/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" CvStatus CV_STDCALL icvJacobiEigens_32f(float *A, float *V, float *E, int n, float eps) { int i, j, k, ind; float *AA = A, *VV = V; double Amax, anorm = 0, ax; if( A == NULL || V == NULL || E == NULL ) return CV_NULLPTR_ERR; if( n <= 0 ) return CV_BADSIZE_ERR; if( eps < 1.0e-7f ) eps = 1.0e-7f; /*-------- Prepare --------*/ for( i = 0; i < n; i++, VV += n, AA += n ) { for( j = 0; j < i; j++ ) { double Am = AA[j]; anorm += Am * Am; } for( j = 0; j < n; j++ ) VV[j] = 0.f; VV[i] = 1.f; } anorm = sqrt( anorm + anorm ); ax = anorm * eps / n; Amax = anorm; while( Amax > ax ) { Amax /= n; do /* while (ind) */ { int p, q; float *V1 = V, *A1 = A; ind = 0; for( p = 0; p < n - 1; p++, A1 += n, V1 += n ) { float *A2 = A + n * (p + 1), *V2 = V + n * (p + 1); for( q = p + 1; q < n; q++, A2 += n, V2 += n ) { double x, y, c, s, c2, s2, a; float *A3, Apq = A1[q], App, Aqq, Aip, Aiq, Vpi, Vqi; if( fabs( Apq ) < Amax ) continue; ind = 1; /*---- Calculation of rotation angle's sine & cosine ----*/ App = A1[p]; Aqq = A2[q]; y = 5.0e-1 * (App - Aqq); x = -Apq / sqrt( (double)Apq * Apq + (double)y * y ); if( y < 0.0 ) x = -x; s = x / sqrt( 2.0 * (1.0 + sqrt( 1.0 - (double)x * x ))); s2 = s * s; c = sqrt( 1.0 - s2 ); c2 = c * c; a = 2.0 * Apq * c * s; /*---- Apq annulation ----*/ A3 = A; for( i = 0; i < p; i++, A3 += n ) { Aip = A3[p]; Aiq = A3[q]; Vpi = V1[i]; Vqi = V2[i]; A3[p] = (float) (Aip * c - Aiq * s); A3[q] = (float) (Aiq * c + Aip * s); V1[i] = (float) (Vpi * c - Vqi * s); V2[i] = (float) (Vqi * c + Vpi * s); } for( ; i < q; i++, A3 += n ) { Aip = A1[i]; Aiq = A3[q]; Vpi = V1[i]; Vqi = V2[i]; A1[i] = (float) (Aip * c - Aiq * s); A3[q] = (float) (Aiq * c + Aip * s); V1[i] = (float) (Vpi * c - Vqi * s); V2[i] = (float) (Vqi * c + Vpi * s); } for( ; i < n; i++ ) { Aip = A1[i]; Aiq = A2[i]; Vpi = V1[i]; Vqi = V2[i]; A1[i] = (float) (Aip * c - Aiq * s); A2[i] = (float) (Aiq * c + Aip * s); V1[i] = (float) (Vpi * c - Vqi * s); V2[i] = (float) (Vqi * c + Vpi * s); } A1[p] = (float) (App * c2 + Aqq * s2 - a); A2[q] = (float) (App * s2 + Aqq * c2 + a); A1[q] = A2[p] = 0.0f; } /*q */ } /*p */ } while( ind ); Amax /= n; } /* while ( Amax > ax ) */ for( i = 0, k = 0; i < n; i++, k += n + 1 ) E[i] = A[k]; /*printf(" M = %d\n", M); */ /* -------- ordering -------- */ for( i = 0; i < n; i++ ) { int m = i; float Em = (float) fabs( E[i] ); for( j = i + 1; j < n; j++ ) { float Ej = (float) fabs( E[j] ); m = (Em < Ej) ? j : m; Em = (Em < Ej) ? Ej : Em; } if( m != i ) { int l; float b = E[i]; E[i] = E[m]; E[m] = b; for( j = 0, k = i * n, l = m * n; j < n; j++, k++, l++ ) { b = V[k]; V[k] = V[l]; V[l] = b; } } } return CV_NO_ERR; } /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: icvCalcCovarMatrixEx_8u32fR // Purpose: The function calculates a covariance matrix for a group of input objects // (images, vectors, etc.). ROI supported. // Context: // Parameters: nObjects - number of source objects // objects - array of pointers to ROIs of the source objects // imgStep - full width of each source object row in bytes // avg - pointer to averaged object // avgStep - full width of averaged object row in bytes // size - ROI size of each source and averaged objects // covarMatrix - covariance matrix (output parameter; must be allocated // before call) // // Returns: CV_NO_ERR or error code // // Notes: //F*/ static CvStatus CV_STDCALL icvCalcCovarMatrixEx_8u32fR( int nObjects, void *input, int objStep1, int ioFlags, int ioBufSize, uchar* buffer, void *userData, float *avg, int avgStep, CvSize size, float *covarMatrix ) { int objStep = objStep1; /* ---- TEST OF PARAMETERS ---- */ if( nObjects < 2 ) return CV_BADFACTOR_ERR; if( ioFlags < 0 || ioFlags > 3 ) return CV_BADFACTOR_ERR; if( ioFlags && ioBufSize < 1024 ) return CV_BADFACTOR_ERR; if( ioFlags && buffer == NULL ) return CV_NULLPTR_ERR; if( input == NULL || avg == NULL || covarMatrix == NULL ) return CV_NULLPTR_ERR; if( size.width > objStep || 4 * size.width > avgStep || size.height < 1 ) return CV_BADSIZE_ERR; avgStep /= 4; if( ioFlags & CV_EIGOBJ_INPUT_CALLBACK ) /* ==== USE INPUT CALLBACK ==== */ { int nio, ngr, igr, n = size.width * size.height, mm = 0; CvCallback read_callback = ((CvInput *) & input)->callback; uchar *buffer2; objStep = n; nio = ioBufSize / n; /* number of objects in buffer */ ngr = nObjects / nio; /* number of io groups */ if( nObjects % nio ) mm = 1; ngr += mm; buffer2 = (uchar *)cvAlloc( sizeof( uchar ) * n ); if( buffer2 == NULL ) return CV_OUTOFMEM_ERR; for( igr = 0; igr < ngr; igr++ ) { int k, l; int io, jo, imin = igr * nio, imax = imin + nio; uchar *bu1 = buffer, *bu2; if( imax > nObjects ) imax = nObjects; /* read igr group */ for( io = imin; io < imax; io++, bu1 += n ) { CvStatus r; r = (CvStatus)read_callback( io, (void *) bu1, userData ); if( r ) return r; } /* diagonal square calc */ bu1 = buffer; for( io = imin; io < imax; io++, bu1 += n ) { bu2 = bu1; for( jo = io; jo < imax; jo++, bu2 += n ) { float w = 0.f; float *fu = avg; int ij = 0; for( k = 0; k < size.height; k++, fu += avgStep ) for( l = 0; l < size.width; l++, ij++ ) { float f = fu[l], u1 = bu1[ij], u2 = bu2[ij]; w += (u1 - f) * (u2 - f); } covarMatrix[io * nObjects + jo] = covarMatrix[jo * nObjects + io] = w; } } /* non-diagonal elements calc */ for( jo = imax; jo < nObjects; jo++ ) { CvStatus r; bu1 = buffer; bu2 = buffer2; /* read jo object */ r = (CvStatus)read_callback( jo, (void *) bu2, userData ); if( r ) return r; for( io = imin; io < imax; io++, bu1 += n ) { float w = 0.f; float *fu = avg; int ij = 0; for( k = 0; k < size.height; k++, fu += avgStep ) { for( l = 0; l < size.width - 3; l += 4, ij += 4 ) { float f = fu[l]; uchar u1 = bu1[ij]; uchar u2 = bu2[ij]; w += (u1 - f) * (u2 - f); f = fu[l + 1]; u1 = bu1[ij + 1]; u2 = bu2[ij + 1]; w += (u1 - f) * (u2 - f); f = fu[l + 2]; u1 = bu1[ij + 2]; u2 = bu2[ij + 2]; w += (u1 - f) * (u2 - f); f = fu[l + 3]; u1 = bu1[ij + 3]; u2 = bu2[ij + 3]; w += (u1 - f) * (u2 - f); } for( ; l < size.width; l++, ij++ ) { float f = fu[l], u1 = bu1[ij], u2 = bu2[ij]; w += (u1 - f) * (u2 - f); } } covarMatrix[io * nObjects + jo] = covarMatrix[jo * nObjects + io] = w; } } } /* igr */ cvFree( &buffer2 ); } /* if() */ else /* ==== NOT USE INPUT CALLBACK ==== */ { int i, j; uchar **objects = (uchar **) (((CvInput *) & input)->data); for( i = 0; i < nObjects; i++ ) { uchar *bu = objects[i]; for( j = i; j < nObjects; j++ ) { int k, l; float w = 0.f; float *a = avg; uchar *bu1 = bu; uchar *bu2 = objects[j]; for( k = 0; k < size.height; k++, bu1 += objStep, bu2 += objStep, a += avgStep ) { for( l = 0; l < size.width - 3; l += 4 ) { float f = a[l]; uchar u1 = bu1[l]; uchar u2 = bu2[l]; w += (u1 - f) * (u2 - f); f = a[l + 1]; u1 = bu1[l + 1]; u2 = bu2[l + 1]; w += (u1 - f) * (u2 - f); f = a[l + 2]; u1 = bu1[l + 2]; u2 = bu2[l + 2]; w += (u1 - f) * (u2 - f); f = a[l + 3]; u1 = bu1[l + 3]; u2 = bu2[l + 3]; w += (u1 - f) * (u2 - f); } for( ; l < size.width; l++ ) { float f = a[l]; uchar u1 = bu1[l]; uchar u2 = bu2[l]; w += (u1 - f) * (u2 - f); } } covarMatrix[i * nObjects + j] = covarMatrix[j * nObjects + i] = w; } } } /* else */ return CV_NO_ERR; } /*======================== end of icvCalcCovarMatrixEx_8u32fR ===========================*/ static int icvDefaultBufferSize( void ) { return 10 * 1024 * 1024; } /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: icvCalcEigenObjects_8u32fR // Purpose: The function calculates an orthonormal eigen basis and a mean (averaged) // object for a group of input objects (images, vectors, etc.). ROI supported. // Context: // Parameters: nObjects - number of source objects // input - pointer either to array of pointers to input objects // or to read callback function (depending on ioFlags) // imgStep - full width of each source object row in bytes // output - pointer either to array of pointers to output eigen objects // or to write callback function (depending on ioFlags) // eigStep - full width of each eigenobject row in bytes // size - ROI size of each source object // ioFlags - input/output flags (see Notes) // ioBufSize - input/output buffer size // userData - pointer to the structure which contains all necessary // data for the callback functions // calcLimit - determines the calculation finish conditions // avg - pointer to averaged object (has the same size as ROI) // avgStep - full width of averaged object row in bytes // eigVals - pointer to corresponding eigenvalues (array of // elements in descending order) // // Returns: CV_NO_ERR or error code // // Notes: 1. input/output data (that is, input objects and eigen ones) may either // be allocated in the RAM or be read from/written to the HDD (or any // other device) by read/write callback functions. It depends on the // value of ioFlags paramater, which may be the following: // CV_EIGOBJ_NO_CALLBACK, or 0; // CV_EIGOBJ_INPUT_CALLBACK; // CV_EIGOBJ_OUTPUT_CALLBACK; // CV_EIGOBJ_BOTH_CALLBACK, or // CV_EIGOBJ_INPUT_CALLBACK | CV_EIGOBJ_OUTPUT_CALLBACK. // The callback functions as well as the user data structure must be // developed by the user. // // 2. If ioBufSize = 0, or it's too large, the function dermines buffer size // itself. // // 3. Depending on calcLimit parameter, calculations are finished either if // eigenfaces number comes up to certain value or the relation of the // current eigenvalue and the largest one comes down to certain value // (or any of the above conditions takes place). The calcLimit->type value // must be CV_TERMCRIT_NUMB, CV_TERMCRIT_EPS or // CV_TERMCRIT_NUMB | CV_TERMCRIT_EPS. The function returns the real // values calcLimit->max_iter and calcLimit->epsilon. // // 4. eigVals may be equal to NULL (if you don't need eigen values in further). // //F*/ static CvStatus CV_STDCALL icvCalcEigenObjects_8u32fR( int nObjects, void* input, int objStep, void* output, int eigStep, CvSize size, int ioFlags, int ioBufSize, void* userData, CvTermCriteria* calcLimit, float* avg, int avgStep, float *eigVals ) { int i, j, n, iev = 0, m1 = nObjects - 1, objStep1 = objStep, eigStep1 = eigStep / 4; CvSize objSize, eigSize, avgSize; float *c = 0; float *ev = 0; float *bf = 0; uchar *buf = 0; void *buffer = 0; float m = 1.0f / (float) nObjects; CvStatus r; if( m1 > calcLimit->max_iter && calcLimit->type != CV_TERMCRIT_EPS ) m1 = calcLimit->max_iter; /* ---- TEST OF PARAMETERS ---- */ if( nObjects < 2 ) return CV_BADFACTOR_ERR; if( ioFlags < 0 || ioFlags > 3 ) return CV_BADFACTOR_ERR; if( input == NULL || output == NULL || avg == NULL ) return CV_NULLPTR_ERR; if( size.width > objStep || 4 * size.width > eigStep || 4 * size.width > avgStep || size.height < 1 ) return CV_BADSIZE_ERR; if( !