The OpenCV Reference Manual
Release 2.4.3

November 02, 2012

CONTENTS

1 Introduction

1.1 APIConcepts o o i e e e e e e e e e e e 1
2 core. The Core Functionality 7
2.1 Basic SIIUCIUIES . . . v v o v e it e 7
2.2 Basic C Structures and Operations vttt e e e e e e e e e 52
2.3 Dynamic SHrUCTUIES« v v v v i e e e e e e e e e e e e e e e e e 83
2.4 Operations ON ATTAYS . . v v v v v v v e 110
2.5 Drawing FUnNCtions o . i e e e e e e e e e e e e e 168
2.6 XML/YAML Persistence o v v v v i it e e e e e e e e e e e e e e e e e 178
2.7 XML/YAML Persistence (C API) e 191
2.8 CIUStering v vt e e e e e e e e 207
2.9 Utility and System Functions and Macros o i i i e 209
3 imgproc. Image Processing 219
3.1 ImageFiltering L 219
3.2 Geometric Image Transformations o e e 247
3.3 Miscellaneous Image Transformations 0 i e e 259
3.4 HiStOZrams o vt e e e e e e e e e e e e e e e e e e 273
3.5 Structural Analysis and Shape Descriptors L. o oo 283
3.6 Motion Analysis and Object Tracking 298
3.7 Feature Detection e e e e e 302
3.8 Object Detection v v i i e e e e e e e e e e e e e e e e e e 313
4 highgui. High-level GUI and Media I/O 315
4.1 UserlInterface o e e e 315
4.2 Reading and Writing Images and Video e 320
43 QtNew Functions e e e e e e 330
5 video. Video Analysis 337
5.1 Motion Analysis and Object Tracking e 337
6 calib3d. Camera Calibration and 3D Reconstruction 351
6.1 Camera Calibration and 3D Reconstruction 351
7 features2d. 2D Features Framework 383
7.1 Feature Detection and Description i i it e e e e e e e e e 383
7.2 Common Interfaces of Feature Detectors 386
7.3 Common Interfaces of Descriptor Extractors 396
7.4 Common Interfaces of Descriptor Matchers 398

7.5 Common Interfaces of Generic Descriptor Matchers, 404

7.6 Drawing Function of Keypoints and Matches 409
7.7 Object CategoriZation v v v v v e 411
8 objdetect. Object Detection 415
8.1 Cascade Classification i i i e e e e e e e e e e e e e e e e e 415
8.2 Latent SVM . . . L . L e e e e e e 421
9 ml. Machine Learning 427
9.1 Statistical Models e e 427
9.2 Normal Bayes Classifier e 430
9.3 K-Nearest Neighbors e 432
9.4 Support Vector Machines e 435
0.5 Decision Trees v v v it i e e e e e e 441
0.6 BOOSHNZ ot e e e e e e e e e e e e e 448
9.7 Gradient Boosted Trees o o i i e e e e e e e e 452
9.8 Random Trees i i i e e e e e e e 457
9.9 Extremely randomized trees L e e e e e e 461
9.10 Expectation Maximization o v v v v i i e e e e e e e e e e e e e e e e 462
9.11 Neural Networks o e e e e e 466
0.12 MLDaAta. o o e e e e e e e e e e e e e 471
10 flann. Clustering and Search in Multi-Dimensional Spaces 479
10.1 Fast Approximate Nearest Neighbor Search 479
10.2 CIUStering v o o v e e e e e e e e e e e e e e e e e e e 483
11 gpu. GPU-accelerated Computer Vision 485
11.1 GPU Module Introduction o e e e e e 485
11.2 Initalization and Information L L e e 486
11.3 Data Structures o o it e 490
11.4 Operations on MatriCes o o vt v ittt e e e e e e e e e e e 496
11.5 Per-element Operations v v v v v v v et e e e e e e e e e e e e e e e e e e 500
11.6 Tmage Processing o i i i e e e e e e e e e e e e e 508
11.7 Matrix Reductions i e e e e e e e e e 529
11.8 ObjectDetection i i e e 533
11.9 Feature Detection and Description o o e 538
11.10 Image Filtering o L e e e 552
11.11 Camera Calibration and 3D Reconstruction 567
1112 Video AnalySis o v o v e e e e e e e e e e e e e e e e e e e 575
12 photo. Computational Photography 599
12.1 Inpainting o o o e e e e e e e e e e e 599
122 Denoising o v vt e e e e e e e e e e e 600
13 stitching. Images stitching 603
13.1 Stitching Pipeline e e e e e 603
13.2 References i e e e 604
13.3 High Level Functionality 604
13.4 Camera e e e e 607
13.5 Features Finding and Images Matching 608
13.6 Rotation Estimation e e e e e e 613
13.7 Autocalibration e e e e e 617
13.8 Images Warping L. e e 618
13.9 Seam Estimation o L e e e e e e e e e 623
13.10 Exposure COmpensation v v v v v it v e e e e e e e e e e e e e e e 626

