Merge remote-tracking branch 'origin/2.4' into merge-2.4

Conflicts:
	modules/core/include/opencv2/core/version.hpp
	modules/ocl/include/opencv2/ocl/ocl.hpp
	modules/ocl/src/initialization.cpp
	modules/ocl/test/main.cpp
	modules/superres/CMakeLists.txt
	modules/superres/src/input_array_utility.cpp
	modules/superres/src/input_array_utility.hpp
	modules/superres/src/optical_flow.cpp
This commit is contained in:
Roman Donchenko 2013-07-15 18:40:54 +04:00
commit feaa12a274
32 changed files with 2342 additions and 88 deletions

View File

@ -11,7 +11,7 @@ You can store and then restore various OpenCV data structures to/from XML (http:
Use the following procedure to write something to XML or YAML:
#. Create new :ocv:class:`FileStorage` and open it for writing. It can be done with a single call to :ocv:func:`FileStorage::FileStorage` constructor that takes a filename, or you can use the default constructor and then call :ocv:func:`FileStorage::open`. Format of the file (XML or YAML) is determined from the filename extension (".xml" and ".yml"/".yaml", respectively)
#. Write all the data you want using the streaming operator ``>>``, just like in the case of STL streams.
#. Write all the data you want using the streaming operator ``<<``, just like in the case of STL streams.
#. Close the file using :ocv:func:`FileStorage::release`. ``FileStorage`` destructor also closes the file.
Here is an example: ::

View File

@ -525,7 +525,11 @@ BRISK::operator()( InputArray _image, InputArray _mask, std::vector<KeyPoint>& k
bool doOrientation=true;
if (useProvidedKeypoints)
doOrientation = false;
computeDescriptorsAndOrOrientation(_image, _mask, keypoints, _descriptors, true, doOrientation,
// If the user specified cv::noArray(), this will yield false. Otherwise it will return true.
bool doDescriptors = _descriptors.needed();
computeDescriptorsAndOrOrientation(_image, _mask, keypoints, _descriptors, doDescriptors, doOrientation,
useProvidedKeypoints);
}

View File

@ -220,8 +220,8 @@ CV_IMPL CvCapture * cvCreateCameraCapture (int index)
return capture;
break;
#endif
#ifdef HAVE_VFW
case CV_CAP_VFW:
#ifdef HAVE_VFW
capture = cvCreateCameraCapture_VFW (index);
if (capture)
return capture;

View File

@ -248,6 +248,8 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
CV_Assert( (img.depth() == CV_8U || img.depth() == CV_32F) &&
img.type() == templ.type() );
CV_Assert( img.rows >= templ.rows && img.cols >= templ.cols);
Size corrSize(img.cols - templ.cols + 1, img.rows - templ.rows + 1);
_result.create(corrSize, CV_32F);
Mat result = _result.getMat();

View File

@ -853,6 +853,19 @@ namespace cv
CV_EXPORTS void cornerMinEigenVal_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy,
int blockSize, int ksize, int bordertype = cv::BORDER_DEFAULT);
/////////////////////////////////// ML ///////////////////////////////////////////
//! Compute closest centers for each lines in source and lable it after center's index
// supports CV_32FC1/CV_32FC2/CV_32FC4 data type
CV_EXPORTS void distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat &centers);
//!Does k-means procedure on GPU
// supports CV_32FC1/CV_32FC2/CV_32FC4 data type
CV_EXPORTS double kmeans(const oclMat &src, int K, oclMat &bestLabels,
TermCriteria criteria, int attemps, int flags, oclMat &centers);
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////CascadeClassifier//////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -55,7 +55,7 @@ namespace cv
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *imgproc_gfft;
extern const char *imgproc_gftt;
}
}
@ -133,7 +133,7 @@ struct Sorter<BITONIC>
for(int passOfStage = 0; passOfStage < stage + 1; ++passOfStage)
{
args[4] = std::make_pair(sizeof(cl_int), (void *)&passOfStage);
openCLExecuteKernel(cxt, &imgproc_gfft, kernelname, globalThreads, localThreads, args, -1, -1);
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1);
}
}
}
@ -160,12 +160,12 @@ struct Sorter<SELECTION>
args.push_back( std::make_pair( sizeof(cl_int), (void*)&count) );
args.push_back( std::make_pair( lds_size, (void*)NULL) );
openCLExecuteKernel(cxt, &imgproc_gfft, kernelname, globalThreads, localThreads, args, -1, -1);
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1);
//final
kernelname = "sortCorners_selectionSortFinal";
args.pop_back();
openCLExecuteKernel(cxt, &imgproc_gfft, kernelname, globalThreads, localThreads, args, -1, -1);
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1);
}
};
@ -201,7 +201,7 @@ int findCorners_caller(
size_t localThreads[3] = {16, 16, 1};
const char * opt = mask.empty() ? "" : "-D WITH_MASK";
openCLExecuteKernel(cxt, &imgproc_gfft, kernelname, globalThreads, localThreads, args, -1, -1, opt);
openCLExecuteKernel(cxt, &imgproc_gftt, kernelname, globalThreads, localThreads, args, -1, -1, opt);
return std::min(Mat(g_counter).at<int>(0), max_count);
}
}//unnamed namespace

View File

@ -319,8 +319,7 @@ namespace cv
char clVersion[256];
for (unsigned i = 0; i < numPlatforms; ++i)
{
cl_uint numsdev;
cl_uint numsdev = 0;
cl_int status = clGetDeviceIDs(platforms[i], devicetype, 0, NULL, &numsdev);
if(status != CL_DEVICE_NOT_FOUND)
openCLVerifyCall(status);