(ioFlags & CV_EIGOBJ_INPUT_CALLBACK) ) for( i = 0; i < nObjects; i++ ) if( ((uchar **) input)[i] == NULL ) return CV_NULLPTR_ERR; if( !(ioFlags & CV_EIGOBJ_OUTPUT_CALLBACK) ) for( i = 0; i < m1; i++ ) if( ((float **) output)[i] == NULL ) return CV_NULLPTR_ERR; avgStep /= 4; eigStep /= 4; if( objStep == size.width && eigStep == size.width && avgStep == size.width ) { size.width *= size.height; size.height = 1; objStep = objStep1 = eigStep = eigStep1 = avgStep = size.width; } objSize = eigSize = avgSize = size; if( ioFlags & CV_EIGOBJ_INPUT_CALLBACK ) { objSize.width *= objSize.height; objSize.height = 1; objStep = objSize.width; objStep1 = size.width; } if( ioFlags & CV_EIGOBJ_OUTPUT_CALLBACK ) { eigSize.width *= eigSize.height; eigSize.height = 1; eigStep = eigSize.width; eigStep1 = size.width; } n = objSize.height * objSize.width * (ioFlags & CV_EIGOBJ_INPUT_CALLBACK) + 2 * eigSize.height * eigSize.width * (ioFlags & CV_EIGOBJ_OUTPUT_CALLBACK); /* Buffer size determination */ if( ioFlags ) { int size = icvDefaultBufferSize(); ioBufSize = MIN( size, n ); } /* memory allocation (if necesseay) */ if( ioFlags & CV_EIGOBJ_INPUT_CALLBACK ) { buf = (uchar *) cvAlloc( sizeof( uchar ) * objSize.width ); if( buf == NULL ) return CV_OUTOFMEM_ERR; } if( ioFlags ) { buffer = (void *) cvAlloc( ioBufSize ); if( buffer == NULL ) { if( buf ) cvFree( &buf ); return CV_OUTOFMEM_ERR; } } /* Calculation of averaged object */ bf = avg; for( i = 0; i < avgSize.height; i++, bf += avgStep ) for( j = 0; j < avgSize.width; j++ ) bf[j] = 0.f; for( i = 0; i < nObjects; i++ ) { int k, l; uchar *bu = (ioFlags & CV_EIGOBJ_INPUT_CALLBACK) ? buf : ((uchar **) input)[i]; if( ioFlags & CV_EIGOBJ_INPUT_CALLBACK ) { CvCallback read_callback = ((CvInput *) & input)->callback; r = (CvStatus)read_callback( i, (void *) buf, userData ); if( r ) { if( buffer ) cvFree( &buffer ); if( buf ) cvFree( &buf ); return r; } } bf = avg; for( k = 0; k < avgSize.height; k++, bf += avgStep, bu += objStep1 ) for( l = 0; l < avgSize.width; l++ ) bf[l] += bu[l]; } bf = avg; for( i = 0; i < avgSize.height; i++, bf += avgStep ) for( j = 0; j < avgSize.width; j++ ) bf[j] *= m; /* Calculation of covariance matrix */ c = (float *) cvAlloc( sizeof( float ) * nObjects * nObjects ); if( c == NULL ) { if( buffer ) cvFree( &buffer ); if( buf ) cvFree( &buf ); return CV_OUTOFMEM_ERR; } r = icvCalcCovarMatrixEx_8u32fR( nObjects, input, objStep1, ioFlags, ioBufSize, (uchar *) buffer, userData, avg, 4 * avgStep, size, c ); if( r ) { cvFree( &c ); if( buffer ) cvFree( &buffer ); if( buf ) cvFree( &buf ); return r; } /* Calculation of eigenvalues & eigenvectors */ ev = (float *) cvAlloc( sizeof( float ) * nObjects * nObjects ); if( ev == NULL ) { cvFree( &c ); if( buffer ) cvFree( &buffer ); if( buf ) cvFree( &buf ); return CV_OUTOFMEM_ERR; } if( eigVals == NULL ) { eigVals = (float *) cvAlloc( sizeof( float ) * nObjects ); if( eigVals == NULL ) { cvFree( &c ); cvFree( &ev ); if( buffer ) cvFree( &buffer ); if( buf ) cvFree( &buf ); return CV_OUTOFMEM_ERR; } iev = 1; } r = icvJacobiEigens_32f( c, ev, eigVals, nObjects, 0.0f ); cvFree( &c ); if( r ) { cvFree( &ev ); if( buffer ) cvFree( &buffer ); if( buf ) cvFree( &buf ); if( iev ) cvFree( &eigVals ); return r; } /* Eigen objects number determination */ if( calcLimit->type != CV_TERMCRIT_NUMBER ) { for( i = 0; i < m1; i++ ) if( fabs( eigVals[i] / eigVals[0] ) < calcLimit->epsilon ) break; m1 = calcLimit->max_iter = i; } else m1 = calcLimit->max_iter; calcLimit->epsilon = (float) fabs( eigVals[m1 - 1] / eigVals[0] ); for( i = 0; i < m1; i++ ) eigVals[i] = (float) (1.0 / sqrt( (double)eigVals[i] )); /* ----------------- Calculation of eigenobjects ----------------------- */ if( ioFlags & CV_EIGOBJ_OUTPUT_CALLBACK ) { int nio, ngr, igr; nio = ioBufSize / (4 * eigSize.width); /* number of eigen objects in buffer */ ngr = m1 / nio; /* number of io groups */ if( nObjects % nio ) ngr += 1; for( igr = 0; igr < ngr; igr++ ) { int i, io, ie, imin = igr * nio, imax = imin + nio; if( imax > m1 ) imax = m1; for( i = 0; i < eigSize.width * (imax - imin); i++ ) ((float *) buffer)[i] = 0.f; for( io = 0; io < nObjects; io++ ) { uchar *bu = ioFlags & CV_EIGOBJ_INPUT_CALLBACK ? buf : ((uchar **) input)[io]; if( ioFlags & CV_EIGOBJ_INPUT_CALLBACK ) { CvCallback read_callback = ((CvInput *) & input)->callback; r = (CvStatus)read_callback( io, (void *) buf, userData ); if( r ) { cvFree( &ev ); if( iev ) cvFree( &eigVals ); if( buffer ) cvFree( &buffer ); if( buf ) cvFree( &buf ); return r; } } for( ie = imin; ie < imax; ie++ ) { int k, l; uchar *bv = bu; float e = ev[ie * nObjects + io] * eigVals[ie]; float *be = ((float *) buffer) + ((ie - imin) * eigStep); bf = avg; for( k = 0; k < size.height; k++, bv += objStep1, bf += avgStep, be += eigStep1 ) { for( l = 0; l < size.width - 3; l += 4 ) { float f = bf[l]; uchar v = bv[l]; be[l] += e * (v - f); f = bf[l + 1]; v = bv[l + 1]; be[l + 1] += e * (v - f); f = bf[l + 2]; v = bv[l + 2]; be[l + 2] += e * (v - f); f = bf[l + 3]; v = bv[l + 3]; be[l + 3] += e * (v - f); } for( ; l < size.width; l++ ) be[l] += e * (bv[l] - bf[l]); } } } /* io */ for( ie = imin; ie < imax; ie++ ) /* calculated eigen objects writting */ { CvCallback write_callback = ((CvInput *) & output)->callback; float *be = ((float *) buffer) + ((ie - imin) * eigStep); r = (CvStatus)write_callback( ie, (void *) be, userData ); if( r ) { cvFree( &ev ); if( iev ) cvFree( &eigVals ); if( buffer ) cvFree( &buffer ); if( buf ) cvFree( &buf ); return r; } } } /* igr */ } else { int k, p, l; for( i = 0; i < m1; i++ ) /* e.o. annulation */ { float *be = ((float **) output)[i]; for( p = 0; p < eigSize.height; p++, be += eigStep ) for( l = 0; l < eigSize.width; l++ ) be[l] = 0.0f; } for( k = 0; k < nObjects; k++ ) { uchar *bv = (ioFlags & CV_EIGOBJ_INPUT_CALLBACK) ? buf : ((uchar **) input)[k]; if( ioFlags & CV_EIGOBJ_INPUT_CALLBACK ) { CvCallback read_callback = ((CvInput *) & input)->callback; r = (CvStatus)read_callback( k, (void *) buf, userData ); if( r ) { cvFree( &ev ); if( iev ) cvFree( &eigVals ); if( buffer ) cvFree( &buffer ); if( buf ) cvFree( &buf ); return r; } } for( i = 0; i < m1; i++ ) { float v = eigVals[i] * ev[i * nObjects + k]; float *be = ((float **) output)[i]; uchar *bu = bv; bf = avg; for( p = 0; p < size.height; p++, bu += objStep1, bf += avgStep, be += eigStep1 ) { for( l = 0; l < size.width - 3; l += 4 ) { float f = bf[l]; uchar u = bu[l]; be[l] += v * (u - f); f = bf[l + 1]; u = bu[l + 1]; be[l + 1] += v * (u - f); f = bf[l + 2]; u = bu[l + 2]; be[l + 2] += v * (u - f); f = bf[l + 3]; u = bu[l + 3]; be[l + 3] += v * (u - f); } for( ; l < size.width; l++ ) be[l] += v * (bu[l] - bf[l]); } } /* i */ } /* k */ } /* else */ cvFree( &ev ); if( iev ) cvFree( &eigVals ); else for( i = 0; i < m1; i++ ) eigVals[i] = 1.f / (eigVals[i] * eigVals[i]); if( buffer ) cvFree( &buffer ); if( buf ) cvFree( &buf ); return CV_NO_ERR; } /* --- End of icvCalcEigenObjects_8u32fR --- */ /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: icvCalcDecompCoeff_8u32fR // Purpose: The function calculates one decomposition coefficient of input object // using previously calculated eigen object and the mean (averaged) object // Context: // Parameters: obj - input object // objStep - its step (in bytes) // eigObj - pointer to eigen object // eigStep - its step (in bytes) // avg - pointer to averaged object // avgStep - its step (in bytes) // size - ROI size of each source object // // Returns: decomposition coefficient value or large negative value (if error) // // Notes: //F*/ static float CV_STDCALL icvCalcDecompCoeff_8u32fR( uchar* obj, int objStep, float *eigObj, int eigStep, float *avg, int avgStep, CvSize size ) { int i, k; float w = 0.0f; if( size.width > objStep || 4 * size.width > eigStep || 4 * size.width > avgStep || size.height < 1 ) return -1.0e30f; if( obj == NULL || eigObj == NULL || avg == NULL ) return -1.0e30f; eigStep /= 4; avgStep /= 4; if( size.width == objStep && size.width == eigStep && size.width == avgStep ) { size.width *= size.height; size.height = 1; objStep = eigStep = avgStep = size.width; } for( i = 0; i < size.height; i++, obj += objStep, eigObj += eigStep, avg += avgStep ) { for( k = 0; k < size.width - 4; k += 4 ) { float o = (float) obj[k]; float e = eigObj[k]; float a = avg[k]; w += e * (o - a); o = (float) obj[k + 1]; e = eigObj[k + 1]; a = avg[k + 1]; w += e * (o - a); o = (float) obj[k + 2]; e = eigObj[k + 2]; a = avg[k + 2]; w += e * (o - a); o = (float) obj[k + 3]; e = eigObj[k + 3]; a = avg[k + 3]; w += e * (o - a); } for( ; k < size.width; k++ ) w += eigObj[k] * ((float) obj[k] - avg[k]); } return w; } /*F/////////////////////////////////////////////////////////////////////////////////////// // Names: icvEigenDecomposite_8u32fR // Purpose: The function calculates all decomposition coefficients for input object // using previously calculated eigen objects basis and the mean (averaged) // object // Context: // Parameters: obj - input object // objStep - its step (in bytes) // nEigObjs - number of eigen objects // eigInput - pointer either to array of pointers to eigen objects // or to read callback function (depending on ioFlags) // eigStep - eigen objects step (in bytes) // ioFlags - input/output flags // iserData - pointer to the structure which contains all necessary // data for the callback function // avg - pointer to averaged object // avgStep - its step (in bytes) // size - ROI size of each source object // coeffs - calculated coefficients (output data) // // Returns: icv status // // Notes: see notes for icvCalcEigenObjects_8u32fR function //F*/ static CvStatus CV_STDCALL icvEigenDecomposite_8u32fR( uchar * obj, int objStep, int nEigObjs, void *eigInput, int eigStep, int ioFlags, void *userData, float *avg, int avgStep, CvSize size, float *coeffs ) { int i; if( nEigObjs < 2 ) return CV_BADFACTOR_ERR; if( ioFlags < 0 || ioFlags > 1 ) return CV_BADFACTOR_ERR; if( size.width > objStep || 4 * size.width > eigStep || 4 * size.width > avgStep || size.height < 1 ) return CV_BADSIZE_ERR; if( obj == NULL || eigInput == NULL || coeffs == NULL || avg == NULL ) return CV_NULLPTR_ERR; if( !ioFlags ) for( i = 0; i < nEigObjs; i++ ) if( ((uchar **) eigInput)[i] == NULL ) return