13.11 Image Blenders L e e e e

14 nonfree. Non-free functionality
14.1 Feature Detection and Description oo e

15 contrib. Contributed/Experimental Stuff
15.1 Stereo Correspondence it e e e e e e e e e e e e e e e e
15.2 FaceRecognizer - Face Recognition with OpenCV,
15.3 Retina: a Bio mimetic human retinamodel
15.4 OpenFABMAP e e e e

16 legacy. Deprecated stuff
16.1 Motion Analysis v v i e e e e e e e e e e e e e e e e e
16.2 Expectation Maximization o v v vttt e e e e e e e e e e e e e e e e
16.3 Histograms o L e e e e e e e e e e e e e e
16.4 Planar Subdivisions (C API) e
16.5 Feature Detection and Descriptiono L e
16.6 Common Interfaces of Descriptor Extractors
16.7 Common Interfaces of Generic Descriptor Matchers

17 ocl. OpenCL-accelerated Computer Vision
17.1 OpenCL Module Introduction i i vt e e e e e e e e e e
17.2 Data Structures and Utility Functions e
173 DataStructures o o it e e e e e e e e e e
17.4 Operations on MatriCs o . it e e e e e e e e e e e e e e
17.5 Matrix Reductions e e e
17.6 Image Filtering o . e e e
17.7 Tmage Processing o i i i i e e e e e e e e e e e e e
17.8 ObjectDetection o i e e e e e e
17.9 Feature Detection And Description o

Bibliography

631
631

635
635
637
711
719

725
725
727
730
732
739
746
747

749
749
750
751
755
764
766
771
778
782

793

CHAPTER
ONE

INTRODUCTION

OpenCV (Open Source Computer Vision Library: http://opencv.willowgarage.com/wiki/) is an open-source BSD-
licensed library that includes several hundreds of computer vision algorithms. The document describes the so-called
OpenCV 2.x API, which is essentially a C++ API, as opposite to the C-based OpenCV 1.x API. The latter is described
in opencv1x.pdf.

OpenCV has a modular structure, which means that the package includes several shared or static libraries. The
following modules are available:

* core - a compact module defining basic data structures, including the dense multi-dimensional array Mat and
basic functions used by all other modules.

 imgproc - an image processing module that includes linear and non-linear image filtering, geometrical image
transformations (resize, affine and perspective warping, generic table-based remapping), color space conversion,
histograms, and so on.

* video - a video analysis module that includes motion estimation, background subtraction, and object tracking
algorithms.

* calib3d - basic multiple-view geometry algorithms, single and stereo camera calibration, object pose estimation,
stereo correspondence algorithms, and elements of 3D reconstruction.

features2d - salient feature detectors, descriptors, and descriptor matchers.

objdetect - detection of objects and instances of the predefined classes (for example, faces, eyes, mugs, people,
cars, and so on).

¢ highgui - an easy-to-use interface to video capturing, image and video codecs, as well as simple UI capabilities.
* gpu - GPU-accelerated algorithms from different OpenCV modules.
e ... some other helper modules, such as FLANN and Google test wrappers, Python bindings, and others.

The further chapters of the document describe functionality of each module. But first, make sure to get familiar with
the common API concepts used thoroughly in the library.

1.1 API Concepts

cv Namespace

All the OpenCV classes and functions are placed into the cv namespace. Therefore, to access this functionality from
your code, use the cv: : specifier or using namespace cv; directive:

http://opencv.willowgarage.com/wiki/

The OpenCV Reference Manual, Release 2.4.3

#include "opencv2/core/core.hpp"

cv::Mat H = cv::findHomography(pointsl, points2, CV_RANSAC, 5);

or

#include "opencv2/core/core.hpp"
using namespace cv;

Mat H = findHomography(pointsl, points2, CV_RANSAC, 5);

Some of the current or future OpenCV external names may conflict with STL or other libraries. In this case, use
explicit namespace specifiers to resolve the name conflicts:

Mat a(100, 100, CV_32F);

randu(a, Scalar::all(l), Scalar::all(std::rand()));
cv::log(a, a);

a /= std::log(2.);

Automatic Memory Management

OpenCV handles all the memory automatically.

