/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #ifdef HAVE_EIGEN2 #include #endif //#define _KDTREE using namespace std; namespace cv { void drawMatches( const Mat& img1, const vector& keypoints1, const Mat& img2,const vector& keypoints2, const vector& matches, Mat& outImg, const Scalar& matchColor, const Scalar& singlePointColor, const vector& matchesMask, int flags ) { Size size( img1.cols + img2.cols, MAX(img1.rows, img2.rows) ); if( flags & DrawMatchesFlags::DRAW_OVER_OUTIMG ) { if( size.width > outImg.cols || size.height > outImg.rows ) CV_Error( CV_StsBadSize, "outImg has size less than need to draw img1 and img2 together" ); } else { outImg.create( size, CV_MAKETYPE(img1.depth(), 3) ); Mat outImg1 = outImg( Rect(0, 0, img1.cols, img1.rows) ); cvtColor( img1, outImg1, CV_GRAY2RGB ); Mat outImg2 = outImg( Rect(img1.cols, 0, img2.cols, img2.rows) ); cvtColor( img2, outImg2, CV_GRAY2RGB ); } RNG rng; // draw keypoints if( !(flags & DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS) ) { bool isRandSinglePointColor = singlePointColor == Scalar::all(-1); for( vector::const_iterator it = keypoints1.begin(); it < keypoints1.end(); ++it ) { circle( outImg, it->pt, 3, isRandSinglePointColor ? Scalar(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256)) : singlePointColor ); } for( vector::const_iterator it = keypoints2.begin(); it < keypoints2.end(); ++it ) { Point p = it->pt; circle( outImg, Point(p.x+img1.cols, p.y), 3, isRandSinglePointColor ? Scalar(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256)) : singlePointColor ); } } // draw matches bool isRandMatchColor = matchColor == Scalar::all(-1); if( matches.size() != keypoints1.size() ) CV_Error( CV_StsBadSize, "matches must have the same size as keypoints1" ); if( !matchesMask.empty() && matchesMask.size() != keypoints1.size() ) CV_Error( CV_StsBadSize, "mask must have the same size as keypoints1" ); vector::const_iterator mit = matches.begin(); for( int i1 = 0; mit != matches.end(); ++mit, i1++ ) { if( (matchesMask.empty() || matchesMask[i1] ) && *mit >= 0 ) { Point2f pt1 = keypoints1[i1].pt, pt2 = keypoints2[*mit].pt, dpt2 = Point2f( std::min(pt2.x+img1.cols, float(outImg.cols-1)), pt2.y ); Scalar randColor( rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256) ); circle( outImg, pt1, 3, isRandMatchColor ? randColor : matchColor ); circle( outImg, dpt2, 3, isRandMatchColor ? randColor : matchColor ); line( outImg, pt1, dpt2, isRandMatchColor ? randColor : matchColor ); } } } /****************************************************************************************\ * DescriptorExtractor * \****************************************************************************************/ /* * DescriptorExtractor */ struct RoiPredicate { RoiPredicate(float _minX, float _minY, float _maxX, float _maxY) : minX(_minX), minY(_minY), maxX(_maxX), maxY(_maxY) {} bool operator()( const KeyPoint& keyPt) const { Point2f pt = keyPt.pt; return (pt.x < minX) || (pt.x >= maxX) || (pt.y < minY) || (pt.y >= maxY); } float minX, minY, maxX, maxY; }; void DescriptorExtractor::removeBorderKeypoints( vector& keypoints, Size imageSize, int borderPixels ) { keypoints.erase( remove_if(keypoints.begin(), keypoints.end(), RoiPredicate((float)borderPixels, (float)borderPixels, (float)(imageSize.width - borderPixels), (float)(imageSize.height - borderPixels))), keypoints.end()); } /****************************************************************************************\ * SiftDescriptorExtractor * \****************************************************************************************/ SiftDescriptorExtractor::SiftDescriptorExtractor( double magnification, bool isNormalize, bool recalculateAngles, int nOctaves, int nOctaveLayers, int firstOctave, int angleMode ) : sift( magnification, isNormalize, recalculateAngles, nOctaves, nOctaveLayers, firstOctave, angleMode ) {} void SiftDescriptorExtractor::compute( const Mat& image, vector& keypoints, Mat& descriptors) const { bool useProvidedKeypoints = true; sift(image, Mat(), keypoints, descriptors, useProvidedKeypoints); } void