cvScalar(color3)); } else { CvScalar color1 = CV_RGB(30,30,30), color2 = CV_RGB(255,0,0), color3 = CV_RGB(0,255,0); assert( channels == 3 ); cvSet( image, color1 ); cvFillPoly( image, &cp, &nPoints, 1, color2); cvFillPoly( image, &cp2, &nPoints, 1, color3); } _image_f = cvarrToMat(image_f); cvtest::randUni( rng, _image_f, cvScalarAll(0), cvScalarAll(range*2) ); cvAddWeighted( image, 1, image_f, 1, -range, image_f ); cvPyrSegmentation( image_f, image_s, storage, &comp, level, threshold1, threshold2 ); if(comp->total != 3) { ts->printf( cvtest::TS::LOG, "The segmentation function returned %d (not 3) components\n", comp->total ); code = cvtest::TS::FAIL_INVALID_OUTPUT; goto _exit_; } /* read the connected components */ dst_comp[0] = (CvConnectedComp*)CV_GET_SEQ_ELEM( CvConnectedComp, comp, 0 ); dst_comp[1] = (CvConnectedComp*)CV_GET_SEQ_ELEM( CvConnectedComp, comp, 1 ); dst_comp[2] = (CvConnectedComp*)CV_GET_SEQ_ELEM( CvConnectedComp, comp, 2 ); /*{ for( i = 0; i < 3; i++ ) { CvRect r = dst_comp[i]->rect; cvRectangle( image_s, cvPoint(r.x,r.y), cvPoint(r.x+r.width,r.y+r.height), CV_RGB(255,255,255), 3, 8, 0 ); } cvNamedWindow( "test", 1 ); cvShowImage( "test", image_s ); cvWaitKey(0); }*/ _image = cvarrToMat(image); _image_s = cvarrToMat(image_s); code = cvtest::cmpEps2( ts, _image, _image_s, 10, false, "the output image" ); if( code < 0 ) goto _exit_; for( i = 0; i < 3; i++) { for( j = 0; j < 3; j++ ) { if( !mask[j] && dst_comp[i]->area == a[j] && dst_comp[i]->rect.x == rect[j].x && dst_comp[i]->rect.y == rect[j].y && dst_comp[i]->rect.width == rect[j].width && dst_comp[i]->rect.height == rect[j].height ) { mask[j] = 1; break; } } if( j == 3 ) { ts->printf( cvtest::TS::LOG, "The component #%d is incorrect\n", i ); code = cvtest::TS::FAIL_BAD_ACCURACY; goto _exit_; } } cvReleaseImage(&image_f); cvReleaseImage(&image); cvReleaseImage(&image_s); } _exit_: cvReleaseMemStorage( &storage ); cvReleaseImage(&image_f); cvReleaseImage(&image); cvReleaseImage(&image_s); if( code < 0 ) ts->set_failed_test_info( code ); } TEST(Legacy_PyrSegmentation, regression) { CV_PyrSegmentationTest test; test.safe_run(); } /* End of file. */