First of all, std::vector, Mat, and other data structures used by the functions and methods have destructors that
deallocate the underlying memory buffers when needed. This means that the destructors do not always deallocate the
buffers as in case of Mat. They take into account possible data sharing. A destructor decrements the reference counter
associated with the matrix data buffer. The buffer is deallocated if and only if the reference counter reaches zero, that
is, when no other structures refer to the same buffer. Similarly, when a Mat instance is copied, no actual data is really
copied. Instead, the reference counter is incremented to memorize that there is another owner of the same data. There
is also the Mat: : clone method that creates a full copy of the matrix data. See the example below:

// create a big 8Mb matrix
Mat A(1000, 1000, CV_64F);

// create another header for the same matrix;

// this is an instant operation, regardless of the matrix size.

Mat B = A;

// create another header for the 3-rd row of A; no data is copied either
Mat C = B.row(3);

// now create a separate copy of the matrix

Mat D = B.clone();

// copy the 5-th row of B to C, that is, copy the 5-th row of A

// to the 3-rd row of A.

B.row(5).copyTo(C);

// now let A and D share the data; after that the modified version
// of A is still referenced by B and C.

A =1D;

// now make B an empty matrix (which references no memory buffers),
// but the modified version of A will still be referenced by C,

// despite that C is just a single row of the original A
B.release();

// finally, make a full copy of C. As a result, the big modified
// matrix will be deallocated, since it is not referenced by anyone
C = C.clone();

2 Chapter 1. Introduction

The OpenCV Reference Manual, Release 2.4.3

You see that the use of Mat and other basic structures is simple. But what about high-level classes or even user
data types created without taking automatic memory management into account? For them, OpenCV offers the Ptr<>
template class that is similar to std: : shared_ptr from C++ TR1. So, instead of using plain pointers:

T+ ptr = new T(...);

you can use:
Ptr<T> ptr = new T(...);

That is, Ptr<T> ptr encapsulates a pointer to a T instance and a reference counter associated with the pointer. See
the Ptr description for details.

Automatic Allocation of the Output Data

OpenCV deallocates the memory automatically, as well as automatically allocates the memory for output function
parameters most of the time. So, if a function has one or more input arrays (cv: : Mat instances) and some output arrays,
the output arrays are automatically allocated or reallocated. The size and type of the output arrays are determined from
the size and type of input arrays. If needed, the functions take extra parameters that help to figure out the output array
properties.

Example:

#include "cv.h"
#include "highgui.h"

using namespace cv;

int main(int, charsxx)

{
VideoCapture cap(0);
if(!cap.isOpened()) return -1;
Mat frame, edges;
namedWindow("edges",1);
for(;;)
{
cap >> frame;
cvtColor(frame, edges, CV_BGR2GRAY);
GaussianBlur(edges, edges, Size(7,7), 1.5, 1.5);
Canny(edges, edges, 0, 30, 3);
imshow("edges", edges);
if(waitKey(30) >= 0) break;
}
return 0;
}

The array frame is automatically allocated by the >> operator since the video frame resolution and the bit-depth is
known to the video capturing module. The array edges is automatically allocated by the cvtColor function. It has
the same size and the bit-depth as the input array. The number of channels is 1 because the color conversion code
CV_BGR2GRAY is passed, which means a color to grayscale conversion. Note that frame and edges are allocated only
once during the first execution of the loop body since all the next video frames have the same resolution. If you
somehow change the video resolution, the arrays are automatically reallocated.

The key component of this technology is the Mat : : create method. It takes the desired array size and type. If the array
already has the specified size and type, the method does nothing. Otherwise, it releases the previously allocated data,
if any (this part involves decrementing the reference counter and comparing it with zero), and then allocates a new

1.1. API Concepts 3

The OpenCV Reference Manual, Release 2.4.3

buffer of the required size. Most functions call the Mat: : create method for each output array, and so the automatic
output data allocation is implemented.

Some notable exceptions from this scheme are cv::mixChannels, cv::RNG::fill, and a few other functions and
methods. They are not able to allocate the output array, so you have to do this in advance.

Saturation Arithmetics

As a computer vision library, OpenCV deals a lot with image pixels that are often encoded in a compact, 8- or 16-bit
per channel, form and thus have a limited value range. Furthermore, certain operations on images, like color space
conversions, brightness/contrast adjustments, sharpening, complex interpolation (bi-cubic, Lanczos) can produce val-
ues out of the available range. If you just store the lowest 8 (16) bits of the result, this results in visual artifacts and
may affect a further image analysis. To solve this problem, the so-called saturation arithmetics is used. For example,
to store r, the result of an operation, to an 8-bit image, you find the nearest value within the 0..255 range:

I(x,y) = min(max(round(r), 0), 255)

Similar rules are applied to 8-bit signed, 16-bit signed and unsigned types. This semantics is used everywhere in the
library. In C++ code, it is done using the saturate_cast<> functions that resemble standard C++ cast operations.
See below the implementation of the formula provided above:

I.at<uchar>(y, Xx) = saturate_cast<uchar>(r);

where cv: :uchar is an OpenCV 8-bit unsigned integer type. In the optimized SIMD code, such SSE2 instructions as
paddusb, packuswb, and so on are used. They help achieve exactly the same behavior as in C++ code.