CV_NULLPTR_ERR; if( ioFlags ) /* callback */ { float *buffer; CvCallback read_callback = ((CvInput *) & eigInput)->callback; eigStep = 4 * size.width; /* memory allocation */ buffer = (float *) cvAlloc( sizeof( float ) * size.width * size.height ); if( buffer == NULL ) return CV_OUTOFMEM_ERR; for( i = 0; i < nEigObjs; i++ ) { float w; CvStatus r = (CvStatus)read_callback( i, (void *) buffer, userData ); if( r ) { cvFree( &buffer ); return r; } w = icvCalcDecompCoeff_8u32fR( obj, objStep, buffer, eigStep, avg, avgStep, size ); if( w < -1.0e29f ) { cvFree( &buffer ); return CV_NOTDEFINED_ERR; } coeffs[i] = w; } cvFree( &buffer ); } else /* no callback */ for( i = 0; i < nEigObjs; i++ ) { float w = icvCalcDecompCoeff_8u32fR( obj, objStep, ((float **) eigInput)[i], eigStep, avg, avgStep, size ); if( w < -1.0e29f ) return CV_NOTDEFINED_ERR; coeffs[i] = w; } return CV_NO_ERR; } /*F/////////////////////////////////////////////////////////////////////////////////////// // Names: icvEigenProjection_8u32fR // Purpose: The function calculates object projection to the eigen sub-space (restores // an object) using previously calculated eigen objects basis, mean (averaged) // object and decomposition coefficients of the restored object // Context: // Parameters: nEigObjs - Number of eigen objects // eigens - Array of pointers to eigen objects // eigStep - Eigen objects step (in bytes) // coeffs - Previously calculated decomposition coefficients // avg - Pointer to averaged object // avgStep - Its step (in bytes) // rest - Pointer to restored object // restStep - Its step (in bytes) // size - ROI size of each object // // Returns: CV status // // Notes: //F*/ static CvStatus CV_STDCALL icvEigenProjection_8u32fR( int nEigObjs, void *eigInput, int eigStep, int ioFlags, void *userData, float *coeffs, float *avg, int avgStep, uchar * rest, int restStep, CvSize size ) { int i, j, k; float *buf; float *buffer = NULL; float *b; CvCallback read_callback = ((CvInput *) & eigInput)->callback; if( size.width > avgStep || 4 * size.width > eigStep || size.height < 1 ) return CV_BADSIZE_ERR; if( rest == NULL || eigInput == NULL || avg == NULL || coeffs == NULL ) return CV_NULLPTR_ERR; if( ioFlags < 0 || ioFlags > 1 ) return CV_BADFACTOR_ERR; if( !ioFlags ) for( i = 0; i < nEigObjs; i++ ) if( ((uchar **) eigInput)[i] == NULL ) return CV_NULLPTR_ERR; eigStep /= 4; avgStep /= 4; if( size.width == restStep && size.width == eigStep && size.width == avgStep ) { size.width *= size.height; size.height = 1; restStep = eigStep = avgStep = size.width; } buf = (float *) cvAlloc( sizeof( float ) * size.width * size.height ); if( buf == NULL ) return CV_OUTOFMEM_ERR; b = buf; for( i = 0; i < size.height; i++, avg += avgStep, b += size.width ) for( j = 0; j < size.width; j++ ) b[j] = avg[j]; if( ioFlags ) { buffer = (float *) cvAlloc( sizeof( float ) * size.width * size.height ); if( buffer == NULL ) { cvFree( &buf ); return CV_OUTOFMEM_ERR; } eigStep = size.width; } for( k = 0; k < nEigObjs; k++ ) { float *e = ioFlags ? buffer : ((float **) eigInput)[k]; float c = coeffs[k]; if( ioFlags ) /* read eigen object */ { CvStatus r = (CvStatus)read_callback( k, (void *) buffer, userData ); if( r ) { cvFree( &buf ); cvFree( &buffer ); return r; } } b = buf; for( i = 0; i < size.height; i++, e += eigStep, b += size.width ) { for( j = 0; j < size.width - 3; j += 4 ) { float b0 = c * e[j]; float b1 = c * e[j + 1]; float b2 = c * e[j + 2]; float b3 = c * e[j + 3]; b[j] += b0; b[j + 1] += b1; b[j + 2] += b2; b[j + 3] += b3; } for( ; j < size.width; j++ ) b[j] += c * e[j]; } } b = buf; for( i = 0; i < size.height; i++, avg += avgStep, b += size.width, rest += restStep ) for( j = 0; j < size.width; j++ ) { int w = cvRound( b[j] ); w = !(w & ~255) ? w : w < 0 ? 0 : 255; rest[j] = (uchar) w; } cvFree( &buf ); if( ioFlags ) cvFree( &buffer ); return CV_NO_ERR; } /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: cvCalcCovarMatrixEx // Purpose: The function calculates a covariance matrix for a group of input objects // (images, vectors, etc.). // Context: // Parameters: nObjects - number of source objects // input - pointer either to array of input objects // or to read callback function (depending on ioFlags) // ioFlags - input/output flags (see Notes to // cvCalcEigenObjects function) // ioBufSize - input/output buffer size // userData - pointer to the structure which contains all necessary // data for the callback functions // avg - averaged object // covarMatrix - covariance matrix (output parameter; must be allocated // before call) // // Notes: See Notes to cvCalcEigenObjects function //F*/ CV_IMPL void cvCalcCovarMatrixEx( int nObjects, void* input, int ioFlags, int ioBufSize, uchar* buffer, void* userData, IplImage* avg, float* covarMatrix ) { float *avg_data; int avg_step = 0; CvSize avg_size; int i; CV_FUNCNAME( "cvCalcCovarMatrixEx" ); __BEGIN__; cvGetImageRawData( avg, (uchar **) & avg_data, &avg_step, &avg_size ); if( avg->depth != IPL_DEPTH_32F ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( avg->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( ioFlags == CV_EIGOBJ_NO_CALLBACK ) { IplImage **images = (IplImage **) (((CvInput *) & input)->data); uchar **objects = (uchar **) cvAlloc( sizeof( uchar * ) * nObjects ); int img_step = 0, old_step = 0; CvSize img_size = avg_size, old_size = avg_size; if( objects == NULL ) CV_ERROR( CV_StsBadArg, "Insufficient memory" ); for( i = 0; i < nObjects; i++ ) { IplImage *img = images[i]; uchar *img_data; cvGetImageRawData( img, &img_data, &img_step, &img_size ); if( img->depth != IPL_DEPTH_8U ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( img_size != avg_size || img_size != old_size ) CV_ERROR( CV_StsBadArg, "Different sizes of objects" ); if( img->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( i > 0 && img_step != old_step ) CV_ERROR( CV_StsBadArg, "Different steps of objects" ); old_step = img_step; old_size = img_size; objects[i] = img_data; } CV_CALL( icvCalcCovarMatrixEx_8u32fR( nObjects, (void*) objects, img_step, CV_EIGOBJ_NO_CALLBACK, 0, NULL, NULL, avg_data, avg_step, avg_size, covarMatrix )); cvFree( &objects ); } else { CV_CALL( icvCalcCovarMatrixEx_8u32fR( nObjects, input, avg_step / 4, ioFlags, ioBufSize, buffer, userData, avg_data, avg_step, avg_size, covarMatrix )); } __END__; } /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: cvCalcEigenObjects // Purpose: The function calculates an orthonormal eigen basis and a mean (averaged) // object for a group of input objects (images, vectors, etc.). // Context: // Parameters: nObjects - number of source objects // input - pointer either to array of input objects // or to read callback function (depending on ioFlags) // output - pointer either to output eigen objects // or to write callback function (depending on ioFlags) // ioFlags - input/output flags (see Notes) // ioBufSize - input/output buffer size // userData - pointer to the structure which contains all necessary // data for the callback functions // calcLimit - determines the calculation finish conditions // avg - averaged object (has the same size as ROI) // eigVals - pointer to corresponding eigen values (array of // elements in descending order) // // Notes: 1. input/output data (that is, input objects and eigen ones) may either // be allocated in the RAM or be read from/written to the HDD (or any // other device) by read/write callback functions. It depends on the // value of ioFlags paramater, which may be the following: // CV_EIGOBJ_NO_CALLBACK, or 0; // CV_EIGOBJ_INPUT_CALLBACK; // CV_EIGOBJ_OUTPUT_CALLBACK; // CV_EIGOBJ_BOTH_CALLBACK, or // CV_EIGOBJ_INPUT_CALLBACK | CV_EIGOBJ_OUTPUT_CALLBACK. // The callback functions as well as the user data structure must be // developed by the user. // // 2. If ioBufSize = 0, or it's too large, the function dermines buffer size // itself. // // 3. Depending on calcLimit parameter, calculations are finished either if // eigenfaces number comes up to certain value or the relation of the // current eigenvalue and the largest one comes down to certain value // (or any of the above conditions takes place). The calcLimit->type value // must be CV_TERMCRIT_NUMB, CV_TERMCRIT_EPS or // CV_TERMCRIT_NUMB | CV_TERMCRIT_EPS. The function returns the real // values calcLimit->max_iter and calcLimit->epsilon. // // 4. eigVals may be equal to NULL (if you don't need eigen values in further). // //F*/ CV_IMPL void cvCalcEigenObjects( int nObjects, void* input, void* output, int ioFlags, int ioBufSize, void* userData, CvTermCriteria* calcLimit, IplImage* avg, float* eigVals ) { float *avg_data; int avg_step = 0; CvSize avg_size; int i; int nEigens = nObjects - 1; CV_FUNCNAME( "cvCalcEigenObjects" ); __BEGIN__; cvGetImageRawData( avg, (uchar **) & avg_data, &avg_step, &avg_size ); if( avg->depth != IPL_DEPTH_32F ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( avg->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( nEigens > calcLimit->max_iter && calcLimit->type != CV_TERMCRIT_EPS ) nEigens = calcLimit->max_iter; switch (ioFlags) { case CV_EIGOBJ_NO_CALLBACK: { IplImage **objects = (IplImage **) (((CvInput *) & input)->data); IplImage **eigens = (IplImage **) (((CvInput *) & output)->data); uchar **objs = (uchar **) cvAlloc( sizeof( uchar * ) * nObjects ); float **eigs = (float **) cvAlloc( sizeof( float * ) * nEigens ); int obj_step = 0, old_step = 0; int eig_step = 0, oldeig_step = 0; CvSize obj_size = avg_size, old_size = avg_size, eig_size = avg_size, oldeig_size = avg_size; if( objects == NULL || eigens == NULL ) CV_ERROR( CV_StsBadArg, "Insufficient memory" ); for( i = 0; i < nObjects; i++ ) { IplImage *img = objects[i]; uchar *obj_data; cvGetImageRawData( img, &obj_data, &obj_step, &obj_size ); if( img->depth != IPL_DEPTH_8U ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( obj_size != avg_size || obj_size != old_size ) CV_ERROR( CV_StsBadArg, "Different sizes of objects" ); if( img->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( i > 0 && obj_step != old_step ) CV_ERROR( CV_StsBadArg, "Different steps of objects" ); old_step = obj_step; old_size = obj_size; objs[i] = obj_data; } for( i = 0; i < nEigens; i++ ) { IplImage *eig = eigens[i]; float *eig_data; cvGetImageRawData( eig, (uchar **) & eig_data, &eig_step, &eig_size ); if( eig->depth != IPL_DEPTH_32F ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( eig_size != avg_size || eig_size != oldeig_size ) CV_ERROR( CV_StsBadArg, "Different