438
modules/ocl/src/kmeans.cpp Normal file
View File

@ -0,0 +1,438 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Xiaopeng Fu, fuxiaopeng2222@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <iomanip>
#include "precomp.hpp"
using namespace cv;
using namespace ocl;
namespace cv
{
namespace ocl
{
////////////////////////////////////OpenCL kernel strings//////////////////////////
extern const char *kmeans_kernel;
}
}
static void generateRandomCenter(const std::vector<Vec2f>& box, float* center, RNG& rng)
{
size_t j, dims = box.size();
float margin = 1.f/dims;
for( j = 0; j < dims; j++ )
center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0];
}
// This class is copied from matrix.cpp in core module.
class KMeansPPDistanceComputer : public ParallelLoopBody
{
public:
KMeansPPDistanceComputer( float *_tdist2,
const float *_data,
const float *_dist,
int _dims,
size_t _step,
size_t _stepci )
: tdist2(_tdist2),
data(_data),
dist(_dist),
dims(_dims),
step(_step),
stepci(_stepci) { }
void operator()( const cv::Range& range ) const
{
const int begin = range.start;
const int end = range.end;
for ( int i = begin; i<end; i++ )
{
tdist2[i] = std::min(normL2Sqr_(data + step*i, data + stepci, dims), dist[i]);
}
}
private:
KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // to quiet MSVC
float *tdist2;
const float *data;
const float *dist;
const int dims;
const size_t step;
const size_t stepci;
};
/*
k-means center initialization using the following algorithm:
Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding
*/
static void generateCentersPP(const Mat& _data, Mat& _out_centers,
int K, RNG& rng, int trials)
{
int i, j, k, dims = _data.cols, N = _data.rows;
const float* data = (float*)_data.data;
size_t step = _data.step/sizeof(data[0]);
std::vector<int> _centers(K);
int* centers = &_centers[0];
std::vector<float> _dist(N*3);
float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N;
double sum0 = 0;
centers[0] = (unsigned)rng % N;
for( i = 0; i < N; i++ )
{
dist[i] = normL2Sqr_(data + step*i, data + step*centers[0], dims);
sum0 += dist[i];
}
for( k = 1; k < K; k++ )
{
double bestSum = DBL_MAX;
int bestCenter = -1;
for( j = 0; j < trials; j++ )
{
double p = (double)rng*sum0, s = 0;
for( i = 0; i < N-1; i++ )
if( (p -= dist[i]) <= 0 )
break;
int ci = i;
parallel_for_(Range(0, N),
KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci));
for( i = 0; i < N; i++ )
{
s += tdist2[i];
}
if( s < bestSum )
{
bestSum = s;
bestCenter = ci;
std::swap(tdist, tdist2);
}
}
centers[k] = bestCenter;
sum0 = bestSum;
std::swap(dist, tdist);
}
for( k = 0; k < K; k++ )
{
const float* src = data + step*centers[k];
float* dst = _out_centers.ptr<float>(k);
for( j = 0; j < dims; j++ )
dst[j] = src[j];
}
}
void cv::ocl::distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat &centers)
{
//if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F)
//{
// CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
// return;
//}
Context *clCxt = src.clCxt;
int labels_step = (int)(labels.step/labels.elemSize());
String kernelname = "distanceToCenters";
int threadNum = src.rows > 256 ? 256 : src.rows;
size_t localThreads[3] = {1, threadNum, 1};
size_t globalThreads[3] = {1, src.rows, 1};
std::vector<std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_int), (void *)&labels_step));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&centers.rows));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&labels.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&centers.cols));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&centers.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void*)&dists.data));
openCLExecuteKernel(clCxt, &kmeans_kernel, kernelname, globalThreads, localThreads, args, -1, -1, NULL);
}
///////////////////////////////////k - means /////////////////////////////////////////////////////////
double cv::ocl::kmeans(const oclMat &_src, int K, oclMat &_bestLabels,
TermCriteria criteria, int attempts, int flags, oclMat &_centers)
{
const int SPP_TRIALS = 3;
bool isrow = _src.rows == 1 && _src.oclchannels() > 1;
int N = !isrow ? _src.rows : _src.cols;
int dims = (!isrow ? _src.cols : 1) * _src.oclchannels();
int type = _src.depth();
attempts = std::max(attempts, 1);
CV_Assert(type == CV_32F && K > 0 );
CV_Assert( N >= K );
Mat _labels;
if( flags & KMEANS_USE_INITIAL_LABELS )
{
CV_Assert( (_bestLabels.cols == 1 || _bestLabels.rows == 1) &&
_bestLabels.cols * _bestLabels.rows == N &&
_bestLabels.type() == CV_32S );
_bestLabels.download(_labels);
}
else
{
if( !((_bestLabels.cols == 1 || _bestLabels.rows == 1) &&
_bestLabels.cols * _bestLabels.rows == N &&
_bestLabels.type() == CV_32S &&
_bestLabels.isContinuous()))
_bestLabels.create(N, 1, CV_32S);
_labels.create(_bestLabels.size(), _bestLabels.type());
}
int* labels = _labels.ptr<int>();
Mat data;
_src.download(data);
Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type);
std::vector<int> counters(K);
std::vector<Vec2f> _box(dims);
Vec2f* box = &_box[0];
double best_compactness = DBL_MAX, compactness = 0;
RNG& rng = theRNG();
int a, iter, i, j, k;
if( criteria.type & TermCriteria::EPS )
criteria.epsilon = std::max(criteria.epsilon, 0.);
else
criteria.epsilon = FLT_EPSILON;
criteria.epsilon *= criteria.epsilon;
if( criteria.type & TermCriteria::COUNT )
criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100);
else
criteria.maxCount = 100;
if( K == 1 )
{
attempts = 1;
criteria.maxCount = 2;
}
const float* sample = data.ptr<float>();
for( j = 0; j < dims; j++ )
box[j] = Vec2f(sample[j], sample[j]);
for( i = 1; i < N; i++ )
{
sample = data.ptr<float>(i);
for( j = 0; j < dims; j++ )
{
float v = sample[j];
box[j][0] = std::min(box[j][0], v);
box[j][1] = std::max(box[j][1], v);
}
}
for( a = 0; a < attempts; a++ )
{
double max_center_shift = DBL_MAX;
for( iter = 0;; )
{
swap(centers, old_centers);
if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) )
{
if( flags & KMEANS_PP_CENTERS )
generateCentersPP(data, centers, K, rng, SPP_TRIALS);
else
{
for( k = 0; k < K; k++ )
generateRandomCenter(_box, centers.ptr<float>(k), rng);
}
}
else
{
if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) )
{
for( i = 0; i < N; i++ )
CV_Assert( (unsigned)labels[i] < (unsigned)K );
}
// compute centers
centers = Scalar(0);
for( k = 0; k < K; k++ )
counters[k] = 0;
for( i = 0; i < N; i++ )
{
sample = data.ptr<float>(i);
k = labels[i];
float* center = centers.ptr<float>(k);
j=0;
#if CV_ENABLE_UNROLLED
for(; j <= dims - 4; j += 4 )
{
float t0 = center[j] + sample[j];
float t1 = center[j+1] + sample[j+1];
center[j] = t0;
center[j+1] = t1;
t0 = center[j+2] + sample[j+2];
t1 = center[j+3] + sample[j+3];
center[j+2] = t0;
center[j+3] = t1;
}
#endif
for( ; j < dims; j++ )
center[j] += sample[j];
counters[k]++;
}
if( iter > 0 )
max_center_shift = 0;
for( k = 0; k < K; k++ )
{
if( counters[k] != 0 )
continue;
// if some cluster appeared to be empty then:
// 1. find the biggest cluster
// 2. find the farthest from the center point in the biggest cluster
// 3. exclude the farthest point from the biggest cluster and form a new 1-point cluster.
int max_k = 0;
for( int k1 = 1; k1 < K; k1++ )
{
if( counters[max_k] < counters[k1] )
max_k = k1;
}
double max_dist = 0;
int farthest_i = -1;
float* new_center = centers.ptr<float>(k);
float* old_center = centers.ptr<float>(max_k);
float* _old_center = temp.ptr<float>(); // normalized
float scale = 1.f/counters[max_k];
for( j = 0; j < dims; j++ )
_old_center[j] = old_center[j]*scale;
for( i = 0; i < N; i++ )
{
if( labels[i] != max_k )
continue;
sample = data.ptr<float>(i);
double dist = normL2Sqr_(sample, _old_center, dims);
if( max_dist <= dist )
{
max_dist = dist;
farthest_i = i;
}
}
counters[max_k]--;
counters[k]++;
labels[farthest_i] = k;
sample = data.ptr<float>(farthest_i);
for( j = 0; j < dims; j++ )
{
old_center[j] -= sample[j];
new_center[j] += sample[j];
}
}
for( k = 0; k < K; k++ )
{
float* center = centers.ptr<float>(k);
CV_Assert( counters[k] != 0 );
float scale = 1.f/counters[k];
for( j = 0; j < dims; j++ )
center[j] *= scale;
if( iter > 0 )
{
double dist = 0;
const float* old_center = old_centers.ptr<float>(k);
for( j = 0; j < dims; j++ )
{
double t = center[j] - old_center[j];
dist += t*t;
}
max_center_shift = std::max(max_center_shift, dist);
}
}
}
if( ++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon )
break;
// assign labels
oclMat _dists(1, N, CV_64F);
_bestLabels.upload(_labels);
_centers.upload(centers);
distanceToCenters(_dists, _bestLabels, _src, _centers);
Mat dists;
_dists.download(dists);
_bestLabels.download(_labels);
double* dist = dists.ptr<double>(0);
compactness = 0;
for( i = 0; i < N; i++ )
{
compactness += dist[i];
}
}
if( compactness < best_compactness )
{
best_compactness = compactness;
}
}
return best_compactness;
}

View File

@ -0,0 +1,84 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Xiaopeng Fu, fuxiaopeng2222@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
__kernel void distanceToCenters(
int label_step, int K,
__global float *src,
__global int *labels, int dims, int rows,
__global float *centers,
__global float *dists)
{
int gid = get_global_id(1);
float dist, euDist, min;
int minCentroid;
if(gid >= rows)
return;
for(int i = 0 ; i < K; i++)
{
euDist = 0;
for(int j = 0; j < dims; j++)
{
dist = (src[j + gid * dims]
- centers[j + i * dims]);
euDist += dist * dist;
}
if(i == 0)
{
min = euDist;
minCentroid = 0;
}
else if(euDist < min)
{
min = euDist;
minCentroid = i;
}
}
dists[gid] = min;
labels[label_step * gid] = minCentroid;
}

View File

@ -73,14 +73,12 @@ void print_info()
#endif
}
std::string workdir;
int main(int argc, char **argv)
{
TS::ptr()->init("ocl");
TS::ptr()->init(".");
InitGoogleTest(&argc, argv);
const char *keys =
"{ h | false | print help message }"
"{ w | ../../../samples/c/| set working directory i.e. -w=C:\\}"
"{ t | gpu | set device type:i.e. -t=cpu or gpu}"
"{ p | 0 | set platform id i.e. -p=0}"
"{ d | 0 | set device id i.e. -d=0}";
@ -92,7 +90,6 @@ int main(int argc, char **argv)
cmd.printMessage();
return 0;
}
workdir = cmd.get<string>("w");
string type = cmd.get<string>("t");
unsigned int pid = cmd.get<unsigned int>("p");
int device = cmd.get<int>("d");