Note: Saturation is not applied when the result is 32-bit integer.

Fixed Pixel Types. Limited Use of Templates

Templates is a great feature of C++ that enables implementation of very powerful, efficient and yet safe data struc-
tures and algorithms. However, the extensive use of templates may dramatically increase compilation time and code
size. Besides, it is difficult to separate an interface and implementation when templates are used exclusively. This
could be fine for basic algorithms but not good for computer vision libraries where a single algorithm may span thou-
sands lines of code. Because of this and also to simplify development of bindings for other languages, like Python,
Java, Matlab that do not have templates at all or have limited template capabilities, the current OpenCV implemen-
tation is based on polymorphism and runtime dispatching over templates. In those places where runtime dispatching
would be too slow (like pixel access operators), impossible (generic Ptr<> implementation), or just very inconve-
nient (saturate_cast<>()) the current implementation introduces small template classes, methods, and functions.
Anywhere else in the current OpenCV version the use of templates is limited.

Consequently, there is a limited fixed set of primitive data types the library can operate on. That is, array elements
should have one of the following types:

* 8-bit unsigned integer (uchar)

* 8-bit signed integer (schar)

* 16-bit unsigned integer (ushort)

* 16-bit signed integer (short)

* 32-bit signed integer (int)

* 32-bit floating-point number (float)

* 64-bit floating-point number (double)

4 Chapter 1. Introduction

The OpenCV Reference Manual, Release 2.4.3

* atuple of several elements where all elements have the same type (one of the above). An array whose elements
are such tuples, are called multi-channel arrays, as opposite to the single-channel arrays, whose elements are
scalar values. The maximum possible number of channels is defined by the CV_CN_MAX constant, which is
currently set to 512.

For these basic types, the following enumeration is applied:

enum { CV_8U=0, Cv_8S=1, CV_1l6U=2, CV_16S=3, CV_32S=4, CV_32F=5, CV_64F=6 };

Multi-channel (n-channel) types can be specified using the following options:
e CV_8UC1 ... CV_64FC4 constants (for a number of channels from 1 to 4)

e CV_8UC(n) ... CV_64FC(n) or CV_MAKETYPE(CV_8U, n) ... CV_MAKETYPE(CV_64F, n) macros when the
number of channels is more than 4 or unknown at the compilation time.

Note: CV_32FC1 == CV_32F, CV_32FC2 == CV_32FC(2) == CV_MAKETYPE(CV_32F, 2), and
CV_MAKETYPE(depth, n) == ((x&7)<<3) + (n-1). This means that the constant type is formed from the
depth, taking the lowest 3 bits, and the number of channels minus 1, taking the next Log2 (CV_CN_MAX) bits.

Examples:

Mat mtx(3, 3, CV_32F); // make a 3x3 floating-point matrix
Mat cmtx (10, 1, CV_64FC2); // make a 10x1 2-channel floating-point
// matrix (10-element complex vector)
Mat img(Size(1920, 1080), CV_8UC3); // make a 3-channel (color) image
// of 1920 columns and 1080 rows.
Mat grayscale(image.size(), CV_MAKETYPE(image.depth(), 1)); // make a 1-channel image of
// the same size and same
// channel type as img

Arrays with more complex elements cannot be constructed or processed using OpenCV. Furthermore, each function
or method can handle only a subset of all possible array types. Usually, the more complex the algorithm is, the smaller
the supported subset of formats is. See below typical examples of such limitations:

 The face detection algorithm only works with 8-bit grayscale or color images.

* Linear algebra functions and most of the machine learning algorithms work with floating-point arrays only.
* Basic functions, such as cv: :add, support all types.

* Color space conversion functions support 8-bit unsigned, 16-bit unsigned, and 32-bit floating-point types.

The subset of supported types for each function has been defined from practical needs and could be extended in future
based on user requests.

InputArray and OutputArray

Many OpenCV functions process dense 2-dimensional or multi-dimensional numerical arrays. Usually, such functions
take cpp:class:Mat as parameters, but in some cases it’s more convenient to use std: : vector<> (for a point set, for
example) or Matx<> (for 3x3 homography matrix and such). To avoid many duplicates in the API, special “proxy”
classes have been introduced. The base “proxy” class is InputArray. It is used for passing read-only arrays on a
function input. The derived from InputArray class OutputArray is used to specify an output array for a function.
Normally, you should not care of those intermediate types (and you should not declare variables of those types explic-
itly) - it will all just work automatically. You can assume that instead of InputArray/OutputArray you can always
use Mat, std: :vector<>, Matx<>, Vec<> or Scalar. When a function has an optional input or output array, and you
do not have or do not want one, pass cv: :noArray().