SiftDescriptorExtractor::read (const FileNode &fn) { double magnification = fn["magnification"]; bool isNormalize = (int)fn["isNormalize"] != 0; bool recalculateAngles = (int)fn["recalculateAngles"] != 0; int nOctaves = fn["nOctaves"]; int nOctaveLayers = fn["nOctaveLayers"]; int firstOctave = fn["firstOctave"]; int angleMode = fn["angleMode"]; sift = SIFT( magnification, isNormalize, recalculateAngles, nOctaves, nOctaveLayers, firstOctave, angleMode ); } void SiftDescriptorExtractor::write (FileStorage &fs) const { // fs << "algorithm" << getAlgorithmName (); SIFT::CommonParams commParams = sift.getCommonParams (); SIFT::DescriptorParams descriptorParams = sift.getDescriptorParams (); fs << "magnification" << descriptorParams.magnification; fs << "isNormalize" << descriptorParams.isNormalize; fs << "recalculateAngles" << descriptorParams.recalculateAngles; fs << "nOctaves" << commParams.nOctaves; fs << "nOctaveLayers" << commParams.nOctaveLayers; fs << "firstOctave" << commParams.firstOctave; fs << "angleMode" << commParams.angleMode; } /****************************************************************************************\ * SurfDescriptorExtractor * \****************************************************************************************/ SurfDescriptorExtractor::SurfDescriptorExtractor( int nOctaves, int nOctaveLayers, bool extended ) : surf( 0.0, nOctaves, nOctaveLayers, extended ) {} void SurfDescriptorExtractor::compute( const Mat& image, vector& keypoints, Mat& descriptors) const { // Compute descriptors for given keypoints vector _descriptors; Mat mask; bool useProvidedKeypoints = true; surf(image, mask, keypoints, _descriptors, useProvidedKeypoints); descriptors.create((int)keypoints.size(), (int)surf.descriptorSize(), CV_32FC1); assert( (int)_descriptors.size() == descriptors.rows * descriptors.cols ); std::copy(_descriptors.begin(), _descriptors.end(), descriptors.begin()); } void SurfDescriptorExtractor::read( const FileNode &fn ) { int nOctaves = fn["nOctaves"]; int nOctaveLayers = fn["nOctaveLayers"]; bool extended = (int)fn["extended"] != 0; surf = SURF( 0.0, nOctaves, nOctaveLayers, extended ); } void SurfDescriptorExtractor::write( FileStorage &fs ) const { // fs << "algorithm" << getAlgorithmName (); fs << "nOctaves" << surf.nOctaves; fs << "nOctaveLayers" << surf.nOctaveLayers; fs << "extended" << surf.extended; } Ptr createDescriptorExtractor( const string& descriptorExtractorType ) { DescriptorExtractor* de = 0; if( !descriptorExtractorType.compare( "SIFT" ) ) { de = new SiftDescriptorExtractor/*( double magnification=SIFT::DescriptorParams::GET_DEFAULT_MAGNIFICATION(), bool isNormalize=true, bool recalculateAngles=true, int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES, int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS, int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE, int angleMode=SIFT::CommonParams::FIRST_ANGLE )*/; } else if( !descriptorExtractorType.compare( "SURF" ) ) { de = new SurfDescriptorExtractor/*( int nOctaves=4, int nOctaveLayers=2, bool extended=false )*/; } else { //CV_Error( CV_StsBadArg, "unsupported descriptor extractor type"); } return de; } Ptr createDescriptorMatcher( const string& descriptorMatcherType ) { DescriptorMatcher* dm = 0; if( !descriptorMatcherType.compare( "BruteForce" ) ) { dm = new BruteForceMatcher >(); } else if ( !descriptorMatcherType.compare( "BruteForce-L1" ) ) { dm = new BruteForceMatcher >(); } else { //CV_Error( CV_StsBadArg, "unsupported descriptor matcher type"); } return dm; } template<> void BruteForceMatcher >::matchImpl( const Mat& descriptors_1, const Mat& descriptors_2, const Mat& /*mask*/, vector& matches ) const { matches.clear(); matches.reserve( descriptors_1.rows ); //TODO: remove _DEBUG if bag 416 fixed #if (defined _DEBUG || !defined HAVE_EIGEN2) Mat norms; cv::reduce( descriptors_2.mul( descriptors_2 ), norms, 1, 0); norms = norms.t(); Mat desc_2t = descriptors_2.t(); for( int i=0;i desc1t; Eigen::Matrix desc2; cv2eigen( descriptors_1.t(), desc1t); cv2eigen( descriptors_2, desc2 ); //Eigen::Matrix norms = desc2.rowwise().squaredNorm(); Eigen::Matrix norms = desc2.rowwise().squaredNorm() / 2; for( int i=0;i distances = (-2) * (desc2*desc1t.col(i)); Eigen::Matrix distances = desc2*desc1t.col(i); //distances += norms; distances -= norms; int idx; //distances.minCoeff(&idx); distances.maxCoeff(&idx); matches.push_back( idx ); } #endif } /****************************************************************************************\ * GenericDescriptorMatch * \****************************************************************************************/ /* * KeyPointCollection */ void KeyPointCollection::add( const Mat& _image, const vector& _points ) { // update m_start_indices if( startIndices.empty() ) startIndices.push_back(0); else startIndices.push_back((int)(*startIndices.rbegin() + points.rbegin()->size())); // add image and keypoints images.push_back(_image); points.push_back(_points); } KeyPoint KeyPointCollection::getKeyPoint( int index ) const { size_t i = 0; for(; i < startIndices.size() && startIndices[i] <= index; i++); i--; assert(i < startIndices.size() && (size_t)index - startIndices[i] < points[i].size()); return points[i][index - startIndices[i]]; } size_t KeyPointCollection::calcKeypointCount() const { if( startIndices.empty() ) return 0; return *startIndices.rbegin() + points.rbegin()->size(); } void KeyPointCollection::clear() { images.clear(); points.clear(); startIndices.clear(); } /* * GenericDescriptorMatch */ void GenericDescriptorMatch::match( const Mat&, vector&, vector& ) { } void GenericDescriptorMatch::match( const Mat&, vector&, vector >&, float ) { } void GenericDescriptorMatch::add( KeyPointCollection& collection ) { for( size_t i = 0; i < collection.images.size(); i++ ) add( collection.images[i], collection.points[i] ); } void GenericDescriptorMatch::classify( const Mat& image, vector& points ) { vector keypointIndices; match( image, points, keypointIndices ); // remap keypoint indices to descriptors for( size_t i = 0; i < keypointIndices.size(); i++ ) points[i].class_id = collection.getKeyPoint(keypointIndices[i]).class_id; }; void GenericDescriptorMatch::clear() { collection.clear(); } Ptr createGenericDescriptorMatch( const string& genericDescritptorMatchType, const string ¶msFilename ) { GenericDescriptorMatch *descriptorMatch = 0; if( ! genericDescritptorMatchType.compare ("ONEWAY") ) { descriptorMatch = new OneWayDescriptorMatch (); } else if( ! genericDescritptorMatchType.compare ("FERN") ) { FernDescriptorMatch::Params params; params.signatureSize = numeric_limits::max(); descriptorMatch = new FernDescriptorMatch (params); } else if( ! genericDescritptorMatchType.compare ("CALONDER") ) { descriptorMatch = new CalonderDescriptorMatch (); } if( !paramsFilename.empty() && descriptorMatch != 0 ) { FileStorage fs = FileStorage( paramsFilename, FileStorage::READ ); if( fs.isOpened() ) { descriptorMatch->read( fs.root() ); fs.release(); } } return descriptorMatch; } /****************************************************************************************\ * OneWayDescriptorMatch * \****************************************************************************************/ OneWayDescriptorMatch::OneWayDescriptorMatch() {} OneWayDescriptorMatch::OneWayDescriptorMatch( const Params& _params) { initialize(_params); } OneWayDescriptorMatch::~OneWayDescriptorMatch() {} void OneWayDescriptorMatch::initialize( const Params& _params, OneWayDescriptorBase *_base) { base.release(); if (_base != 0) { base = _base; } params = _params; } void OneWayDescriptorMatch::add( const Mat& image, vector& keypoints ) { if( base.empty() ) base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.pcaFilename, params.trainPath, params.trainImagesList, params.minScale, params.maxScale, params.stepScale); size_t trainFeatureCount = keypoints.size(); base->Allocate( (int)trainFeatureCount ); IplImage _image = image; for( size_t i = 0; i < keypoints.size(); i++ ) base->InitializeDescriptor( (int)i, &_image, keypoints[i], "" ); collection.add( Mat(), keypoints ); #if defined(_KDTREE) base->ConvertDescriptorsArrayToTree(); #endif } void OneWayDescriptorMatch::add( KeyPointCollection& keypoints ) { if( base.empty() ) base = new OneWayDescriptorObject( params.patchSize, params.poseCount, params.pcaFilename, params.trainPath, params.trainImagesList, params.minScale, params.maxScale, params.stepScale); size_t trainFeatureCount = keypoints.calcKeypointCount(); base->Allocate( (int)trainFeatureCount ); int count = 0; for( size_t i = 0; i < keypoints.points.size(); i++ ) { for( size_t j = 0; j < keypoints.points[i].size(); j++ ) { IplImage img = keypoints.images[i]; base->InitializeDescriptor( count++, &img, keypoints.points[i][j], "" ); } collection.add( Mat(), keypoints.points[i] ); } #if defined(_KDTREE) base->ConvertDescriptorsArrayToTree(); #endif } void OneWayDescriptorMatch::match( const Mat& image, vector& points, vector& indices) { vector matchings( points.size() ); indices.resize(points.size()); match( image, points, matchings ); for( size_t i = 0; i < points.size(); i++ ) indices[i] = matchings[i].indexTrain; } void OneWayDescriptorMatch::match( const Mat& image, vector& points, vector& matches ) { matches.resize( points.size() ); IplImage _image = image; for( size_t i = 0; i < points.size(); i++ ) { int poseIdx = -1; DMatch match; match.indexQuery = (int)i; match.indexTrain = -1; base->FindDescriptor( &_image, points[i].pt, match.indexTrain, poseIdx, match.distance ); matches[i] = match; } } void OneWayDescriptorMatch::match( const Mat& image, vector& points, vector >& matches, float /*threshold*/ ) { matches.clear(); matches.resize( points.size() ); vector dmatches; match( image, points, dmatches ); for( size_t i=0;i desc_idxs; std::vector pose_idxs; std::vector distances; std::vector _scales; base->FindDescriptor(&_image, n, desc_idxs, pose_idxs, distances, _scales); cvResetImageROI(&_image); for( int j=0;jFindDescriptor( &_image, 100, points[i].pt, match.indexTrain, poseIdx, match.distance ); //matches[i].push_back( match ); } */ } void OneWayDescriptorMatch::read( const FileNode &fn ) { base = new OneWayDescriptorObject( params.patchSize, params.poseCount, string (), string (), string (), params.minScale, params.maxScale, params.stepScale ); base->Read (fn); } void OneWayDescriptorMatch::write( FileStorage& fs ) const { base->Write (fs); } void OneWayDescriptorMatch::classify( const Mat& image, vector& points ) { IplImage _image = image; for( size_t i = 0; i < points.size(); i++ ) { int descIdx = -1; int poseIdx = -1; float distance; base->FindDescriptor(&_image, points[i].pt, descIdx, poseIdx, distance); points[i].class_id = collection.getKeyPoint(descIdx).class_id; } } void OneWayDescriptorMatch::clear () { GenericDescriptorMatch::clear(); base->clear (); } /****************************************************************************************\ * CalonderDescriptorMatch * \****************************************************************************************/ CalonderDescriptorMatch::Params::Params( const RNG& _rng, const PatchGenerator& _patchGen, int _numTrees, int _depth, int _views, size_t _reducedNumDim, int _numQuantBits, bool _printStatus, int _patchSize ) : rng(_rng), patchGen(_patchGen), numTrees(_numTrees), depth(_depth), views(_views), patchSize(_patchSize), reducedNumDim(_reducedNumDim), numQuantBits(_numQuantBits), printStatus(_printStatus) {} CalonderDescriptorMatch::Params::Params( const string& _filename ) { filename = _filename; } CalonderDescriptorMatch::CalonderDescriptorMatch() {} CalonderDescriptorMatch::CalonderDescriptorMatch( const Params& _params ) { initialize(_params); } CalonderDescriptorMatch::~CalonderDescriptorMatch() {} void CalonderDescriptorMatch::initialize( const Params& _params ) { classifier.release(); params = _params; if( !params.filename.empty() ) { classifier = new RTreeClassifier; classifier->read( params.filename.c_str() ); } } void CalonderDescriptorMatch::add( const Mat& image, vector& keypoints ) { if( params.filename.empty() ) collection.add( image, keypoints ); } Mat