View File

@ -50,7 +50,6 @@
using namespace cv;
extern std::string workdir;
PARAM_TEST_CASE(StereoMatchBM, int, int)
{
int n_disp;
@ -66,9 +65,9 @@ PARAM_TEST_CASE(StereoMatchBM, int, int)
TEST_P(StereoMatchBM, Regression)
{
Mat left_image = readImage("stereobm/aloe-L.png", IMREAD_GRAYSCALE);
Mat right_image = readImage("stereobm/aloe-R.png", IMREAD_GRAYSCALE);
Mat disp_gold = readImage("stereobm/aloe-disp.png", IMREAD_GRAYSCALE);
Mat left_image = readImage("gpu/stereobm/aloe-L.png", IMREAD_GRAYSCALE);
Mat right_image = readImage("gpu/stereobm/aloe-R.png", IMREAD_GRAYSCALE);
Mat disp_gold = readImage("gpu/stereobm/aloe-disp.png", IMREAD_GRAYSCALE);
ocl::oclMat d_left, d_right;
ocl::oclMat d_disp(left_image.size(), CV_8U);
Mat disp;
@ -113,9 +112,9 @@ PARAM_TEST_CASE(StereoMatchBP, int, int, int, float, float, float, float)
};
TEST_P(StereoMatchBP, Regression)
{
Mat left_image = readImage("stereobp/aloe-L.png");
Mat right_image = readImage("stereobp/aloe-R.png");
Mat disp_gold = readImage("stereobp/aloe-disp.png", IMREAD_GRAYSCALE);
Mat left_image = readImage("gpu/stereobp/aloe-L.png");
Mat right_image = readImage("gpu/stereobp/aloe-R.png");
Mat disp_gold = readImage("gpu/stereobp/aloe-disp.png", IMREAD_GRAYSCALE);
ocl::oclMat d_left, d_right;
ocl::oclMat d_disp;
Mat disp;
@ -166,9 +165,9 @@ PARAM_TEST_CASE(StereoMatchConstSpaceBP, int, int, int, int, float, float, float
};
TEST_P(StereoMatchConstSpaceBP, Regression)
{
Mat left_image = readImage("csstereobp/aloe-L.png");
Mat right_image = readImage("csstereobp/aloe-R.png");
Mat disp_gold = readImage("csstereobp/aloe-disp.png", IMREAD_GRAYSCALE);
Mat left_image = readImage("gpu/csstereobp/aloe-L.png");
Mat right_image = readImage("gpu/csstereobp/aloe-R.png");
Mat disp_gold = readImage("gpu/csstereobp/aloe-disp.png", IMREAD_GRAYSCALE);
ocl::oclMat d_left, d_right;
ocl::oclMat d_disp;

View File

@ -48,7 +48,6 @@
////////////////////////////////////////////////////////
// Canny
extern std::string workdir;
IMPLEMENT_PARAM_CLASS(AppertureSize, int);
IMPLEMENT_PARAM_CLASS(L2gradient, bool);
@ -67,7 +66,7 @@ PARAM_TEST_CASE(Canny, AppertureSize, L2gradient)
TEST_P(Canny, Accuracy)
{
cv::Mat img = readImage(workdir + "fruits.jpg", cv::IMREAD_GRAYSCALE);
cv::Mat img = readImage("cv/shared/fruits.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
double low_thresh = 50.0;

View File

@ -0,0 +1,162 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Erping Pang, pang_er_ping@163.com
// Xiaopeng Fu, fuxiaopeng2222@163.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#ifdef HAVE_OPENCL
using namespace cvtest;
using namespace testing;
using namespace std;
using namespace cv;
#define OCL_KMEANS_USE_INITIAL_LABELS 1
#define OCL_KMEANS_PP_CENTERS 2
PARAM_TEST_CASE(Kmeans, int, int, int)
{
int type;
int K;
int flags;
cv::Mat src ;
ocl::oclMat d_src, d_dists;
Mat labels, centers;
ocl::oclMat d_labels, d_centers;
cv::RNG rng ;
virtual void SetUp(){
K = GET_PARAM(0);
type = GET_PARAM(1);
flags = GET_PARAM(2);
rng = TS::ptr()->get_rng();
// MWIDTH=256, MHEIGHT=256. defined in utility.hpp
cv::Size size = cv::Size(MWIDTH, MHEIGHT);
src.create(size, type);
int row_idx = 0;
const int max_neighbour = MHEIGHT / K - 1;
CV_Assert(K <= MWIDTH);
for(int i = 0; i < K; i++ )
{
Mat center_row_header = src.row(row_idx);
center_row_header.setTo(0);
int nchannel = center_row_header.channels();
for(int j = 0; j < nchannel; j++)
center_row_header.at<float>(0, i*nchannel+j) = 50000.0;
for(int j = 0; (j < max_neighbour) ||
(i == K-1 && j < max_neighbour + MHEIGHT%K); j ++)
{
Mat cur_row_header = src.row(row_idx + 1 + j);
center_row_header.copyTo(cur_row_header);
Mat tmpmat = randomMat(rng, cur_row_header.size(), cur_row_header.type(), -200, 200, false);
cur_row_header += tmpmat;
}
row_idx += 1 + max_neighbour;
}
}
};
TEST_P(Kmeans, Mat){
if(flags & KMEANS_USE_INITIAL_LABELS)
{
// inital a given labels
labels.create(src.rows, 1, CV_32S);
int *label = labels.ptr<int>();
for(int i = 0; i < src.rows; i++)
label[i] = rng.uniform(0, K);
d_labels.upload(labels);
}
d_src.upload(src);
for(int j = 0; j < LOOP_TIMES; j++)
{
kmeans(src, K, labels,
TermCriteria( TermCriteria::EPS + TermCriteria::MAX_ITER, 100, 0),
1, flags, centers);
ocl::kmeans(d_src, K, d_labels,
TermCriteria( TermCriteria::EPS + TermCriteria::MAX_ITER, 100, 0),
1, flags, d_centers);
Mat dd_labels(d_labels);
Mat dd_centers(d_centers);
if(flags & KMEANS_USE_INITIAL_LABELS)
{
EXPECT_MAT_NEAR(labels, dd_labels, 0);
EXPECT_MAT_NEAR(centers, dd_centers, 1e-3);
}
else
{
int row_idx = 0;
for(int i = 0; i < K; i++)
{
// verify lables with ground truth resutls
int label = labels.at<int>(row_idx);
int header_label = dd_labels.at<int>(row_idx);
for(int j = 0; (j < MHEIGHT/K)||(i == K-1 && j < MHEIGHT/K+MHEIGHT%K); j++)
{
ASSERT_NEAR(labels.at<int>(row_idx+j), label, 0);
ASSERT_NEAR(dd_labels.at<int>(row_idx+j), header_label, 0);
}
// verify centers
float *center = centers.ptr<float>(label);
float *header_center = dd_centers.ptr<float>(header_label);
for(int t = 0; t < centers.cols; t++)
ASSERT_NEAR(center[t], header_center[t], 1e-3);
row_idx += MHEIGHT/K;
}
}
}
}
INSTANTIATE_TEST_CASE_P(OCL_ML, Kmeans, Combine(
Values(3, 5, 8),
Values(CV_32FC1, CV_32FC2, CV_32FC4),
Values(OCL_KMEANS_USE_INITIAL_LABELS/*, OCL_KMEANS_PP_CENTERS*/)));
#endif

View File

@ -44,7 +44,7 @@ TEST_P(MomentsTest, Mat)
{
if(test_contours)
{
Mat src = imread( workdir + "../cpp/pic3.png", IMREAD_GRAYSCALE );
Mat src = readImage( "cv/shared/pic3.png", IMREAD_GRAYSCALE );
ASSERT_FALSE(src.empty());
Mat canny_output;
vector<vector<Point> > contours;

View File

@ -66,11 +66,8 @@ PARAM_TEST_CASE(HOG, Size, int)
{
winSize = GET_PARAM(0);
type = GET_PARAM(1);
img_rgb = readImage(workdir + "../gpu/road.png");
if(img_rgb.empty())
{
std::cout << "Couldn't read road.png" << std::endl;
}
img_rgb = readImage("gpu/hog/road.png");
ASSERT_FALSE(img_rgb.empty());
}
};
@ -215,18 +212,11 @@ PARAM_TEST_CASE(Haar, int, CascadeName)
virtual void SetUp()
{
flags = GET_PARAM(0);
cascadeName = (workdir + "../../data/haarcascades/").append(GET_PARAM(1));
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) )
{
std::cout << "ERROR: Could not load classifier cascade" << std::endl;
return;
}
img = readImage(workdir + "lena.jpg", IMREAD_GRAYSCALE);
if(img.empty())
{
std::cout << "Couldn't read lena.jpg" << std::endl;
return ;
}
cascadeName = (string(cvtest::TS::ptr()->get_data_path()) + "cv/cascadeandhog/cascades/").append(GET_PARAM(1));
ASSERT_TRUE(cascade.load( cascadeName ));
ASSERT_TRUE(cpucascade.load(cascadeName));
img = readImage("cv/shared/lena.png", IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
equalizeHist(img, img);
d_img.upload(img);
}