1.1. API Concepts 5

The OpenCV Reference Manual, Release 2.4.3

Error Handling

OpenCV uses exceptions to signal critical errors. When the input data has a correct format and belongs to the specified
value range, but the algorithm cannot succeed for some reason (for example, the optimization algorithm did not
converge), it returns a special error code (typically, just a boolean variable).

The exceptions can be instances of the cv: :Exception class or its derivatives. In its turn, cv: : Exception is a deriva-
tive of std: :exception. So it can be gracefully handled in the code using other standard C++ library components.

The exception is typically thrown either using the CV_Error(errcode, description) macro, or its printf-like
CV_Error_(errcode, printf-spec, (printf-args)) variant, or using the CV_Assert(condition) macro that
checks the condition and throws an exception when it is not satisfied. For performance-critical code, there is
CV_DbgAssert(condition) that is only retained in the Debug configuration. Due to the automatic memory man-
agement, all the intermediate buffers are automatically deallocated in case of a sudden error. You only need to add a
try statement to catch exceptions, if needed:

try
{
. // call OpenCV

}
catch(cv::Exception& e)
{

const char* err_msg = e.what();

std::cout << "exception caught: " << err_msg << std::endl;
}

Multi-threading and Re-enterability

The current OpenCV implementation is fully re-enterable. That is, the same function, the same constant method of a
class instance, or the same non-constant method of different class instances can be called from different threads. Also,
the same cv::Mat can be used in different threads because the reference-counting operations use the architecture-
specific atomic instructions.

6 Chapter 1. Introduction

CHAPTER
TWO

CORE. THE CORE FUNCTIONALITY

2.1 Basic Structures

DataType

class DataType

Template “trait” class for OpenCV primitive data types. A primitive OpenCV data type is one of unsigned char,
bool, signed char, unsigned short, signed short, int, float, double, or a tuple of values of one of these
types, where all the values in the tuple have the same type. Any primitive type from the list can be defined by
an identifier in the form CV_<bit-depth>{U|S|F}C(<number_of_channels>), for example: uchar ~ CV_8UC1,
3-element floating-point tuple ~ CV_32FC3, and so on. A universal OpenCV structure that is able to store a single
instance of such a primitive data type is Vec. Multiple instances of such a type can be stored in a std: :vector, Mat,
Mat_, SparseMat, SparseMat_, or any other container that is able to store Vec instances.

The DataType class is basically used to provide a description of such primitive data types without adding any fields
or methods to the corresponding classes (and it is actually impossible to add anything to primitive C/C++ data types).
This technique is known in C++ as class traits. It is not DataType itself that is used but its specialized versions, such
as:

template<> class DataType<uchar>
{

typedef uchar value_type;

typedef int work_type;

typedef uchar channel_type;

enum { channel_type = CV_8U, channels = 1, fmt="u’, type = CV_8U };
b

template<typename _Tp> DataType<std::complex<_Tp> >
{
typedef std::complex<_Tp> value_type;
typedef std::complex<_Tp> work_type;
typedef _Tp channel_type;
// DataDepth is another helper trait class
enum { depth = DataDepth<_Tp>::value, channels=2,
fmt=(channels-1)*256+DataDepth<_Tp>::fmt,
type=CV_MAKETYPE (depth, channels) };
+

The main purpose of this class is to convert compilation-time type information to an OpenCV-compatible data type
identifier, for example:

The OpenCV Reference Manual, Release 2.4.3

// allocates a 30x40 floating-point matrix
Mat A(30, 40, DataType<float>::type);

Mat B = Mat_<std::complex<double> >(3, 3);
// the statement below will print 6, 2 /*, that is depth == CV_64F, channels == 2 x/
cout << B.depth() << ", " << B.channels() << endl;

So, such traits are used to tell OpenCV which data type you are working with, even if such a type is not native to
OpenCV. For example, the matrix B initialization above is compiled because OpenCV defines the proper specialized
template class DataType<complex<_Tp> > . This mechanism is also useful (and used in OpenCV this way) for
generic algorithms implementations.