CalonderDescriptorMatch::extractPatch( const Mat& image, const Point& pt, int patchSize ) const { const int offset = patchSize / 2; return image( Rect(pt.x - offset, pt.y - offset, patchSize, patchSize) ); } void CalonderDescriptorMatch::calcBestProbAndMatchIdx( const Mat& image, const Point& pt, float& bestProb, int& bestMatchIdx, float* signature ) { IplImage roi = extractPatch( image, pt, params.patchSize ); classifier->getSignature( &roi, signature ); bestProb = 0; bestMatchIdx = -1; for( int ci = 0; ci < classifier->classes(); ci++ ) { if( signature[ci] > bestProb ) { bestProb = signature[ci]; bestMatchIdx = ci; } } } void CalonderDescriptorMatch::trainRTreeClassifier() { if( classifier.empty() ) { assert( params.filename.empty() ); classifier = new RTreeClassifier; vector baseKeyPoints; vector iplImages( collection.images.size() ); for( size_t imageIdx = 0; imageIdx < collection.images.size(); imageIdx++ ) { iplImages[imageIdx] = collection.images[imageIdx]; for( size_t pointIdx = 0; pointIdx < collection.points[imageIdx].size(); pointIdx++ ) { BaseKeypoint bkp; KeyPoint kp = collection.points[imageIdx][pointIdx]; bkp.x = cvRound(kp.pt.x); bkp.y = cvRound(kp.pt.y); bkp.image = &iplImages[imageIdx]; baseKeyPoints.push_back(bkp); } } classifier->train( baseKeyPoints, params.rng, params.patchGen, params.numTrees, params.depth, params.views, params.reducedNumDim, params.numQuantBits, params.printStatus ); } } void CalonderDescriptorMatch::match( const Mat& image, vector& keypoints, vector& indices ) { trainRTreeClassifier(); float bestProb = 0; AutoBuffer signature( classifier->classes() ); indices.resize( keypoints.size() ); for( size_t pi = 0; pi < keypoints.size(); pi++ ) calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, indices[pi], signature ); } void CalonderDescriptorMatch::classify( const Mat& image, vector& keypoints ) { trainRTreeClassifier(); AutoBuffer signature( classifier->classes() ); for( size_t pi = 0; pi < keypoints.size(); pi++ ) { float bestProb = 0; int bestMatchIdx = -1; calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, bestMatchIdx, signature ); keypoints[pi].class_id = collection.getKeyPoint(bestMatchIdx).class_id; } } void CalonderDescriptorMatch::clear () { GenericDescriptorMatch::clear(); classifier.release(); } void CalonderDescriptorMatch::read( const FileNode &fn ) { params.numTrees = fn["numTrees"]; params.depth = fn["depth"]; params.views = fn["views"]; params.patchSize = fn["patchSize"]; params.reducedNumDim = (int) fn["reducedNumDim"]; params.numQuantBits = fn["numQuantBits"]; params.printStatus = (int) fn["printStatus"] != 0; } void CalonderDescriptorMatch::write( FileStorage& fs ) const { fs << "numTrees" << params.numTrees; fs << "depth" << params.depth; fs << "views" << params.views; fs << "patchSize" << params.patchSize; fs << "reducedNumDim" << (int) params.reducedNumDim; fs << "numQuantBits" << params.numQuantBits; fs << "printStatus" << params.printStatus; } /****************************************************************************************\ * FernDescriptorMatch * \****************************************************************************************/ FernDescriptorMatch::Params::Params( int _nclasses, int _patchSize, int _signatureSize, int _nstructs, int _structSize, int _nviews, int _compressionMethod, const PatchGenerator& _patchGenerator ) : nclasses(_nclasses), patchSize(_patchSize), signatureSize(_signatureSize), nstructs(_nstructs), structSize(_structSize), nviews(_nviews), compressionMethod(_compressionMethod), patchGenerator(_patchGenerator) {} FernDescriptorMatch::Params::Params( const string& _filename ) { filename = _filename; } FernDescriptorMatch::FernDescriptorMatch() {} FernDescriptorMatch::FernDescriptorMatch( const Params& _params ) { params = _params; } FernDescriptorMatch::~FernDescriptorMatch() {} void FernDescriptorMatch::initialize( const Params& _params ) { classifier.release(); params = _params; if( !params.filename.empty() ) { classifier = new FernClassifier; FileStorage