View File

@ -75,7 +75,7 @@ PARAM_TEST_CASE(GoodFeaturesToTrack, MinDistance)
TEST_P(GoodFeaturesToTrack, Accuracy)
{
cv::Mat frame = readImage(workdir + "../gpu/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame.empty());
int maxCorners = 1000;
@ -146,10 +146,10 @@ PARAM_TEST_CASE(TVL1, bool)
TEST_P(TVL1, Accuracy)
{
cv::Mat frame0 = readImage(workdir + "../gpu/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage(workdir + "../gpu/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame1 = readImage("gpu/opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
cv::ocl::OpticalFlowDual_TVL1_OCL d_alg;
@ -188,10 +188,10 @@ PARAM_TEST_CASE(Sparse, bool, bool)
TEST_P(Sparse, Mat)
{
cv::Mat frame0 = readImage(workdir + "../gpu/rubberwhale1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = readImage(workdir + "../gpu/rubberwhale2.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
cv::Mat frame1 = readImage("gpu/opticalflow/rubberwhale2.png", useGray ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
ASSERT_FALSE(frame1.empty());
cv::Mat gray_frame;
@ -301,10 +301,10 @@ PARAM_TEST_CASE(Farneback, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
TEST_P(Farneback, Accuracy)
{
cv::Mat frame0 = imread(workdir + "/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame0 = readImage("gpu/opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty());
cv::Mat frame1 = imread(workdir + "/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
cv::Mat frame1 = readImage("gpu/opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty());
double polySigma = polyN <= 5 ? 1.1 : 1.5;

View File

@ -5,5 +5,5 @@ endif()
set(the_description "Super Resolution")
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4127 -Wundef)
ocv_define_module(superres opencv_imgproc opencv_video
OPTIONAL opencv_highgui
OPTIONAL opencv_highgui opencv_ocl
opencv_gpuarithm opencv_gpufilters opencv_gpuwarping opencv_gpuimgproc opencv_gpuoptflow opencv_gpucodec)

View File

@ -92,6 +92,7 @@ namespace cv
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow.
CV_EXPORTS Ptr<SuperResolution> createSuperResolution_BTVL1();
CV_EXPORTS Ptr<SuperResolution> createSuperResolution_BTVL1_GPU();
CV_EXPORTS Ptr<SuperResolution> createSuperResolution_BTVL1_OCL();
}
}

View File

@ -63,10 +63,12 @@ namespace cv
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_DualTVL1();
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_DualTVL1_GPU();
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_DualTVL1_OCL();
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_Brox_GPU();
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_PyrLK_GPU();
CV_EXPORTS Ptr<DenseOpticalFlowExt> createOptFlow_PyrLK_OCL();
}
}

View File

@ -0,0 +1,147 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
#ifdef HAVE_OPENCL
#include "opencv2/ocl.hpp"
using namespace std;
using namespace std::tr1;
using namespace testing;
using namespace perf;
using namespace cv;
using namespace cv::superres;
namespace
{
class OneFrameSource_OCL : public FrameSource
{
public:
explicit OneFrameSource_OCL(const ocl::oclMat& frame) : frame_(frame) {}
void nextFrame(OutputArray frame)
{
ocl::getOclMatRef(frame) = frame_;
}
void reset()
{
}
private:
ocl::oclMat frame_;
};
class ZeroOpticalFlowOCL : public DenseOpticalFlowExt
{
public:
void calc(InputArray frame0, InputArray, OutputArray flow1, OutputArray flow2)
{
ocl::oclMat& frame0_ = ocl::getOclMatRef(frame0);
ocl::oclMat& flow1_ = ocl::getOclMatRef(flow1);
ocl::oclMat& flow2_ = ocl::getOclMatRef(flow2);
cv::Size size = frame0_.size();
if(!flow2.needed())
{
flow1_.create(size, CV_32FC2);
flow1_.setTo(Scalar::all(0));
}
else
{
flow1_.create(size, CV_32FC1);
flow2_.create(size, CV_32FC1);
flow1_.setTo(Scalar::all(0));
flow2_.setTo(Scalar::all(0));
}
}
void collectGarbage()
{
}
};
}
PERF_TEST_P(Size_MatType, SuperResolution_BTVL1_OCL,
Combine(Values(szSmall64, szSmall128),
Values(MatType(CV_8UC1), MatType(CV_8UC3))))
{
std::vector<cv::ocl::Info>info;
cv::ocl::getDevice(info);
declare.time(5 * 60);
const Size size = get<0>(GetParam());
const int type = get<1>(GetParam());
Mat frame(size, type);
declare.in(frame, WARMUP_RNG);
ocl::oclMat frame_ocl;
frame_ocl.upload(frame);
const int scale = 2;
const int iterations = 50;
const int temporalAreaRadius = 1;
Ptr<DenseOpticalFlowExt> opticalFlowOcl(new ZeroOpticalFlowOCL);
Ptr<SuperResolution> superRes_ocl = createSuperResolution_BTVL1_OCL();
superRes_ocl->set("scale", scale);
superRes_ocl->set("iterations", iterations);
superRes_ocl->set("temporalAreaRadius", temporalAreaRadius);
superRes_ocl->set("opticalFlow", opticalFlowOcl);
superRes_ocl->setInput(new OneFrameSource_OCL(frame_ocl));
ocl::oclMat dst_ocl;
superRes_ocl->nextFrame(dst_ocl);
TEST_CYCLE_N(10) superRes_ocl->nextFrame(dst_ocl);
frame_ocl.release();
CPU_SANITY_CHECK(dst_ocl);
}
#endif