Point_

class Point_

Template class for 2D points specified by its coordinates x and y . An instance of the class is interchangeable with
C structures, CvPoint and CvPoint2D32f . There is also a cast operator to convert point coordinates to the specified
type. The conversion from floating-point coordinates to integer coordinates is done by rounding. Commonly, the
conversion uses this operation for each of the coordinates. Besides the class members listed in the declaration above,
the following operations on points are implemented:

ptl pt2 + pt3;
ptl = pt2 - pt3;
ptl = pt2 * a;
ptl = a * pt2;

ptl += pt2;

ptl -= pt2;

ptl *= a;

double value = norm(pt); // L2 norm
ptl == pt2;

ptl != pt2;

For your convenience, the following type aliases are defined:

typedef Point_<int> Point2i;
typedef Point2i Point;

typedef Point_<float> Point2f;
typedef Point_<double> Point2d;

Example:

Point2f a(0.3f, 0.f), b(0.f, 0.4f);
Point pt = (a + b)x10.f;
cout << pt.x << ", " << pt.y << endl;

Point3_

class Point3_

Template class for 3D points specified by its coordinates x, y and z . An instance of the class is interchangeable with
the C structure CvPoint2D32f . Similarly to Point_ , the coordinates of 3D points can be converted to another type.
The vector arithmetic and comparison operations are also supported.

The following Point3_<> aliases are available:

8 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.3

typedef Point3_<int> Point3i;
typedef Point3_<float> Point3f;
typedef Point3_<double> Point3d;

Size

class Size_

Template class for specifying the size of an image or rectangle. The class includes two members called width and
height. The structure can be converted to and from the old OpenCV structures CvSize and CvSize2D32f . The same
set of arithmetic and comparison operations as for Point_ is available.

OpenCV defines the following Size_<> aliases:

typedef Size_<int> Size2i;
typedef Size2i Size;
typedef Size_<float> Size2f;

Rect

class Rect_
Template class for 2D rectangles, described by the following parameters:

* Coordinates of the top-left corner. This is a default interpretation of Rect_::x and Rect_::y in OpenCV.
Though, in your algorithms you may count x and y from the bottom-left corner.

* Rectangle width and height.

OpenCV typically assumes that the top and left boundary of the rectangle are inclusive, while the right and bottom
boundaries are not. For example, the method Rect_: : contains returns true if

x < pt.x < x +width,y < pt.y <y + height

Virtually every loop over an image ROI in OpenCV (where ROI is specified by Rect_<int>) is implemented as:

for(int y = roi.y; y < roi.y + rect.height; y++)
for(int x = roi.x; X < roi.x + rect.width; x++)
{
/] ...
}

In addition to the class members, the following operations on rectangles are implemented:
* rect = rect &£ point (shifting a rectangle by a certain offset)
* rect = rect £ size (expanding or shrinking a rectangle by a certain amount)
* rect += point, rect -= point, rect += size, rect -= size (augmenting operations)
* rect = rectl & rect2 (rectangle intersection)
e rect = rectl | rect2 (minimum area rectangle containing rect2 and rect3)
* rect &= rectl, rect |= rectl (and the corresponding augmenting operations)
* rect == rectl, rect != rectl (rectangle comparison)

This is an example how the partial ordering on rectangles can be established (rectl C rect2):

2.1. Basic Structures 9

The OpenCV Reference Manual, Release 2.4.3

template<typename _Tp> inline bool
operator <= (const Rect_< Tp>& rl, const Rect_<_Tp>& r2)

{

return (rl & r2) == rl;

}

For your convenience, the Rect_<> alias is available:

typedef Rect_<int> Rect;

RotatedRect

class RotatedRect

The class represents rotated (i.e. not up-right) rectangles on a plane. Each rectangle is specified by the center point
(mass center), length of each side (represented by cv::Size2f structure) and the rotation angle in degrees.

C++: RotatedRect: :RotatedRect()
C++: RotatedRect::RotatedRect (const Point2f& center, const Size2f& size, float angle)
C++: RotatedRect::RotatedRect (const CvBox2D& box)
Parameters
center — The rectangle mass center.
size — Width and height of the rectangle.

angle — The rotation angle in a clockwise direction. When the angle is 0, 90, 180,
270 etc., the rectangle becomes an up-right rectangle.

box — The rotated rectangle parameters as the obsolete CvBox2D structure.
C++: void RotatedRect: : points (Point2f pts[]) const
C++: Rect RotatedRect: :boundingRect() const
C++: RotatedRect::operator CvBox2D() const
Parameters
pts — The points array for storing rectangle vertices.
The sample below demonstrates how to use RotatedRect:

Mat image(200, 200, CV_8UC3, Scalar(0));
RotatedRect rRect = RotatedRect(Point2f(100,100), Size2f(100,50), 30);

Point2f vertices[4];
rRect.points(vertices);
for (int i = 0; 1 < 4; 1i++)
line(image, vertices[i], vertices[(i+1)%4], Scalar(0,255,0));

Rect brect = rRect.boundingRect();
rectangle(image, brect, Scalar(255,0,0));

imshow("rectangles", image);
waitKey(0);

10 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.3

rectangles

See Also:

CamShift(), fitEllipse(), minAreaRect (), CvBox2D

TermCriteria

class TermCriteria

Template class defining termination criteria for iterative algorithms.

