#include "clapack.h" /* Table of constant values */ static integer c__1 = 1; /* Subroutine */ int slaed9_(integer *k, integer *kstart, integer *kstop, integer *n, real *d__, real *q, integer *ldq, real *rho, real *dlamda, real *w, real *s, integer *lds, integer *info) { /* System generated locals */ integer q_dim1, q_offset, s_dim1, s_offset, i__1, i__2; real r__1; /* Builtin functions */ double sqrt(doublereal), r_sign(real *, real *); /* Local variables */ integer i__, j; real temp; extern doublereal snrm2_(integer *, real *, integer *); extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, integer *), slaed4_(integer *, integer *, real *, real *, real *, real *, real *, integer *); extern doublereal slamc3_(real *, real *); extern /* Subroutine */ int xerbla_(char *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAED9 finds the roots of the secular equation, as defined by the */ /* values in D, Z, and RHO, between KSTART and KSTOP. It makes the */ /* appropriate calls to SLAED4 and then stores the new matrix of */ /* eigenvectors for use in calculating the next level of Z vectors. */ /* Arguments */ /* ========= */ /* K (input) INTEGER */ /* The number of terms in the rational function to be solved by */ /* SLAED4. K >= 0. */ /* KSTART (input) INTEGER */ /* KSTOP (input) INTEGER */ /* The updated eigenvalues Lambda(I), KSTART <= I <= KSTOP */ /* are to be computed. 1 <= KSTART <= KSTOP <= K. */ /* N (input) INTEGER */ /* The number of rows and columns in the Q matrix. */ /* N >= K (delation may result in N > K). */ /* D (output) REAL array, dimension (N) */ /* D(I) contains the updated eigenvalues */ /* for KSTART <= I <= KSTOP. */ /* Q (workspace) REAL array, dimension (LDQ,N) */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= max( 1, N ). */ /* RHO (input) REAL */ /* The value of the parameter in the rank one update equation. */ /* RHO >= 0 required. */ /* DLAMDA (input) REAL array, dimension (K) */ /* The first K elements of this array contain the old roots */ /* of the deflated updating problem. These are the poles */ /* of the secular equation. */ /* W (input) REAL array, dimension (K) */ /* The first K elements of this array contain the components */ /* of the deflation-adjusted updating vector. */ /* S (output) REAL array, dimension (LDS, K) */ /* Will contain the eigenvectors of the repaired matrix which */ /* will be stored for subsequent Z vector calculation and */ /* multiplied by the previously accumulated eigenvectors */ /* to update the system. */ /* LDS (input) INTEGER */ /* The leading dimension of S. LDS >= max( 1, K ). */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = 1, an eigenvalue did not converge */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Jeff Rutter, Computer Science Division, University of California */ /* at Berkeley, USA */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --dlamda; --w; s_dim1 = *lds; s_offset = 1 + s_dim1; s -= s_offset; /* Function Body */ *info = 0; if (*k < 0) { *info = -1; } else if (*kstart < 1 || *kstart > max(1,*k)) { *info = -2; } else if (max(1,*kstop) < *kstart || *kstop > max(1,*k)) { *info = -3; } else if (*n < *k) { *info = -4; } else if (*ldq < max(1,*k)) { *info = -7; } else if (*lds < max(1,*k)) { *info = -12; } if (*info != 0) { i__1 = -(*info); xerbla_("SLAED9", &i__1); return 0; } /* Quick return if possible */ if (*k == 0) { return 0; } /* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */ /* be computed with high relative accuracy (barring over/underflow). */ /* This is a problem on machines without a guard digit in */ /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */ /* The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */ /* which on any of these machines zeros out the bottommost */ /* bit of DLAMDA(I) if it is 1; this makes the subsequent */ /* subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */ /* occurs. On binary machines with a guard digit (almost all */ /* machines) it does not change DLAMDA(I) at all. On hexadecimal */ /* and decimal machines with a guard digit, it slightly */ /* changes the bottommost bits of DLAMDA(I). It does not account */ /* for hexadecimal or decimal machines without guard digits */ /* (we know of none). We use a subroutine call to compute */ /* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */ /* this code. */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { dlamda[i__] = slamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__]; /* L10: */ } i__1 = *kstop; for (j = *kstart; j <= i__1; ++j) { slaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], info); /* If the zero finder fails, the computation is terminated. */ if (*info != 0) { goto L120; } /* L20: */ } if (*k == 1 || *k == 2) { i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *k; for (j = 1; j <= i__2; ++j) { s[j + i__ * s_dim1] = q[j + i__ * q_dim1]; /* L30: */ } /* L40: */ } goto L120; } /* Compute updated W. */ scopy_(k, &w[1], &c__1, &s[s_offset], &c__1); /* Initialize W(I) = Q(I,I) */ i__1 = *ldq + 1; scopy_(k, &q[q_offset], &i__1, &w[1], &c__1); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]); /* L50: */ } i__2 = *k; for (i__ = j + 1; i__ <= i__2; ++i__) { w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]); /* L60: */ } /* L70: */ } i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { r__1 = sqrt(-w[i__]); w[i__] = r_sign(&r__1, &s[i__ + s_dim1]); /* L80: */ } /* Compute eigenvectors of the modified rank-1 modification. */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { q[i__ + j * q_dim1] = w[i__] / q[i__ + j * q_dim1]; /* L90: */ } temp = snrm2_(k, &q[j * q_dim1 + 1], &c__1); i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { s[i__ + j * s_dim1] = q[i__ + j * q_dim1] / temp; /* L100: */ } /* L110: */ } L120: return 0; /* End of SLAED9 */ } /* slaed9_ */