View File

@ -0,0 +1,748 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma, jin@multicorewareinc.com
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
// S. Farsiu , D. Robinson, M. Elad, P. Milanfar. Fast and robust multiframe super resolution.
// Dennis Mitzel, Thomas Pock, Thomas Schoenemann, Daniel Cremers. Video Super Resolution using Duality Based TV-L1 Optical Flow.
#include "precomp.hpp"
#if !defined(HAVE_OPENCL) || !defined(HAVE_OPENCV_OCL)
cv::Ptr<cv::superres::SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL()
{
CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
return Ptr<SuperResolution>();
}
#else
using namespace std;
using namespace cv;
using namespace cv::ocl;
using namespace cv::superres;
using namespace cv::superres::detail;
namespace cv
{
namespace ocl
{
extern const char* superres_btvl1;
float* btvWeights_ = NULL;
size_t btvWeights_size = 0;
}
}
namespace btv_l1_device_ocl
{
void buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY,
const oclMat& backwardMotionX, const oclMat& bacwardMotionY,
oclMat& forwardMapX, oclMat& forwardMapY,
oclMat& backwardMapX, oclMat& backwardMapY);
void upscale(const oclMat& src, oclMat& dst, int scale);
float diffSign(float a, float b);
Point3f diffSign(Point3f a, Point3f b);
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst);
void calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize);
}
void btv_l1_device_ocl::buildMotionMaps(const oclMat& forwardMotionX, const oclMat& forwardMotionY,
const oclMat& backwardMotionX, const oclMat& backwardMotionY,
oclMat& forwardMapX, oclMat& forwardMapY,
oclMat& backwardMapX, oclMat& backwardMapY)
{
Context* clCxt = Context::getContext();
size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {forwardMapX.cols, forwardMapX.rows, 1};
int forwardMotionX_step = (int)(forwardMotionX.step/forwardMotionX.elemSize());
int forwardMotionY_step = (int)(forwardMotionY.step/forwardMotionY.elemSize());
int backwardMotionX_step = (int)(backwardMotionX.step/backwardMotionX.elemSize());
int backwardMotionY_step = (int)(backwardMotionY.step/backwardMotionY.elemSize());
int forwardMapX_step = (int)(forwardMapX.step/forwardMapX.elemSize());
int forwardMapY_step = (int)(forwardMapY.step/forwardMapY.elemSize());
int backwardMapX_step = (int)(backwardMapX.step/backwardMapX.elemSize());
int backwardMapY_step = (int)(backwardMapY.step/backwardMapY.elemSize());
String kernel_name = "buildMotionMapsKernel";
vector< pair<size_t, const void*> > args;
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionX.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMotionY.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionX.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMotionY.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapX.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&forwardMapY.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapX.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&backwardMapY.data));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX.rows));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY.cols));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionX_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMotionY_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionX_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMotionY_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapX_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&forwardMapY_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapX_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&backwardMapY_step));
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
}
void btv_l1_device_ocl::upscale(const oclMat& src, oclMat& dst, int scale)
{
Context* clCxt = Context::getContext();
size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {src.cols, src.rows, 1};
int src_step = (int)(src.step/src.elemSize());
int dst_step = (int)(dst.step/dst.elemSize());
String kernel_name = "upscaleKernel";
vector< pair<size_t, const void*> > args;
int cn = src.oclchannels();
args.push_back(make_pair(sizeof(cl_mem), (void*)&src.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst.data));
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows));
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols));
args.push_back(make_pair(sizeof(cl_int), (void*)&scale));
args.push_back(make_pair(sizeof(cl_int), (void*)&cn));
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
}
float btv_l1_device_ocl::diffSign(float a, float b)
{
return a > b ? 1.0f : a < b ? -1.0f : 0.0f;
}
Point3f btv_l1_device_ocl::diffSign(Point3f a, Point3f b)
{
return Point3f(
a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f,
a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f,
a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f
);
}
void btv_l1_device_ocl::diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst)
{
Context* clCxt = Context::getContext();
oclMat src1_ = src1.reshape(1);
oclMat src2_ = src2.reshape(1);
oclMat dst_ = dst.reshape(1);
int src1_step = (int)(src1_.step/src1_.elemSize());
int src2_step = (int)(src2_.step/src2_.elemSize());
int dst_step = (int)(dst_.step/dst_.elemSize());
size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {src1_.cols, src1_.rows, 1};
String kernel_name = "diffSignKernel";
vector< pair<size_t, const void*> > args;
args.push_back(make_pair(sizeof(cl_mem), (void*)&src1_.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&src2_.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data));
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.rows));
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_.cols));
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&src1_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&src2_step));
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
}
void btv_l1_device_ocl::calcBtvRegularization(const oclMat& src, oclMat& dst, int ksize)
{
Context* clCxt = Context::getContext();
oclMat src_ = src.reshape(1);
oclMat dst_ = dst.reshape(1);
size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {src.cols, src.rows, 1};
int src_step = (int)(src_.step/src_.elemSize());
int dst_step = (int)(dst_.step/dst_.elemSize());
String kernel_name = "calcBtvRegularizationKernel";
vector< pair<size_t, const void*> > args;
int cn = src.oclchannels();
cl_mem c_btvRegWeights;
size_t count = btvWeights_size * sizeof(float);
c_btvRegWeights = openCLCreateBuffer(clCxt, CL_MEM_READ_ONLY, count);
int cl_safe_check = clEnqueueWriteBuffer((cl_command_queue)clCxt->oclCommandQueue(), c_btvRegWeights, 1, 0, count, btvWeights_, 0, NULL, NULL);
CV_Assert(cl_safe_check == CL_SUCCESS);
args.push_back(make_pair(sizeof(cl_mem), (void*)&src_.data));
args.push_back(make_pair(sizeof(cl_mem), (void*)&dst_.data));
args.push_back(make_pair(sizeof(cl_int), (void*)&src_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&dst_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&src.rows));
args.push_back(make_pair(sizeof(cl_int), (void*)&src.cols));
args.push_back(make_pair(sizeof(cl_int), (void*)&ksize));
args.push_back(make_pair(sizeof(cl_int), (void*)&cn));
args.push_back(make_pair(sizeof(cl_mem), (void*)&c_btvRegWeights));
openCLExecuteKernel(clCxt, &superres_btvl1, kernel_name, global_thread, local_thread, args, -1, -1);
cl_safe_check = clReleaseMemObject(c_btvRegWeights);
CV_Assert(cl_safe_check == CL_SUCCESS);
}
namespace
{
void calcRelativeMotions(const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions,
vector<pair<oclMat, oclMat> >& relForwardMotions, vector<pair<oclMat, oclMat> >& relBackwardMotions,
int baseIdx, Size size)
{
const int count = static_cast<int>(forwardMotions.size());
relForwardMotions.resize(count);
relForwardMotions[baseIdx].first.create(size, CV_32FC1);
relForwardMotions[baseIdx].first.setTo(Scalar::all(0));
relForwardMotions[baseIdx].second.create(size, CV_32FC1);
relForwardMotions[baseIdx].second.setTo(Scalar::all(0));
relBackwardMotions.resize(count);
relBackwardMotions[baseIdx].first.create(size, CV_32FC1);
relBackwardMotions[baseIdx].first.setTo(Scalar::all(0));
relBackwardMotions[baseIdx].second.create(size, CV_32FC1);
relBackwardMotions[baseIdx].second.setTo(Scalar::all(0));
for (int i = baseIdx - 1; i >= 0; --i)
{
ocl::add(relForwardMotions[i + 1].first, forwardMotions[i].first, relForwardMotions[i].first);
ocl::add(relForwardMotions[i + 1].second, forwardMotions[i].second, relForwardMotions[i].second);
ocl::add(relBackwardMotions[i + 1].first, backwardMotions[i + 1].first, relBackwardMotions[i].first);
ocl::add(relBackwardMotions[i + 1].second, backwardMotions[i + 1].second, relBackwardMotions[i].second);
}
for (int i = baseIdx + 1; i < count; ++i)
{
ocl::add(relForwardMotions[i - 1].first, backwardMotions[i].first, relForwardMotions[i].first);
ocl::add(relForwardMotions[i - 1].second, backwardMotions[i].second, relForwardMotions[i].second);
ocl::add(relBackwardMotions[i - 1].first, forwardMotions[i - 1].first, relBackwardMotions[i].first);
ocl::add(relBackwardMotions[i - 1].second, forwardMotions[i - 1].second, relBackwardMotions[i].second);
}
}
void upscaleMotions(const vector<pair<oclMat, oclMat> >& lowResMotions, vector<pair<oclMat, oclMat> >& highResMotions, int scale)
{
highResMotions.resize(lowResMotions.size());
for (size_t i = 0; i < lowResMotions.size(); ++i)
{
ocl::resize(lowResMotions[i].first, highResMotions[i].first, Size(), scale, scale, INTER_LINEAR);
ocl::resize(lowResMotions[i].second, highResMotions[i].second, Size(), scale, scale, INTER_LINEAR);
ocl::multiply(scale, highResMotions[i].first, highResMotions[i].first);
ocl::multiply(scale, highResMotions[i].second, highResMotions[i].second);
}
}
void buildMotionMaps(const pair<oclMat, oclMat>& forwardMotion, const pair<oclMat, oclMat>& backwardMotion,
pair<oclMat, oclMat>& forwardMap, pair<oclMat, oclMat>& backwardMap)
{
forwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
forwardMap.second.create(forwardMotion.first.size(), CV_32FC1);
backwardMap.first.create(forwardMotion.first.size(), CV_32FC1);
backwardMap.second.create(forwardMotion.first.size(), CV_32FC1);
btv_l1_device_ocl::buildMotionMaps(forwardMotion.first, forwardMotion.second,
backwardMotion.first, backwardMotion.second,
forwardMap.first, forwardMap.second,
backwardMap.first, backwardMap.second);
}
void upscale(const oclMat& src, oclMat& dst, int scale)
{
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );
dst.create(src.rows * scale, src.cols * scale, src.type());
dst.setTo(Scalar::all(0));
