#include "precomp.hpp" namespace cv { namespace viz { template Vec<_Tp, 3>* vtkpoints_data(vtkSmartPointer& points); } } /////////////////////////////////////////////////////////////////////////////////////////////// /// Point Cloud Widget implementation struct cv::viz::CloudWidget::CreateCloudWidget { static inline vtkSmartPointer create(const Mat &cloud, vtkIdType &nr_points) { vtkSmartPointer polydata = vtkSmartPointer::New (); vtkSmartPointer vertices = vtkSmartPointer::New (); polydata->SetVerts (vertices); vtkSmartPointer points = polydata->GetPoints(); vtkSmartPointer initcells; nr_points = cloud.total(); if (!points) { points = vtkSmartPointer::New (); if (cloud.depth() == CV_32F) points->SetDataTypeToFloat(); else if (cloud.depth() == CV_64F) points->SetDataTypeToDouble(); polydata->SetPoints (points); } points->SetNumberOfPoints (nr_points); if (cloud.depth() == CV_32F) { // Get a pointer to the beginning of the data array Vec3f *data_beg = vtkpoints_data(points); Vec3f *data_end = NanFilter::copy(cloud, data_beg, cloud); nr_points = data_end - data_beg; } else if (cloud.depth() == CV_64F) { // Get a pointer to the beginning of the data array Vec3d *data_beg = vtkpoints_data(points); Vec3d *data_end = NanFilter::copy(cloud, data_beg, cloud); nr_points = data_end - data_beg; } points->SetNumberOfPoints (nr_points); // Update cells vtkSmartPointer cells = vertices->GetData (); // If no init cells and cells has not been initialized... if (!cells) cells = vtkSmartPointer::New (); // If we have less values then we need to recreate the array if (cells->GetNumberOfTuples () < nr_points) { cells = vtkSmartPointer::New (); // If init cells is given, and there's enough data in it, use it if (initcells && initcells->GetNumberOfTuples () >= nr_points) { cells->DeepCopy (initcells); cells->SetNumberOfComponents (2); cells->SetNumberOfTuples (nr_points); } else { // If the number of tuples is still too small, we need to recreate the array cells->SetNumberOfComponents (2); cells->SetNumberOfTuples (nr_points); vtkIdType *cell = cells->GetPointer (0); // Fill it with 1s std::fill_n (cell, nr_points * 2, 1); cell++; for (vtkIdType i = 0; i < nr_points; ++i, cell += 2) *cell = i; // Save the results in initcells initcells = vtkSmartPointer::New (); initcells->DeepCopy (cells); } } else { // The assumption here is that the current set of cells has more data than needed cells->SetNumberOfComponents (2); cells->SetNumberOfTuples (nr_points); } // Set the cells and the vertices vertices->SetCells (nr_points, cells); return polydata; } }; cv::viz::CloudWidget::CloudWidget(InputArray _cloud, InputArray _colors) { Mat cloud = _cloud.getMat(); Mat colors = _colors.getMat(); CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4); CV_Assert(colors.type() == CV_8UC3 && cloud.size() == colors.size()); if (cloud.isContinuous() && colors.isContinuous()) { cloud.reshape(cloud.channels(), 1); colors.reshape(colors.channels(), 1); } vtkIdType nr_points; vtkSmartPointer polydata = CreateCloudWidget::create(cloud, nr_points); // Filter colors Vec3b* colors_data = new Vec3b[nr_points]; NanFilter::copyColor(colors, colors_data, cloud); vtkSmartPointer scalars = vtkSmartPointer::New (); scalars->SetNumberOfComponents (3); scalars->SetNumberOfTuples (nr_points); scalars->SetArray (colors_data->val, 3 * nr_points, 0); // Assign the colors polydata->GetPointData ()->SetScalars (scalars); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInput (polydata); Vec3d minmax(scalars->GetRange()); mapper->SetScalarRange(minmax.val); mapper->SetScalarModeToUsePointData (); bool interpolation = (polydata && polydata->GetNumberOfCells () != polydata->GetNumberOfVerts ()); mapper->SetInterpolateScalarsBeforeMapping (interpolation); mapper->ScalarVisibilityOn (); mapper->ImmediateModeRenderingOff (); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetNumberOfCloudPoints (int (std::max (1, polydata->GetNumberOfPoints () / 10))); actor->GetProperty ()->SetInterpolationToFlat (); actor->GetProperty ()->BackfaceCullingOn (); actor->SetMapper (mapper); WidgetAccessor::setProp(*this, actor); } cv::viz::CloudWidget::CloudWidget(InputArray _cloud, const Color &color) { Mat cloud = _cloud.getMat(); CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4); vtkIdType nr_points; vtkSmartPointer polydata = CreateCloudWidget::create(cloud, nr_points); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInput (polydata); bool interpolation = (polydata && polydata->GetNumberOfCells () != polydata->GetNumberOfVerts ()); mapper->SetInterpolateScalarsBeforeMapping (interpolation); mapper->ScalarVisibilityOff (); mapper->ImmediateModeRenderingOff (); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetNumberOfCloudPoints (int (std::max (1, polydata->GetNumberOfPoints () / 10))); actor->GetProperty ()->SetInterpolationToFlat (); actor->GetProperty ()->BackfaceCullingOn (); actor->SetMapper (mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::CloudWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// Cloud Normals Widget implementation struct cv::viz::CloudNormalsWidget::ApplyCloudNormals { template struct Impl { static vtkSmartPointer applyOrganized(const Mat &cloud, const Mat& normals, double level, float scale, _Tp *&pts, vtkIdType &nr_normals) { vtkIdType point_step = static_cast(std::sqrt(level)); nr_normals = (static_cast ((cloud.cols - 1) / point_step) + 1) * (static_cast ((cloud.rows - 1) / point_step) + 1); vtkSmartPointer lines = vtkSmartPointer::New(); pts = new _Tp[2 * nr_normals * 3]; int cch = cloud.channels(); vtkIdType cell_count = 0; for (vtkIdType y = 0; y < cloud.rows; y += point_step) { const _Tp *prow = cloud.ptr<_Tp>(y); const _Tp *nrow = normals.ptr<_Tp>(y); for (vtkIdType x = 0; x < cloud.cols; x += point_step * cch) { pts[2 * cell_count * 3 + 0] = prow[x]; pts[2 * cell_count * 3 + 1] = prow[x+1]; pts[2 * cell_count * 3 + 2] = prow[x+2]; pts[2 * cell_count * 3 + 3] = prow[x] + nrow[x] * scale; pts[2 * cell_count * 3 + 4] = prow[x+1] + nrow[x+1] * scale; pts[2 * cell_count * 3 + 5] = prow[x+2] + nrow[x+2] * scale; lines->InsertNextCell (2); lines->InsertCellPoint (2 * cell_count); lines->InsertCellPoint (2 * cell_count + 1); cell_count++; } } return lines; } static vtkSmartPointer applyUnorganized(const Mat &cloud, const Mat& normals, int level, float scale, _Tp *&pts, vtkIdType &nr_normals) { vtkSmartPointer lines = vtkSmartPointer::New(); nr_normals = (cloud.size().area() - 1) / level + 1 ; pts = new _Tp[2 * nr_normals * 3]; int cch = cloud.channels(); const _Tp *p = cloud.ptr<_Tp>(); const _Tp *n = normals.ptr<_Tp>(); for (vtkIdType i = 0, j = 0; j < nr_normals; j++, i = j * level * cch) { pts[2 * j * 3 + 0] = p[i]; pts[2 * j * 3 + 1] = p[i+1]; pts[2 * j * 3 + 2] = p[i+2]; pts[2 * j * 3 + 3] = p[i] + n[i] * scale; pts[2 * j * 3 + 4] = p[i+1] + n[i+1] * scale; pts[2 * j * 3 + 5] = p[i+2] + n[i+2] * scale; lines->InsertNextCell (2); lines->InsertCellPoint (2 * j); lines->InsertCellPoint (2 * j + 1); } return lines; } }; template static inline vtkSmartPointer apply(const Mat &cloud, const Mat& normals, int level, float scale, _Tp *&pts, vtkIdType &nr_normals) { if (cloud.cols > 1 && cloud.rows > 1) return ApplyCloudNormals::Impl<_Tp>::applyOrganized(cloud, normals, level, scale, pts, nr_normals); else return ApplyCloudNormals::Impl<_Tp>::applyUnorganized(cloud, normals, level, scale, pts, nr_normals); } }; cv::viz::CloudNormalsWidget::CloudNormalsWidget(InputArray _cloud, InputArray _normals, int level, float scale, const Color &color) { Mat cloud = _cloud.getMat(); Mat normals = _normals.getMat(); CV_Assert(cloud.type() == CV_32FC3 || cloud.type() == CV_64FC3 || cloud.type() == CV_32FC4 || cloud.type() == CV_64FC4); CV_Assert(cloud.size() == normals.size() && cloud.type() == normals.type()); vtkSmartPointer points = vtkSmartPointer::New(); vtkSmartPointer lines = vtkSmartPointer::New(); vtkIdType nr_normals = 0; if (cloud.depth() == CV_32F) { points->SetDataTypeToFloat(); vtkSmartPointer data = vtkSmartPointer::New (); data->SetNumberOfComponents (3); float* pts = 0; lines = ApplyCloudNormals::apply(cloud, normals, level, scale, pts, nr_normals); data->SetArray (&pts[0], 2 * nr_normals * 3, 0); points->SetData (data); } else { points->SetDataTypeToDouble(); vtkSmartPointer data = vtkSmartPointer::New (); data->SetNumberOfComponents (3); double* pts = 0; lines = ApplyCloudNormals::apply(cloud, normals, level, scale, pts, nr_normals); data->SetArray (&pts[0], 2 * nr_normals * 3, 0); points->SetData (data); } vtkSmartPointer polyData = vtkSmartPointer::New(); polyData->SetPoints (points); polyData->SetLines (lines); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInput (polyData); mapper->SetColorModeToMapScalars(); mapper->SetScalarModeToUsePointData(); vtkSmartPointer actor = vtkSmartPointer::New(); actor->SetMapper(mapper); WidgetAccessor::setProp(*this, actor); setColor(color); } template<> cv::viz::CloudNormalsWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); } /////////////////////////////////////////////////////////////////////////////////////////////// /// Mesh Widget implementation struct cv::viz::MeshWidget::CopyImpl { template static Vec<_Tp, 3> * copy(const Mat &source, Vec<_Tp, 3> *output, int *look_up, const Mat &nan_mask) { CV_Assert(DataDepth<_Tp>::value == source.depth() && source.size() == nan_mask.size()); CV_Assert(nan_mask.channels() == 3 || nan_mask.channels() == 4); CV_DbgAssert(DataDepth<_Tp>::value == nan_mask.depth()); int s_chs = source.channels(); int m_chs = nan_mask.channels(); int index = 0; const _Tp* srow = source.ptr<_Tp>(0); const _Tp* mrow = nan_mask.ptr<_Tp>(0); for(int x = 0; x < source.cols; ++x, srow += s_chs, mrow += m_chs) { if (!isNan(mrow[0]) && !isNan(mrow[1]) && !isNan(mrow[2])) { look_up[x] = index; *output++ = Vec<_Tp, 3>(srow); ++index; } } return output; } }; cv::viz::MeshWidget::MeshWidget(const Mesh3d &mesh) { CV_Assert(mesh.cloud.rows == 1 && (mesh.cloud.type() == CV_32FC3 || mesh.cloud.type() == CV_64FC3 || mesh.cloud.type() == CV_32FC4 || mesh.cloud.type() == CV_64FC4)); CV_Assert(mesh.colors.empty() || (mesh.colors.type() == CV_8UC3 && mesh.cloud.size() == mesh.colors.size())); CV_Assert(!mesh.polygons.empty() && mesh.polygons.type() == CV_32SC1); vtkSmartPointer points = vtkSmartPointer::New (); vtkIdType nr_points = mesh.cloud.total(); Mat look_up_mat(1, nr_points, CV_32SC1); int * look_up = look_up_mat.ptr(); points->SetNumberOfPoints (nr_points); // Copy data from cloud to vtkPoints if (mesh.cloud.depth() == CV_32F) { points->SetDataTypeToFloat(); Vec3f *data_beg = vtkpoints_data(points); Vec3f *data_end = CopyImpl::copy(mesh.cloud, data_beg, look_up, mesh.cloud); nr_points = data_end - data_beg; } else { points->SetDataTypeToDouble(); Vec3d *data_beg = vtkpoints_data(points); Vec3d *data_end = CopyImpl::copy(mesh.cloud, data_beg, look_up, mesh.cloud); nr_points = data_end - data_beg; } vtkSmartPointer scalars; if (!mesh.colors.empty()) { Vec3b * colors_data = 0; colors_data = new Vec3b[nr_points]; NanFilter::copyColor(mesh.colors, colors_data, mesh.cloud); scalars = vtkSmartPointer::New (); scalars->SetNumberOfComponents (3); scalars->SetNumberOfTuples (nr_points); scalars->SetArray (colors_data->val, 3 * nr_points, 0); } points->SetNumberOfPoints(nr_points); vtkSmartPointer data; if (mesh.polygons.size().area() > 1) { vtkSmartPointer cell_array = vtkSmartPointer::New(); const int * polygons = mesh.polygons.ptr(); int idx = 0; int poly_size = mesh.polygons.total(); for (int i = 0; i < poly_size; ++idx) { int n_points = polygons[i++]; cell_array->InsertNextCell(n_points); for (int j = 0; j < n_points; ++j, ++idx) cell_array->InsertCellPoint(look_up[polygons[i++]]); } vtkSmartPointer polydata = vtkSmartPointer::New(); cell_array->GetData ()->SetNumberOfValues (idx); cell_array->Squeeze (); polydata->SetStrips (cell_array); polydata->SetPoints (points); if (scalars) polydata->GetPointData ()->SetScalars (scalars); data = polydata; } else { // Only one polygon vtkSmartPointer polygon = vtkSmartPointer::New (); const int * polygons = mesh.polygons.ptr(); int n_points = polygons[0]; polygon->GetPointIds()->SetNumberOfIds(n_points); for (int j = 1; j < n_points+1; ++j) polygon->GetPointIds ()->SetId (j, look_up[polygons[j]]); vtkSmartPointer poly_grid = vtkSmartPointer::New(); poly_grid->Allocate (1, 1); poly_grid->InsertNextCell (polygon->GetCellType (), polygon->GetPointIds ()); poly_grid->SetPoints (points); poly_grid->Update (); if (scalars) poly_grid->GetPointData ()->SetScalars (scalars); data = poly_grid; } vtkSmartPointer actor = vtkSmartPointer::New(); actor->GetProperty()->SetRepresentationToSurface(); actor->GetProperty()->BackfaceCullingOff(); // Backface culling is off for higher efficiency actor->GetProperty()->SetInterpolationToFlat(); actor->GetProperty()->EdgeVisibilityOff(); actor->GetProperty()->ShadingOff(); vtkSmartPointer mapper = vtkSmartPointer::New (); mapper->SetInput (data); mapper->ImmediateModeRenderingOff (); vtkIdType numberOfCloudPoints = nr_points * 0.1; actor->SetNumberOfCloudPoints (int (numberOfCloudPoints > 1 ? numberOfCloudPoints : 1)); actor->SetMapper (mapper); WidgetAccessor::setProp(*this, actor); } template<> CV_EXPORTS cv::viz::MeshWidget cv::viz::Widget::cast() { Widget3D widget = this->cast(); return static_cast(widget); }