sizes of objects" ); if( eig->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( i > 0 && eig_step != oldeig_step ) CV_ERROR( CV_StsBadArg, "Different steps of objects" ); oldeig_step = eig_step; oldeig_size = eig_size; eigs[i] = eig_data; } CV_CALL( icvCalcEigenObjects_8u32fR( nObjects, (void*) objs, obj_step, (void*) eigs, eig_step, obj_size, ioFlags, ioBufSize, userData, calcLimit, avg_data, avg_step, eigVals )); cvFree( &objs ); cvFree( &eigs ); break; } case CV_EIGOBJ_OUTPUT_CALLBACK: { IplImage **objects = (IplImage **) (((CvInput *) & input)->data); uchar **objs = (uchar **) cvAlloc( sizeof( uchar * ) * nObjects ); int obj_step = 0, old_step = 0; CvSize obj_size = avg_size, old_size = avg_size; if( objects == NULL ) CV_ERROR( CV_StsBadArg, "Insufficient memory" ); for( i = 0; i < nObjects; i++ ) { IplImage *img = objects[i]; uchar *obj_data; cvGetImageRawData( img, &obj_data, &obj_step, &obj_size ); if( img->depth != IPL_DEPTH_8U ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( obj_size != avg_size || obj_size != old_size ) CV_ERROR( CV_StsBadArg, "Different sizes of objects" ); if( img->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( i > 0 && obj_step != old_step ) CV_ERROR( CV_StsBadArg, "Different steps of objects" ); old_step = obj_step; old_size = obj_size; objs[i] = obj_data; } CV_CALL( icvCalcEigenObjects_8u32fR( nObjects, (void*) objs, obj_step, output, avg_step, obj_size, ioFlags, ioBufSize, userData, calcLimit, avg_data, avg_step, eigVals )); cvFree( &objs ); break; } case CV_EIGOBJ_INPUT_CALLBACK: { IplImage **eigens = (IplImage **) (((CvInput *) & output)->data); float **eigs = (float**) cvAlloc( sizeof( float* ) * nEigens ); int eig_step = 0, oldeig_step = 0; CvSize eig_size = avg_size, oldeig_size = avg_size; if( eigens == NULL ) CV_ERROR( CV_StsBadArg, "Insufficient memory" ); for( i = 0; i < nEigens; i++ ) { IplImage *eig = eigens[i]; float *eig_data; cvGetImageRawData( eig, (uchar **) & eig_data, &eig_step, &eig_size ); if( eig->depth != IPL_DEPTH_32F ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( eig_size != avg_size || eig_size != oldeig_size ) CV_ERROR( CV_StsBadArg, "Different sizes of objects" ); if( eig->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( i > 0 && eig_step != oldeig_step ) CV_ERROR( CV_StsBadArg, "Different steps of objects" ); oldeig_step = eig_step; oldeig_size = eig_size; eigs[i] = eig_data; } CV_CALL( icvCalcEigenObjects_8u32fR( nObjects, input, avg_step / 4, (void*) eigs, eig_step, eig_size, ioFlags, ioBufSize, userData, calcLimit, avg_data, avg_step, eigVals )); cvFree( &eigs ); break; } case CV_EIGOBJ_INPUT_CALLBACK | CV_EIGOBJ_OUTPUT_CALLBACK: CV_CALL( icvCalcEigenObjects_8u32fR( nObjects, input, avg_step / 4, output, avg_step, avg_size, ioFlags, ioBufSize, userData, calcLimit, avg_data, avg_step, eigVals )); break; default: CV_ERROR( CV_StsBadArg, "Unsupported i/o flag" ); } __END__; } /*--------------------------------------------------------------------------------------*/ /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: cvCalcDecompCoeff // Purpose: The function calculates one decomposition coefficient of input object // using previously calculated eigen object and the mean (averaged) object // Context: // Parameters: obj - input object // eigObj - eigen object // avg - averaged object // // Returns: decomposition coefficient value or large negative value (if error) // // Notes: //F*/ CV_IMPL double cvCalcDecompCoeff( IplImage * obj, IplImage * eigObj, IplImage * avg ) { double coeff = DBL_MAX; uchar *obj_data; float *eig_data; float *avg_data; int obj_step = 0, eig_step = 0, avg_step = 0; CvSize obj_size, eig_size, avg_size; CV_FUNCNAME( "cvCalcDecompCoeff" ); __BEGIN__; cvGetImageRawData( obj, &obj_data, &obj_step, &obj_size ); if( obj->depth != IPL_DEPTH_8U ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( obj->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); cvGetImageRawData( eigObj, (uchar **) & eig_data, &eig_step, &eig_size ); if( eigObj->depth != IPL_DEPTH_32F ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( eigObj->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); cvGetImageRawData( avg, (uchar **) & avg_data, &avg_step, &avg_size ); if( avg->depth != IPL_DEPTH_32F ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( avg->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( obj_size != eig_size || obj_size != avg_size ) CV_ERROR( CV_StsBadArg, "different sizes of images" ); coeff = icvCalcDecompCoeff_8u32fR( obj_data, obj_step, eig_data, eig_step, avg_data, avg_step, obj_size ); __END__; return coeff; } /*--------------------------------------------------------------------------------------*/ /*F/////////////////////////////////////////////////////////////////////////////////////// // Names: cvEigenDecomposite // Purpose: The function calculates all decomposition coefficients for input object // using previously calculated eigen objects basis and the mean (averaged) // object // // Parameters: obj - input object // nEigObjs - number of eigen objects // eigInput - pointer either to array of pointers to eigen objects // or to read callback function (depending on ioFlags) // ioFlags - input/output