#include "clapack.h" /* Table of constant values */ static integer c__0 = 0; static integer c__2 = 2; /* Subroutine */ int slasd0_(integer *n, integer *sqre, real *d__, real *e, real *u, integer *ldu, real *vt, integer *ldvt, integer *smlsiz, integer *iwork, real *work, integer *info) { /* System generated locals */ integer u_dim1, u_offset, vt_dim1, vt_offset, i__1, i__2; /* Builtin functions */ integer pow_ii(integer *, integer *); /* Local variables */ integer i__, j, m, i1, ic, lf, nd, ll, nl, nr, im1, ncc, nlf, nrf, iwk, lvl, ndb1, nlp1, nrp1; real beta; integer idxq, nlvl; real alpha; integer inode, ndiml, idxqc, ndimr, itemp, sqrei; extern /* Subroutine */ int slasd1_(integer *, integer *, integer *, real *, real *, real *, real *, integer *, real *, integer *, integer * , integer *, real *, integer *), xerbla_(char *, integer *), slasdq_(char *, integer *, integer *, integer *, integer *, integer *, real *, real *, real *, integer *, real *, integer * , real *, integer *, real *, integer *), slasdt_(integer * , integer *, integer *, integer *, integer *, integer *, integer * ); /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* Using a divide and conquer approach, SLASD0 computes the singular */ /* value decomposition (SVD) of a real upper bidiagonal N-by-M */ /* matrix B with diagonal D and offdiagonal E, where M = N + SQRE. */ /* The algorithm computes orthogonal matrices U and VT such that */ /* B = U * S * VT. The singular values S are overwritten on D. */ /* A related subroutine, SLASDA, computes only the singular values, */ /* and optionally, the singular vectors in compact form. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* On entry, the row dimension of the upper bidiagonal matrix. */ /* This is also the dimension of the main diagonal array D. */ /* SQRE (input) INTEGER */ /* Specifies the column dimension of the bidiagonal matrix. */ /* = 0: The bidiagonal matrix has column dimension M = N; */ /* = 1: The bidiagonal matrix has column dimension M = N+1; */ /* D (input/output) REAL array, dimension (N) */ /* On entry D contains the main diagonal of the bidiagonal */ /* matrix. */ /* On exit D, if INFO = 0, contains its singular values. */ /* E (input) REAL array, dimension (M-1) */ /* Contains the subdiagonal entries of the bidiagonal matrix. */ /* On exit, E has been destroyed. */ /* U (output) REAL array, dimension at least (LDQ, N) */ /* On exit, U contains the left singular vectors. */ /* LDU (input) INTEGER */ /* On entry, leading dimension of U. */ /* VT (output) REAL array, dimension at least (LDVT, M) */ /* On exit, VT' contains the right singular vectors. */ /* LDVT (input) INTEGER */ /* On entry, leading dimension of VT. */ /* SMLSIZ (input) INTEGER */ /* On entry, maximum size of the subproblems at the */ /* bottom of the computation tree. */ /* IWORK (workspace) INTEGER array, dimension (8*N) */ /* WORK (workspace) REAL array, dimension (3*M**2+2*M) */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = 1, an singular value did not converge */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Ming Gu and Huan Ren, Computer Science Division, University of */ /* California at Berkeley, USA */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; --e; u_dim1 = *ldu; u_offset = 1 + u_dim1; u -= u_offset; vt_dim1 = *ldvt; vt_offset = 1 + vt_dim1; vt -= vt_offset; --iwork; --work; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } else if (*sqre < 0 || *sqre > 1) { *info = -2; } m = *n + *sqre; if (*ldu < *n) { *info = -6; } else if (*ldvt < m) { *info = -8; } else if (*smlsiz < 3) { *info = -9; } if (*info != 0) { i__1 = -(*info); xerbla_("SLASD0", &i__1); return 0; } /* If the input matrix is too small, call SLASDQ to find the SVD. */ if (*n <= *smlsiz) { slasdq_("U", sqre, n, &m, n, &c__0, &d__[1], &e[1], &vt[vt_offset], ldvt, &u[u_offset], ldu, &u[u_offset], ldu, &work[1], info); return 0; } /* Set up the computation tree. */ inode = 1; ndiml = inode + *n; ndimr = ndiml + *n; idxq = ndimr + *n; iwk = idxq + *n; slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], smlsiz); /* For the nodes on bottom level of the tree, solve */ /* their subproblems by SLASDQ. */ ndb1 = (nd + 1) / 2; ncc = 0; i__1 = nd; for (i__ = ndb1; i__ <= i__1; ++i__) { /* IC : center row of each node */ /* NL : number of rows of left subproblem */ /* NR : number of rows of right subproblem */ /* NLF: starting row of the left subproblem */ /* NRF: starting row of the right subproblem */ i1 = i__ - 1; ic = iwork[inode + i1]; nl = iwork[ndiml + i1]; nlp1 = nl + 1; nr = iwork[ndimr + i1]; nrp1 = nr + 1; nlf = ic - nl; nrf = ic + 1; sqrei = 1; slasdq_("U", &sqrei, &nl, &nlp1, &nl, &ncc, &d__[nlf], &e[nlf], &vt[ nlf + nlf * vt_dim1], ldvt, &u[nlf + nlf * u_dim1], ldu, &u[ nlf + nlf * u_dim1], ldu, &work[1], info); if (*info != 0) { return 0; } itemp = idxq + nlf - 2; i__2 = nl; for (j = 1; j <= i__2; ++j) { iwork[itemp + j] = j; /* L10: */ } if (i__ == nd) { sqrei = *sqre; } else { sqrei = 1; } nrp1 = nr + sqrei; slasdq_("U", &sqrei, &nr, &nrp1, &nr, &ncc, &d__[nrf], &e[nrf], &vt[ nrf + nrf * vt_dim1], ldvt, &u[nrf + nrf * u_dim1], ldu, &u[ nrf + nrf * u_dim1], ldu, &work[1], info); if (*info != 0) { return 0; } itemp = idxq + ic; i__2 = nr; for (j = 1; j <= i__2; ++j) { iwork[itemp + j - 1] = j; /* L20: */ } /* L30: */ } /* Now conquer each subproblem bottom-up. */ for (lvl = nlvl; lvl >= 1; --lvl) { /* Find the first node LF and last node LL on the */ /* current level LVL. */ if (lvl == 1) { lf = 1; ll = 1; } else { i__1 = lvl - 1; lf = pow_ii(&c__2, &i__1); ll = (lf << 1) - 1; } i__1 = ll; for (i__ = lf; i__ <= i__1; ++i__) { im1 = i__ - 1; ic = iwork[inode + im1]; nl = iwork[ndiml + im1]; nr = iwork[ndimr + im1]; nlf = ic - nl; if (*sqre == 0 && i__ == ll) { sqrei = *sqre; } else { sqrei = 1; } idxqc = idxq + nlf - 1; alpha = d__[ic]; beta = e[ic]; slasd1_(&nl, &nr, &sqrei, &d__[nlf], &alpha, &beta, &u[nlf + nlf * u_dim1], ldu, &vt[nlf + nlf * vt_dim1], ldvt, &iwork[ idxqc], &iwork[iwk], &work[1], info); if (*info != 0) { return 0; } /* L40: */ } /* L50: */ } return 0; /* End of SLASD0 */ } /* slasd0_ */