btv_l1_device_ocl::upscale(src, dst, scale);
}
void diffSign(const oclMat& src1, const oclMat& src2, oclMat& dst)
{
dst.create(src1.size(), src1.type());
btv_l1_device_ocl::diffSign(src1, src2, dst);
}
void calcBtvWeights(int btvKernelSize, double alpha, vector<float>& btvWeights)
{
const size_t size = btvKernelSize * btvKernelSize;
btvWeights.resize(size);
const int ksize = (btvKernelSize - 1) / 2;
const float alpha_f = static_cast<float>(alpha);
for (int m = 0, ind = 0; m <= ksize; ++m)
{
for (int l = ksize; l + m >= 0; --l, ++ind)
btvWeights[ind] = pow(alpha_f, std::abs(m) + std::abs(l));
}
btvWeights_ = &btvWeights[0];
btvWeights_size = size;
}
void calcBtvRegularization(const oclMat& src, oclMat& dst, int btvKernelSize)
{
dst.create(src.size(), src.type());
dst.setTo(Scalar::all(0));
const int ksize = (btvKernelSize - 1) / 2;
btv_l1_device_ocl::calcBtvRegularization(src, dst, ksize);
}
class BTVL1_OCL_Base
{
public:
BTVL1_OCL_Base();
void process(const vector<oclMat>& src, oclMat& dst,
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions,
int baseIdx);
void collectGarbage();
protected:
int scale_;
int iterations_;
double lambda_;
double tau_;
double alpha_;
int btvKernelSize_;
int blurKernelSize_;
double blurSigma_;
Ptr<DenseOpticalFlowExt> opticalFlow_;
private:
vector<Ptr<cv::ocl::FilterEngine_GPU> > filters_;
int curBlurKernelSize_;
double curBlurSigma_;
int curSrcType_;
vector<float> btvWeights_;
int curBtvKernelSize_;
double curAlpha_;
vector<pair<oclMat, oclMat> > lowResForwardMotions_;
vector<pair<oclMat, oclMat> > lowResBackwardMotions_;
vector<pair<oclMat, oclMat> > highResForwardMotions_;
vector<pair<oclMat, oclMat> > highResBackwardMotions_;
vector<pair<oclMat, oclMat> > forwardMaps_;
vector<pair<oclMat, oclMat> > backwardMaps_;
oclMat highRes_;
vector<oclMat> diffTerms_;
vector<oclMat> a_, b_, c_;
oclMat regTerm_;
};
BTVL1_OCL_Base::BTVL1_OCL_Base()
{
scale_ = 4;
iterations_ = 180;
lambda_ = 0.03;
tau_ = 1.3;
alpha_ = 0.7;
btvKernelSize_ = 7;
blurKernelSize_ = 5;
blurSigma_ = 0.0;
opticalFlow_ = createOptFlow_DualTVL1_OCL();
curBlurKernelSize_ = -1;
curBlurSigma_ = -1.0;
curSrcType_ = -1;
curBtvKernelSize_ = -1;
curAlpha_ = -1.0;
}
void BTVL1_OCL_Base::process(const vector<oclMat>& src, oclMat& dst,
const vector<pair<oclMat, oclMat> >& forwardMotions, const vector<pair<oclMat, oclMat> >& backwardMotions,
int baseIdx)
{
CV_Assert( scale_ > 1 );
CV_Assert( iterations_ > 0 );
CV_Assert( tau_ > 0.0 );
CV_Assert( alpha_ > 0.0 );
CV_Assert( btvKernelSize_ > 0 && btvKernelSize_ <= 16 );
CV_Assert( blurKernelSize_ > 0 );
CV_Assert( blurSigma_ >= 0.0 );
// update blur filter and btv weights
if (filters_.size() != src.size() || blurKernelSize_ != curBlurKernelSize_ || blurSigma_ != curBlurSigma_ || src[0].type() != curSrcType_)
{
filters_.resize(src.size());
for (size_t i = 0; i < src.size(); ++i)
filters_[i] = cv::ocl::createGaussianFilter_GPU(src[0].type(), Size(blurKernelSize_, blurKernelSize_), blurSigma_);
curBlurKernelSize_ = blurKernelSize_;
curBlurSigma_ = blurSigma_;
curSrcType_ = src[0].type();
}
if (btvWeights_.empty() || btvKernelSize_ != curBtvKernelSize_ || alpha_ != curAlpha_)
{
calcBtvWeights(btvKernelSize_, alpha_, btvWeights_);
curBtvKernelSize_ = btvKernelSize_;
curAlpha_ = alpha_;
}
// calc motions between input frames
calcRelativeMotions(forwardMotions, backwardMotions,
lowResForwardMotions_, lowResBackwardMotions_,
baseIdx, src[0].size());
upscaleMotions(lowResForwardMotions_, highResForwardMotions_, scale_);
upscaleMotions(lowResBackwardMotions_, highResBackwardMotions_, scale_);
forwardMaps_.resize(highResForwardMotions_.size());
backwardMaps_.resize(highResForwardMotions_.size());
for (size_t i = 0; i < highResForwardMotions_.size(); ++i)
{
buildMotionMaps(highResForwardMotions_[i], highResBackwardMotions_[i], forwardMaps_[i], backwardMaps_[i]);
}
// initial estimation
const Size lowResSize = src[0].size();
const Size highResSize(lowResSize.width * scale_, lowResSize.height * scale_);
ocl::resize(src[baseIdx], highRes_, highResSize, 0, 0, INTER_LINEAR);
// iterations
diffTerms_.resize(src.size());
a_.resize(src.size());
b_.resize(src.size());
c_.resize(src.size());
for (int i = 0; i < iterations_; ++i)
{
for (size_t k = 0; k < src.size(); ++k)
{
diffTerms_[k].create(highRes_.size(), highRes_.type());
a_[k].create(highRes_.size(), highRes_.type());
b_[k].create(highRes_.size(), highRes_.type());
c_[k].create(lowResSize, highRes_.type());
// a = M * Ih
ocl::remap(highRes_, a_[k], backwardMaps_[k].first, backwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar());
// b = HM * Ih
filters_[k]->apply(a_[k], b_[k], Rect(0,0,-1,-1));
// c = DHF * Ih
ocl::resize(b_[k], c_[k], lowResSize, 0, 0, INTER_NEAREST);
diffSign(src[k], c_[k], c_[k]);
// a = Dt * diff
upscale(c_[k], a_[k], scale_);
// b = HtDt * diff
filters_[k]->apply(a_[k], b_[k], Rect(0,0,-1,-1));
// diffTerm = MtHtDt * diff
ocl::remap(b_[k], diffTerms_[k], forwardMaps_[k].first, forwardMaps_[k].second, INTER_NEAREST, BORDER_CONSTANT, Scalar());
}
if (lambda_ > 0)
{
calcBtvRegularization(highRes_, regTerm_, btvKernelSize_);
ocl::addWeighted(highRes_, 1.0, regTerm_, -tau_ * lambda_, 0.0, highRes_);
}
for (size_t k = 0; k < src.size(); ++k)
{
ocl::addWeighted(highRes_, 1.0, diffTerms_[k], tau_, 0.0, highRes_);
}
}
Rect inner(btvKernelSize_, btvKernelSize_, highRes_.cols - 2 * btvKernelSize_, highRes_.rows - 2 * btvKernelSize_);
highRes_(inner).copyTo(dst);
}
void BTVL1_OCL_Base::collectGarbage()
{
filters_.clear();
lowResForwardMotions_.clear();
lowResBackwardMotions_.clear();
highResForwardMotions_.clear();
highResBackwardMotions_.clear();
forwardMaps_.clear();
backwardMaps_.clear();
highRes_.release();
diffTerms_.clear();
a_.clear();
b_.clear();
c_.clear();
regTerm_.release();
}
////////////////////////////////////////////////////////////
class BTVL1_OCL : public SuperResolution, private BTVL1_OCL_Base
{
public:
AlgorithmInfo* info() const;
BTVL1_OCL();
void collectGarbage();
protected:
void initImpl(Ptr<FrameSource>& frameSource);
void processImpl(Ptr<FrameSource>& frameSource, OutputArray output);
private:
int temporalAreaRadius_;
void readNextFrame(Ptr<FrameSource>& frameSource);
void processFrame(int idx);
oclMat curFrame_;
oclMat prevFrame_;
vector<oclMat> frames_;
vector<pair<oclMat, oclMat> > forwardMotions_;
vector<pair<oclMat, oclMat> > backwardMotions_;
vector<oclMat> outputs_;
int storePos_;
int procPos_;
int outPos_;
vector<oclMat> srcFrames_;
vector<pair<oclMat, oclMat> > srcForwardMotions_;
vector<pair<oclMat, oclMat> > srcBackwardMotions_;
oclMat finalOutput_;
};
CV_INIT_ALGORITHM(BTVL1_OCL, "SuperResolution.BTVL1_OCL",
obj.info()->addParam(obj, "scale", obj.scale_, false, 0, 0, "Scale factor.");
obj.info()->addParam(obj, "iterations", obj.iterations_, false, 0, 0, "Iteration count.");
obj.info()->addParam(obj, "tau", obj.tau_, false, 0, 0, "Asymptotic value of steepest descent method.");
obj.info()->addParam(obj, "lambda", obj.lambda_, false, 0, 0, "Weight parameter to balance data term and smoothness term.");
obj.info()->addParam(obj, "alpha", obj.alpha_, false, 0, 0, "Parameter of spacial distribution in Bilateral-TV.");
obj.info()->addParam(obj, "btvKernelSize", obj.btvKernelSize_, false, 0, 0, "Kernel size of Bilateral-TV filter.");
obj.info()->addParam(obj, "blurKernelSize", obj.blurKernelSize_, false, 0, 0, "Gaussian blur kernel size.");
obj.info()->addParam(obj, "blurSigma", obj.blurSigma_, false, 0, 0, "Gaussian blur sigma.");
obj.info()->addParam(obj, "temporalAreaRadius", obj.temporalAreaRadius_, false, 0, 0, "Radius of the temporal search area.");
obj.info()->addParam<DenseOpticalFlowExt>(obj, "opticalFlow", obj.opticalFlow_, false, 0, 0, "Dense optical flow algorithm."));
BTVL1_OCL::BTVL1_OCL()
{
temporalAreaRadius_ = 4;
}
void BTVL1_OCL::collectGarbage()
{
curFrame_.release();
prevFrame_.release();
frames_.clear();
forwardMotions_.clear();
backwardMotions_.clear();
outputs_.clear();
srcFrames_.clear();
srcForwardMotions_.clear();
srcBackwardMotions_.clear();
finalOutput_.release();
SuperResolution::collectGarbage();
BTVL1_OCL_Base::collectGarbage();
}
void BTVL1_OCL::initImpl(Ptr<FrameSource>& frameSource)
{
const int cacheSize = 2 * temporalAreaRadius_ + 1;
frames_.resize(cacheSize);
forwardMotions_.resize(cacheSize);
backwardMotions_.resize(cacheSize);
outputs_.resize(cacheSize);
storePos_ = -1;
for (int t = -temporalAreaRadius_; t <= temporalAreaRadius_; ++t)
readNextFrame(frameSource);
for (int i = 0; i <= temporalAreaRadius_; ++i)
processFrame(i);
procPos_ = temporalAreaRadius_;
outPos_ = -1;
}
void BTVL1_OCL::processImpl(Ptr<FrameSource>& frameSource, OutputArray _output)
{
if (outPos_ >= storePos_)
{
if(_output.kind() == _InputArray::OCL_MAT)
{
getOclMatRef(_output).release();
}
else
{
_output.release();
}
return;
}
readNextFrame(frameSource);
if (procPos_ < storePos_)
{
++procPos_;
processFrame(procPos_);
}
++outPos_;
const oclMat& curOutput = at(outPos_, outputs_);
if (_output.kind() == _InputArray::OCL_MAT)
curOutput.convertTo(getOclMatRef(_output), CV_8U);
else
{
curOutput.convertTo(finalOutput_, CV_8U);
arrCopy(finalOutput_, _output);
}
}
void BTVL1_OCL::readNextFrame(Ptr<FrameSource>& frameSource)
{
curFrame_.release();
frameSource->nextFrame(curFrame_);
if (curFrame_.empty())
return;
++storePos_;
curFrame_.convertTo(at(storePos_, frames_), CV_32F);
if (storePos_ > 0)
{
pair<oclMat, oclMat>& forwardMotion = at(storePos_ - 1, forwardMotions_);
pair<oclMat, oclMat>& backwardMotion = at(storePos_, backwardMotions_);
opticalFlow_->calc(prevFrame_, curFrame_, forwardMotion.first, forwardMotion.second);
opticalFlow_->calc(curFrame_, prevFrame_, backwardMotion.first, backwardMotion.second);
}
curFrame_.copyTo(prevFrame_);
}
void BTVL1_OCL::processFrame(int idx)
{
const int startIdx = max(idx - temporalAreaRadius_, 0);
const int procIdx = idx;
const int endIdx = min(startIdx + 2 * temporalAreaRadius_, storePos_);
const int count = endIdx - startIdx + 1;
srcFrames_.resize(count);
srcForwardMotions_.resize(count);
srcBackwardMotions_.resize(count);
int baseIdx = -1;
for (int i = startIdx, k = 0; i <= endIdx; ++i, ++k)
{
if (i == procIdx)
baseIdx = k;
srcFrames_[k] = at(i, frames_);
if (i < endIdx)
srcForwardMotions_[k] = at(i, forwardMotions_);
if (i > startIdx)
srcBackwardMotions_[k] = at(i, backwardMotions_);
}
process(srcFrames_, at(idx, outputs_), srcForwardMotions_, srcBackwardMotions_, baseIdx);
}
}
Ptr<SuperResolution> cv::superres::createSuperResolution_BTVL1_OCL()
{
return new BTVL1_OCL;
}
#endif