Matx

class Matx
Template class for small matrices whose type and size are known at compilation time:

template<typename _Tp, int m, int n> class Matx {...};

typedef Matx<float, 1, 2> Matx12f;
typedef Matx<double, 1, 2> Matx1l2d;

typedef Matx<float, 1, 6> Matx16f;
typedef Matx<double, 1, 6> Matx1l6d;

typedef Matx<float, 2, 1> Matx21lf;
typedef Matx<double, 2, 1> Matx21ld;

typedef Matx<float, 6, 1> Matx61lf;
typedef Matx<double, 6, 1> Matx6ld;

typedef Matx<float, 2, 2> Matx22f;
typedef Matx<double, 2, 2> Matx22d;

typedef Matx<float, 6, 6> Matx66f;
typedef Matx<double, 6, 6> Matx66d;

2.1. Basic Structures 11

The OpenCV Reference Manual, Release 2.4.3

If you need a more flexible type, use Mat . The elements of the matrix M are accessible using the M(1i,j) notation.
Most of the common matrix operations (see also Matrix Expressions) are available. To do an operation on Matx that
is not implemented, you can easily convert the matrix to Mat and backwards.

Matx33f m(

’

1, 2
4, 5
7, 8
m

3 © oo w

~ ~
—

cout << sum(Ma *m.t())) << endl;

Vec

class Vec
Template class for short numerical vectors, a partial case of Matx:

template<typename _Tp, int n> class Vec : public Matx<_Tp, n, 1> {...};

typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4db;

typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vecids;

typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vecdi;

typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;

typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;

It is possible to convert Vec<T, 2> to/from Point_, Vec<T, 3> to/from Point3_ , and Vec<T,4> to CvScalar or
Scalar_. Use operator[] to access the elements of Vec.
All the expected vector operations are also implemented:

e vl = v2 + v3

vl =v2 - v3

* vl = v2 x scale

* vl = scale * v2

e vl = -v2

e vl += v2 and other augmenting operations

e vl == v2, vl = v2

e norm(vl) (euclidean norm)

The Vec class is commonly used to describe pixel types of multi-channel arrays. See Mat for details.

12 Chapter 2. core. The Core Functionality

The OpenCV Reference Manual, Release 2.4.3

Scalar_

class Scalar_
Template class for a 4-element vector derived from Vec.

template<typename _Tp> class Scalar_ : public Vec<_Tp, 4> { ... };

typedef Scalar_<double> Scalar;

Being derived from Vec<_Tp, 4>, Scalar_ and Scalar can be used just as typical 4-element vectors. In addition,
they can be converted to/from CvScalar . The type Scalar is widely used in OpenCV to pass pixel values.

Range

class Range
Template class specifying a continuous subsequence (slice) of a sequence.

class Range

{
public:

int start, end;
1

The class is used to specify a row or a column span in a matrix (Mat) and for many other purposes. Range(a,b) is
basically the same as a:b in Matlab or a. .b in Python. As in Python, start is an inclusive left boundary of the range
and end is an exclusive right boundary of the range. Such a half-opened interval is usually denoted as [start,end) .

The static method Range: :all() returns a special variable that means “the whole sequence” or “the whole range”,
justlike ” : ” in Matlab or ” ... ” in Python. All the methods and functions in OpenCYV that take Range support this
special Range: :all() value. But, of course, in case of your own custom processing, you will probably have to check
and handle it explicitly:

void my_function(..., const Range& r,)

{
if(r == Range::all()) {
// process all the data
}

else {
// process [r.start, r.end)

}

Ptr

class Ptr
Template class for smart reference-counting pointers

template<typename _Tp> class Ptr

{

public:
// default constructor
Ptr();

// constructor that wraps the object pointer

2.1. Basic Structures 13

The OpenCV Reference Manual, Release 2.4.3

Ptr(_Tp* _obj);

// destructor: calls release()

~Ptr();

// copy constructor; increments ptr’s reference counter
Ptr(const Ptr& ptr);

// assignment operator; decrements own reference counter
// (with release()) and increments ptr’s reference counter
Ptr& operator = (const Ptr& ptr);

// increments reference counter

void addref();

// decrements reference counter; when it becomes 0,

// delete_obj() is called

void release();

// user-specified custom object deletion operation.

