#include "clapack.h" /* Table of constant values */ static integer c__1 = 1; static real c_b22 = 1.f; static real c_b23 = 0.f; /* Subroutine */ int slaed3_(integer *k, integer *n, integer *n1, real *d__, real *q, integer *ldq, real *rho, real *dlamda, real *q2, integer * indx, integer *ctot, real *w, real *s, integer *info) { /* System generated locals */ integer q_dim1, q_offset, i__1, i__2; real r__1; /* Builtin functions */ double sqrt(doublereal), r_sign(real *, real *); /* Local variables */ integer i__, j, n2, n12, ii, n23, iq2; real temp; extern doublereal snrm2_(integer *, real *, integer *); extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, integer *, real *, real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *), slaed4_(integer *, integer *, real *, real *, real *, real *, real *, integer *); extern doublereal slamc3_(real *, real *); extern /* Subroutine */ int xerbla_(char *, integer *), slacpy_( char *, integer *, integer *, real *, integer *, real *, integer * ), slaset_(char *, integer *, integer *, real *, real *, real *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAED3 finds the roots of the secular equation, as defined by the */ /* values in D, W, and RHO, between 1 and K. It makes the */ /* appropriate calls to SLAED4 and then updates the eigenvectors by */ /* multiplying the matrix of eigenvectors of the pair of eigensystems */ /* being combined by the matrix of eigenvectors of the K-by-K system */ /* which is solved here. */ /* This code makes very mild assumptions about floating point */ /* arithmetic. It will work on machines with a guard digit in */ /* add/subtract, or on those binary machines without guard digits */ /* which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. */ /* It could conceivably fail on hexadecimal or decimal machines */ /* without guard digits, but we know of none. */ /* Arguments */ /* ========= */ /* K (input) INTEGER */ /* The number of terms in the rational function to be solved by */ /* SLAED4. K >= 0. */ /* N (input) INTEGER */ /* The number of rows and columns in the Q matrix. */ /* N >= K (deflation may result in N>K). */ /* N1 (input) INTEGER */ /* The location of the last eigenvalue in the leading submatrix. */ /* min(1,N) <= N1 <= N/2. */ /* D (output) REAL array, dimension (N) */ /* D(I) contains the updated eigenvalues for */ /* 1 <= I <= K. */ /* Q (output) REAL array, dimension (LDQ,N) */ /* Initially the first K columns are used as workspace. */ /* On output the columns 1 to K contain */ /* the updated eigenvectors. */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= max(1,N). */ /* RHO (input) REAL */ /* The value of the parameter in the rank one update equation. */ /* RHO >= 0 required. */ /* DLAMDA (input/output) REAL array, dimension (K) */ /* The first K elements of this array contain the old roots */ /* of the deflated updating problem. These are the poles */ /* of the secular equation. May be changed on output by */ /* having lowest order bit set to zero on Cray X-MP, Cray Y-MP, */ /* Cray-2, or Cray C-90, as described above. */ /* Q2 (input) REAL array, dimension (LDQ2, N) */ /* The first K columns of this matrix contain the non-deflated */ /* eigenvectors for the split problem. */ /* INDX (input) INTEGER array, dimension (N) */ /* The permutation used to arrange the columns of the deflated */ /* Q matrix into three groups (see SLAED2). */ /* The rows of the eigenvectors found by SLAED4 must be likewise */ /* permuted before the matrix multiply can take place. */ /* CTOT (input) INTEGER array, dimension (4) */ /* A count of the total number of the various types of columns */ /* in Q, as described in INDX. The fourth column type is any */ /* column which has been deflated. */ /* W (input/output) REAL array, dimension (K) */ /* The first K elements of this array contain the components */ /* of the deflation-adjusted updating vector. Destroyed on */ /* output. */ /* S (workspace) REAL array, dimension (N1 + 1)*K */ /* Will contain the eigenvectors of the repaired matrix which */ /* will be multiplied by the previously accumulated eigenvectors */ /* to update the system. */ /* LDS (input) INTEGER */ /* The leading dimension of S. LDS >= max(1,K). */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* > 0: if INFO = 1, an eigenvalue did not converge */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Jeff Rutter, Computer Science Division, University of California */ /* at Berkeley, USA */ /* Modified by Francoise Tisseur, University of Tennessee. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --d__; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; --dlamda; --q2; --indx; --ctot; --w; --s; /* Function Body */ *info = 0; if (*k < 0) { *info = -1; } else if (*n < *k) { *info = -2; } else if (*ldq < max(1,*n)) { *info = -6; } if (*info != 0) { i__1 = -(*info); xerbla_("SLAED3", &i__1); return 0; } /* Quick return if possible */ if (*k == 0) { return 0; } /* Modify values DLAMDA(i) to make sure all DLAMDA(i)-DLAMDA(j) can */ /* be computed with high relative accuracy (barring over/underflow). */ /* This is a problem on machines without a guard digit in */ /* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */ /* The following code replaces DLAMDA(I) by 2*DLAMDA(I)-DLAMDA(I), */ /* which on any of these machines zeros out the bottommost */ /* bit of DLAMDA(I) if it is 1; this makes the subsequent */ /* subtractions DLAMDA(I)-DLAMDA(J) unproblematic when cancellation */ /* occurs. On binary machines with a guard digit (almost all */ /* machines) it does not change DLAMDA(I) at all. On hexadecimal */ /* and decimal machines with a guard digit, it slightly */ /* changes the bottommost bits of DLAMDA(I). It does not account */ /* for hexadecimal or decimal machines without guard digits */ /* (we know of none). We use a subroutine call to compute */ /* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */ /* this code. */ i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { dlamda[i__] = slamc3_(&dlamda[i__], &dlamda[i__]) - dlamda[i__]; /* L10: */ } i__1 = *k; for (j = 1; j <= i__1; ++j) { slaed4_(k, &j, &dlamda[1], &w[1], &q[j * q_dim1 + 1], rho, &d__[j], info); /* If the zero finder fails, the computation is terminated. */ if (*info != 0) { goto L120; } /* L20: */ } if (*k == 1) { goto L110; } if (*k == 2) { i__1 = *k; for (j = 1; j <= i__1; ++j) { w[1] = q[j * q_dim1 + 1]; w[2] = q[j * q_dim1 + 2]; ii = indx[1]; q[j * q_dim1 + 1] = w[ii]; ii = indx[2]; q[j * q_dim1 + 2] = w[ii]; /* L30: */ } goto L110; } /* Compute updated W. */ scopy_(k, &w[1], &c__1, &s[1], &c__1); /* Initialize W(I) = Q(I,I) */ i__1 = *ldq + 1; scopy_(k, &q[q_offset], &i__1, &w[1], &c__1); i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]); /* L40: */ } i__2 = *k; for (i__ = j + 1; i__ <= i__2; ++i__) { w[i__] *= q[i__ + j * q_dim1] / (dlamda[i__] - dlamda[j]); /* L50: */ } /* L60: */ } i__1 = *k; for (i__ = 1; i__ <= i__1; ++i__) { r__1 = sqrt(-w[i__]); w[i__] = r_sign(&r__1, &s[i__]); /* L70: */ } /* Compute eigenvectors of the modified rank-1 modification. */ i__1 = *k; for (j = 1; j <= i__1; ++j) { i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { s[i__] = w[i__] / q[i__ + j * q_dim1]; /* L80: */ } temp = snrm2_(k, &s[1], &c__1); i__2 = *k; for (i__ = 1; i__ <= i__2; ++i__) { ii = indx[i__]; q[i__ + j * q_dim1] = s[ii] / temp; /* L90: */ } /* L100: */ } /* Compute the updated eigenvectors. */ L110: n2 = *n - *n1; n12 = ctot[1] + ctot[2]; n23 = ctot[2] + ctot[3]; slacpy_("A", &n23, k, &q[ctot[1] + 1 + q_dim1], ldq, &s[1], &n23); iq2 = *n1 * n12 + 1; if (n23 != 0) { sgemm_("N", "N", &n2, k, &n23, &c_b22, &q2[iq2], &n2, &s[1], &n23, & c_b23, &q[*n1 + 1 + q_dim1], ldq); } else { slaset_("A", &n2, k, &c_b23, &c_b23, &q[*n1 + 1 + q_dim1], ldq); } slacpy_("A", &n12, k, &q[q_offset], ldq, &s[1], &n12); if (n12 != 0) { sgemm_("N", "N", n1, k, &n12, &c_b22, &q2[1], n1, &s[1], &n12, &c_b23, &q[q_offset], ldq); } else { slaset_("A", n1, k, &c_b23, &c_b23, &q[q_dim1 + 1], ldq); } L120: return 0; /* End of SLAED3 */ } /* slaed3_ */