View File

@ -118,11 +118,23 @@ namespace
{
vc_ >> _frame.getMatRef();
}
else
else if(_frame.kind() == _InputArray::GPU_MAT)
{
vc_ >> frame_;
arrCopy(frame_, _frame);
}
else if(_frame.kind() == _InputArray::OCL_MAT)
{
vc_ >> frame_;
if(!frame_.empty())
{
arrCopy(frame_, _frame);
}
}
else
{
//should never get here
}
}
class VideoFrameSource : public CaptureFrameSource

View File

@ -108,30 +108,59 @@ namespace
{
src.getGpuMat().copyTo(dst.getGpuMatRef());
}
#ifdef HAVE_OPENCV_OCL
void ocl2mat(InputArray src, OutputArray dst)
{
dst.getMatRef() = (Mat)ocl::getOclMatRef(src);
}
void mat2ocl(InputArray src, OutputArray dst)
{
Mat m = src.getMat();
ocl::getOclMatRef(dst) = (ocl::oclMat)m;
}
void ocl2ocl(InputArray src, OutputArray dst)
{
ocl::getOclMatRef(src).copyTo(ocl::getOclMatRef(dst));
}
#else
void ocl2mat(InputArray, OutputArray)
{
CV_Error(Error::StsNotImplemented, "The called functionality is disabled for current build or platform");;
}
void mat2ocl(InputArray, OutputArray)
{
CV_Error(Error::StsNotImplemented, "The called functionality is disabled for current build or platform");;
}
void ocl2ocl(InputArray, OutputArray)
{
CV_Error(Error::StsNotImplemented, "The called functionality is disabled for current build or platform");
}
#endif
}
void cv::superres::arrCopy(InputArray src, OutputArray dst)
{
typedef void (*func_t)(InputArray src, OutputArray dst);
static const func_t funcs[10][10] =
static const func_t funcs[11][11] =
{
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu},
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu},
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu},
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu},
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu},
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu},
{0, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, 0 /*buf2arr*/, buf2arr},
{0, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/},
{0, gpu2mat, gpu2mat, gpu2mat, gpu2mat, gpu2mat, gpu2mat, arr2buf, 0 /*arr2tex*/, gpu2gpu}
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu, mat2ocl},
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu, mat2ocl},
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu, mat2ocl},
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu, mat2ocl},
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu, mat2ocl},
{0, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, mat2mat, arr2buf, 0 /*arr2tex*/, mat2gpu, mat2ocl},
{0, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, buf2arr, 0 /*buf2arr*/, buf2arr, 0 },
{0, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0 /*tex2arr*/, 0},
{0, gpu2mat, gpu2mat, gpu2mat, gpu2mat, gpu2mat, gpu2mat, arr2buf, 0 /*arr2tex*/, gpu2gpu, 0 },
{0, ocl2mat, ocl2mat, ocl2mat, ocl2mat, ocl2mat, ocl2mat, 0, 0, 0, ocl2ocl}
};
const int src_kind = src.kind() >> _InputArray::KIND_SHIFT;
const int dst_kind = dst.kind() >> _InputArray::KIND_SHIFT;
CV_DbgAssert( src_kind >= 0 && src_kind < 10 );
CV_DbgAssert( dst_kind >= 0 && dst_kind < 10 );
CV_DbgAssert( src_kind >= 0 && src_kind < 11 );
CV_DbgAssert( dst_kind >= 0 && dst_kind < 11 );
const func_t func = funcs[src_kind][dst_kind];
CV_DbgAssert( func != 0 );
@ -173,7 +202,6 @@ namespace
break;
}
}
void convertToDepth(InputArray src, OutputArray dst, int depth)
{
CV_Assert( src.depth() <= CV_64F );
@ -254,3 +282,70 @@ GpuMat cv::superres::convertToType(const GpuMat& src, int type, GpuMat& buf0, Gp
convertToDepth(buf0, buf1, depth);
return buf1;
}
#ifdef HAVE_OPENCV_OCL
namespace
{
// TODO(pengx17): remove these overloaded functions until IntputArray fully supports oclMat
void convertToCn(const ocl::oclMat& src, ocl::oclMat& dst, int cn)
{
CV_Assert( src.channels() == 1 || src.channels() == 3 || src.channels() == 4 );
CV_Assert( cn == 1 || cn == 3 || cn == 4 );
static const int codes[5][5] =
{
{-1, -1, -1, -1, -1},
{-1, -1, -1, COLOR_GRAY2BGR, COLOR_GRAY2BGRA},
{-1, -1, -1, -1, -1},
{-1, COLOR_BGR2GRAY, -1, -1, COLOR_BGR2BGRA},
{-1, COLOR_BGRA2GRAY, -1, COLOR_BGRA2BGR, -1},
};
const int code = codes[src.channels()][cn];
CV_DbgAssert( code >= 0 );
ocl::cvtColor(src, dst, code, cn);
}
void convertToDepth(const ocl::oclMat& src, ocl::oclMat& dst, int depth)
{
CV_Assert( src.depth() <= CV_64F );
CV_Assert( depth == CV_8U || depth == CV_32F );
static const double maxVals[] =
{
std::numeric_limits<uchar>::max(),
std::numeric_limits<schar>::max(),
std::numeric_limits<ushort>::max(),
std::numeric_limits<short>::max(),
std::numeric_limits<int>::max(),
1.0,
1.0,
};
const double scale = maxVals[depth] / maxVals[src.depth()];
src.convertTo(dst, depth, scale);
}
}
ocl::oclMat cv::superres::convertToType(const ocl::oclMat& src, int type, ocl::oclMat& buf0, ocl::oclMat& buf1)
{
if (src.type() == type)
return src;
const int depth = CV_MAT_DEPTH(type);
const int cn = CV_MAT_CN(type);
if (src.depth() == depth)
{
convertToCn(src, buf0, cn);
return buf0;
}
if (src.channels() == cn)
{
convertToDepth(src, buf1, depth);
return buf1;
}
convertToCn(src, buf0, cn);
convertToDepth(buf0, buf1, depth);
return buf1;
}
#endif