// by default, "delete obj;" is called

void delete_obj();

// returns true if obj == 0;

bool empty() const;

// provide access to the object fields and methods
_Tp* operator -> ()
const _Tp* operator -> () const;

// return the underlying object pointer;

// thanks to the methods, the Ptr<_Tp> can be
// used instead of _Tpx

operator _Tpx ();

operator const _Tpx*() const;

protected:

+

// the encapsulated object pointer
_Tp* obj;

// the associated reference counter
int* refcount;

The Ptr<_Tp> class is a template class that wraps pointers of the corresponding type. It is similar to shared_ptr that
is part of the Boost library (http://www.boost.org/doc/libs/1_40_0/libs/smart_ptr/shared_ptr.htm) and also part of the
C++0x standard.

This class provides the following options:

 Default constructor, copy constructor, and assignment operator for an arbitrary C++ class or a C structure. For
some objects, like files, windows, mutexes, sockets, and others, a copy constructor or an assignment operator
are difficult to define. For some other objects, like complex classifiers in OpenCV, copy constructors are absent
and not easy to implement. Finally, some of complex OpenCV and your own data structures may be written in
C. However, copy constructors and default constructors can simplify programming a lot. Besides, they are often
required (for example, by STL containers). By wrapping a pointer to such a complex object TObj to Ptr<TObj>
, you automatically get all of the necessary constructors and the assignment operator.

O(1) complexity of the above-mentioned operations. While some structures, like std: :vector, provide a copy
constructor and an assignment operator, the operations may take a considerable amount of time if the data
structures are large. But if the structures are put into Ptr<>, the overhead is small and independent of the data
size.

Automatic destruction, even for C structures. See the example below with FILE* .

* Heterogeneous collections of objects. The standard STL and most other C++ and OpenCV containers can store
only objects of the same type and the same size. The classical solution to store objects of different types in the
same container is to store pointers to the base class base_class_tx* instead but then you loose the automatic

14

Chapter 2. core. The Core Functionality

http://www.boost.org/doc/libs/1_40_0/libs/smart_ptr/shared_ptr.htm
http://en.wikipedia.org/wiki/C++0x

The OpenCV Reference Manual, Release 2.4.3

memory management. Again, by using Ptr<base_class_t>() instead of the raw pointers, you can solve the
problem.

The Ptr class treats the wrapped object as a black box. The reference counter is allocated and managed separately.
The only thing the pointer class needs to know about the object is how to deallocate it. This knowledge is encapsulated
in the Ptr::delete_obj () method that is called when the reference counter becomes 0. If the object is a C++ class
instance, no additional coding is needed, because the default implementation of this method calls delete obj; .
However, if the object is deallocated in a different way, the specialized method should be created. For example, if you
want to wrap FILE , the delete_obj may be implemented as follows:

template<> inline void Ptr<FILE>::delete_obj()
{
fclose(obj); // no need to clear the pointer afterwards,
// it is done externally.

// now use it:
Ptr<FILE> f(fopen("myfile.txt", "r"));
if(f.empty())
throw ...;
fprintf(f,);

// the file will be closed automatically by the Ptr<FILE> destructor.

Note: The reference increment/decrement operations are implemented as atomic operations, and therefore it is nor-
mally safe to use the classes in multi-threaded applications. The same is true for Mat and other C++ OpenCV classes
that operate on the reference counters.

Mat

class Mat
OpenCV C++ n-dimensional dense array class

class CV_EXPORTS Mat
{
public:
// ... a lot of methods ...

/*! includes several bit-fields:
- the magic signature
- continuity flag
- depth
- number of channels
*/
int flags;
//! the array dimensionality, >= 2
int dims;
//! the number of rows and columns or (-1, -1) when the array has more than 2 dimensions
int rows, cols;
//! pointer to the data
uchar* data;

//! pointer to the reference counter;

2.1. Basic Structures 15

The OpenCV Reference Manual, Release 2.4.3

// when array points to user-allocated data, the pointer is NULL
int* refcount;

// other members
1

The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used
to store real or complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector fields, point
clouds, tensors, histograms (though, very high-dimensional histograms may be better stored in a SparseMat). The
data layout of the array M is defined by the array M.step[] , so that the address of element (igy...,im.dims—1) »
where 0 < 1}, < M.sizel[k], is computed as:

addr(M = M.data + M.stepl0] * o + M.step[1] x i1 + ... + M.step[M.dims — 1] * ipm.dims_1

10y--siM.dims—1)
In case of a 2-dimensional array, the above formula is reduced to:
addr(My ;) = M.data + M.step[0] * i + M.step[1] j

Note that M.step[i] >= M.step[i+1] (in fact, M.step[i] >= M.step[i+1]*M.size[i+1]). This means
that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane, and so on.
M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() .

So, the data layout in Mat is fully compatible with CvMat, IplImage, and CvMatND types from OpenCV 1.x. It is also
compati