flags // userData - pointer to the structure which contains all necessary // data for the callback function // avg - averaged object // coeffs - calculated coefficients (output data) // // Notes: see notes for cvCalcEigenObjects function //F*/ CV_IMPL void cvEigenDecomposite( IplImage* obj, int nEigObjs, void* eigInput, int ioFlags, void* userData, IplImage* avg, float* coeffs ) { float *avg_data; uchar *obj_data; int avg_step = 0, obj_step = 0; CvSize avg_size, obj_size; int i; CV_FUNCNAME( "cvEigenDecomposite" ); __BEGIN__; cvGetImageRawData( avg, (uchar **) & avg_data, &avg_step, &avg_size ); if( avg->depth != IPL_DEPTH_32F ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( avg->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); cvGetImageRawData( obj, &obj_data, &obj_step, &obj_size ); if( obj->depth != IPL_DEPTH_8U ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( obj->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( obj_size != avg_size ) CV_ERROR( CV_StsBadArg, "Different sizes of objects" ); if( ioFlags == CV_EIGOBJ_NO_CALLBACK ) { IplImage **eigens = (IplImage **) (((CvInput *) & eigInput)->data); float **eigs = (float **) cvAlloc( sizeof( float * ) * nEigObjs ); int eig_step = 0, old_step = 0; CvSize eig_size = avg_size, old_size = avg_size; if( eigs == NULL ) CV_ERROR( CV_StsBadArg, "Insufficient memory" ); for( i = 0; i < nEigObjs; i++ ) { IplImage *eig = eigens[i]; float *eig_data; cvGetImageRawData( eig, (uchar **) & eig_data, &eig_step, &eig_size ); if( eig->depth != IPL_DEPTH_32F ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( eig_size != avg_size || eig_size != old_size ) CV_ERROR( CV_StsBadArg, "Different sizes of objects" ); if( eig->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( i > 0 && eig_step != old_step ) CV_ERROR( CV_StsBadArg, "Different steps of objects" ); old_step = eig_step; old_size = eig_size; eigs[i] = eig_data; } CV_CALL( icvEigenDecomposite_8u32fR( obj_data, obj_step, nEigObjs, (void*) eigs, eig_step, ioFlags, userData, avg_data, avg_step, obj_size, coeffs )); cvFree( &eigs ); } else { CV_CALL( icvEigenDecomposite_8u32fR( obj_data, obj_step, nEigObjs, eigInput, avg_step, ioFlags, userData, avg_data, avg_step, obj_size, coeffs )); } __END__; } /*--------------------------------------------------------------------------------------*/ /*F/////////////////////////////////////////////////////////////////////////////////////// // Name: cvEigenProjection // Purpose: The function calculates object projection to the eigen sub-space (restores // an object) using previously calculated eigen objects basis, mean (averaged) // object and decomposition coefficients of the restored object // Context: // Parameters: nEigObjs - number of eigen objects // eigInput - pointer either to array of pointers to eigen objects // or to read callback function (depending on ioFlags) // ioFlags - input/output flags // userData - pointer to the structure which contains all necessary // data for the callback function // coeffs - array of decomposition coefficients // avg - averaged object // proj - object projection (output data) // // Notes: see notes for cvCalcEigenObjects function //F*/ CV_IMPL void cvEigenProjection( void* eigInput, int nEigObjs, int ioFlags, void* userData, float* coeffs, IplImage* avg, IplImage* proj ) { float *avg_data; uchar *proj_data; int avg_step = 0, proj_step = 0; CvSize avg_size, proj_size; int i; CV_FUNCNAME( "cvEigenProjection" ); __BEGIN__; cvGetImageRawData( avg, (uchar **) & avg_data, &avg_step, &avg_size ); if( avg->depth != IPL_DEPTH_32F ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( avg->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); cvGetImageRawData( proj, &proj_data, &proj_step, &proj_size ); if( proj->depth != IPL_DEPTH_8U ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( proj->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( proj_size != avg_size ) CV_ERROR( CV_StsBadArg, "Different sizes of projects" ); if( ioFlags == CV_EIGOBJ_NO_CALLBACK ) { IplImage **eigens = (IplImage**) (((CvInput *) & eigInput)->data); float **eigs = (float**) cvAlloc( sizeof( float * ) * nEigObjs ); int eig_step = 0, old_step = 0; CvSize eig_size = avg_size, old_size = avg_size; if( eigs == NULL ) CV_ERROR( CV_StsBadArg, "Insufficient memory" ); for( i = 0; i < nEigObjs; i++ ) { IplImage *eig = eigens[i]; float *eig_data; cvGetImageRawData( eig, (uchar **) & eig_data, &eig_step, &eig_size ); if( eig->depth != IPL_DEPTH_32F ) CV_ERROR( CV_BadDepth, cvUnsupportedFormat ); if( eig_size != avg_size || eig_size != old_size ) CV_ERROR( CV_StsBadArg, "Different sizes of objects" ); if( eig->nChannels != 1 ) CV_ERROR( CV_BadNumChannels, cvUnsupportedFormat ); if( i > 0 && eig_step != old_step ) CV_ERROR( CV_StsBadArg, "Different steps of objects" ); old_step = eig_step; old_size = eig_size; eigs[i] = eig_data; } CV_CALL( icvEigenProjection_8u32fR( nEigObjs, (void*) eigs, eig_step, ioFlags, userData, coeffs, avg_data, avg_step, proj_data, proj_step, avg_size )); cvFree( &eigs ); } else { CV_CALL( icvEigenProjection_8u32fR( nEigObjs, eigInput, avg_step, ioFlags, userData, coeffs, avg_data, avg_step, proj_data, proj_step, avg_size )); } __END__; } /* End of file. */