fs(params.filename, FileStorage::READ); if( fs.isOpened() ) classifier->read( fs.getFirstTopLevelNode() ); } } void FernDescriptorMatch::add( const Mat& image, vector& keypoints ) { if( params.filename.empty() ) collection.add( image, keypoints ); } void FernDescriptorMatch::trainFernClassifier() { if( classifier.empty() ) { assert( params.filename.empty() ); vector points; vector > refimgs; vector labels; for( size_t imageIdx = 0; imageIdx < collection.images.size(); imageIdx++ ) { for( size_t pointIdx = 0; pointIdx < collection.points[imageIdx].size(); pointIdx++ ) { refimgs.push_back(new Mat (collection.images[imageIdx])); points.push_back(collection.points[imageIdx][pointIdx].pt); labels.push_back((int)pointIdx); } } classifier = new FernClassifier( points, refimgs, labels, params.nclasses, params.patchSize, params.signatureSize, params.nstructs, params.structSize, params.nviews, params.compressionMethod, params.patchGenerator ); } } void FernDescriptorMatch::calcBestProbAndMatchIdx( const Mat& image, const Point2f& pt, float& bestProb, int& bestMatchIdx, vector& signature ) { (*classifier)( image, pt, signature); bestProb = -FLT_MAX; bestMatchIdx = -1; for( int ci = 0; ci < classifier->getClassCount(); ci++ ) { if( signature[ci] > bestProb ) { bestProb = signature[ci]; bestMatchIdx = ci; } } } void FernDescriptorMatch::match( const Mat& image, vector& keypoints, vector& indices ) { trainFernClassifier(); indices.resize( keypoints.size() ); vector signature( (size_t)classifier->getClassCount() ); for( size_t pi = 0; pi < keypoints.size(); pi++ ) { //calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, indices[pi], signature ); //TODO: use octave and image pyramid indices[pi] = (*classifier)(image, keypoints[pi].pt, signature); } } void FernDescriptorMatch::match( const Mat& image, vector& keypoints, vector& matches ) { trainFernClassifier(); matches.resize( keypoints.size() ); vector signature( (size_t)classifier->getClassCount() ); for( int pi = 0; pi < (int)keypoints.size(); pi++ ) { matches[pi].indexQuery = pi; calcBestProbAndMatchIdx( image, keypoints[pi].pt, matches[pi].distance, matches[pi].indexTrain, signature ); //matching[pi].distance is log of probability so we need to transform it matches[pi].distance = -matches[pi].distance; } } void FernDescriptorMatch::match( const Mat& image, vector& keypoints, vector >& matches, float threshold ) { trainFernClassifier(); matches.resize( keypoints.size() ); vector signature( (size_t)classifier->getClassCount() ); for( int pi = 0; pi < (int)keypoints.size(); pi++ ) { (*classifier)( image, keypoints[pi].pt, signature); DMatch match; match.indexQuery = pi; for( int ci = 0; ci < classifier->getClassCount(); ci++ ) { if( -signature[ci] < threshold ) { match.distance = -signature[ci]; match.indexTrain = ci; matches[pi].push_back( match ); } } } } void FernDescriptorMatch::classify( const Mat& image, vector& keypoints ) { trainFernClassifier(); vector signature( (size_t)classifier->getClassCount() ); for( size_t pi = 0; pi < keypoints.size(); pi++ ) { float bestProb = 0; int bestMatchIdx = -1; calcBestProbAndMatchIdx( image, keypoints[pi].pt, bestProb, bestMatchIdx, signature ); keypoints[pi].class_id = collection.getKeyPoint(bestMatchIdx).class_id; } } void FernDescriptorMatch::read( const FileNode &fn ) { params.nclasses = fn["nclasses"]; params.patchSize = fn["patchSize"]; params.signatureSize = fn["signatureSize"]; params.nstructs = fn["nstructs"]; params.structSize = fn["structSize"]; params.nviews = fn["nviews"]; params.compressionMethod = fn["compressionMethod"]; //classifier->read(fn); } void FernDescriptorMatch::write( FileStorage& fs ) const { fs << "nclasses" << params.nclasses; fs << "patchSize" << params.patchSize; fs << "signatureSize" << params.signatureSize; fs << "nstructs" << params.nstructs; fs << "structSize" << params.structSize; fs << "nviews" << params.nviews; fs << "compressionMethod" << params.compressionMethod; // classifier->write(fs); } void FernDescriptorMatch::clear () { GenericDescriptorMatch::clear(); classifier.release(); } }