View File

@ -45,6 +45,9 @@
#include "opencv2/core.hpp"
#include "opencv2/core/gpu.hpp"
#ifdef HAVE_OPENCV_OCL
#include "opencv2/ocl.hpp"
#endif
namespace cv
{
@ -57,6 +60,10 @@ namespace cv
CV_EXPORTS Mat convertToType(const Mat& src, int type, Mat& buf0, Mat& buf1);
CV_EXPORTS gpu::GpuMat convertToType(const gpu::GpuMat& src, int type, gpu::GpuMat& buf0, gpu::GpuMat& buf1);
#ifdef HAVE_OPENCV_OCL
CV_EXPORTS ocl::oclMat convertToType(const ocl::oclMat& src, int type, ocl::oclMat& buf0, ocl::oclMat& buf1);
#endif
}
}

View File

@ -0,0 +1,261 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
__kernel void buildMotionMapsKernel(__global float* forwardMotionX,
__global float* forwardMotionY,
__global float* backwardMotionX,
__global float* backwardMotionY,
__global float* forwardMapX,
__global float* forwardMapY,
__global float* backwardMapX,
__global float* backwardMapY,
int forwardMotionX_row,
int forwardMotionX_col,
int forwardMotionX_step,
int forwardMotionY_step,
int backwardMotionX_step,
int backwardMotionY_step,
int forwardMapX_step,
int forwardMapY_step,
int backwardMapX_step,
int backwardMapY_step
)
{
int x = get_global_id(0);
int y = get_global_id(1);
if(x < forwardMotionX_col && y < forwardMotionX_row)
{
float fx = forwardMotionX[y * forwardMotionX_step + x];
float fy = forwardMotionY[y * forwardMotionY_step + x];
float bx = backwardMotionX[y * backwardMotionX_step + x];
float by = backwardMotionY[y * backwardMotionY_step + x];
forwardMapX[y * forwardMapX_step + x] = x + bx;
forwardMapY[y * forwardMapY_step + x] = y + by;
backwardMapX[y * backwardMapX_step + x] = x + fx;
backwardMapY[y * backwardMapY_step + x] = y + fy;
}
}
__kernel void upscaleKernel(__global float* src,
__global float* dst,
int src_step,
int dst_step,
int src_row,
int src_col,
int scale,
int channels
)
{
int x = get_global_id(0);
int y = get_global_id(1);
if(x < src_col && y < src_row)
{
if(channels == 1)
{
dst[y * scale * dst_step + x * scale] = src[y * src_step + x];
}else if(channels == 3)
{
dst[y * channels * scale * dst_step + 3 * x * scale + 0] = src[y * channels * src_step + 3 * x + 0];
dst[y * channels * scale * dst_step + 3 * x * scale + 1] = src[y * channels * src_step + 3 * x + 1];
dst[y * channels * scale * dst_step + 3 * x * scale + 2] = src[y * channels * src_step + 3 * x + 2];
}else
{
dst[y * channels * scale * dst_step + 4 * x * scale + 0] = src[y * channels * src_step + 4 * x + 0];
dst[y * channels * scale * dst_step + 4 * x * scale + 1] = src[y * channels * src_step + 4 * x + 1];
dst[y * channels * scale * dst_step + 4 * x * scale + 2] = src[y * channels * src_step + 4 * x + 2];
dst[y * channels * scale * dst_step + 4 * x * scale + 3] = src[y * channels * src_step + 4 * x + 3];
}
}
}
float diffSign(float a, float b)
{
return a > b ? 1.0f : a < b ? -1.0f : 0.0f;
}
float3 diffSign3(float3 a, float3 b)
{
float3 pos;
pos.x = a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f;
pos.y = a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f;
pos.z = a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f;
return pos;
}
float4 diffSign4(float4 a, float4 b)
{
float4 pos;
pos.x = a.x > b.x ? 1.0f : a.x < b.x ? -1.0f : 0.0f;
pos.y = a.y > b.y ? 1.0f : a.y < b.y ? -1.0f : 0.0f;
pos.z = a.z > b.z ? 1.0f : a.z < b.z ? -1.0f : 0.0f;
pos.w = 0.0f;
return pos;
}
__kernel void diffSignKernel(__global float* src1,
__global float* src2,
__global float* dst,
int src1_row,
int src1_col,
int dst_step,
int src1_step,
int src2_step)
{
int x = get_global_id(0);
int y = get_global_id(1);
if(x < src1_col && y < src1_row)
{
dst[y * dst_step + x] = diffSign(src1[y * src1_step + x], src2[y * src2_step + x]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
__kernel void calcBtvRegularizationKernel(__global float* src,
__global float* dst,
int src_step,
int dst_step,
int src_row,
int src_col,
int ksize,
int channels,
__global float* c_btvRegWeights
)
{
int x = get_global_id(0) + ksize;
int y = get_global_id(1) + ksize;
if ((y < src_row - ksize) && (x < src_col - ksize))
{
if(channels == 1)
{
const float srcVal = src[y * src_step + x];
float dstVal = 0.0f;
for (int m = 0, count = 0; m <= ksize; ++m)
{
for (int l = ksize; l + m >= 0; --l, ++count)
dstVal = dstVal + c_btvRegWeights[count] * (diffSign(srcVal, src[(y + m) * src_step + (x + l)]) - diffSign(src[(y - m) * src_step + (x - l)], srcVal));
}
dst[y * dst_step + x] = dstVal;
}else if(channels == 3)
{
float3 srcVal;
srcVal.x = src[y * src_step + 3 * x + 0];
srcVal.y = src[y * src_step + 3 * x + 1];
srcVal.z = src[y * src_step + 3 * x + 2];
float3 dstVal;
dstVal.x = 0.0f;
dstVal.y = 0.0f;
dstVal.z = 0.0f;
for (int m = 0, count = 0; m <= ksize; ++m)
{
for (int l = ksize; l + m >= 0; --l, ++count)
{
float3 src1;
src1.x = src[(y + m) * src_step + 3 * (x + l) + 0];
src1.y = src[(y + m) * src_step + 3 * (x + l) + 1];
src1.z = src[(y + m) * src_step + 3 * (x + l) + 2];
float3 src2;
src2.x = src[(y - m) * src_step + 3 * (x - l) + 0];
src2.y = src[(y - m) * src_step + 3 * (x - l) + 1];
src2.z = src[(y - m) * src_step + 3 * (x - l) + 2];
dstVal = dstVal + c_btvRegWeights[count] * (diffSign3(srcVal, src1) - diffSign3(src2, srcVal));
}
}
dst[y * dst_step + 3 * x + 0] = dstVal.x;
dst[y * dst_step + 3 * x + 1] = dstVal.y;
dst[y * dst_step + 3 * x + 2] = dstVal.z;
}else
{
float4 srcVal;
srcVal.x = src[y * src_step + 4 * x + 0];//r type =float
srcVal.y = src[y * src_step + 4 * x + 1];//g
srcVal.z = src[y * src_step + 4 * x + 2];//b
srcVal.w = src[y * src_step + 4 * x + 3];//a
float4 dstVal;
dstVal.x = 0.0f;
dstVal.y = 0.0f;
dstVal.z = 0.0f;
dstVal.w = 0.0f;
for (int m = 0, count = 0; m <= ksize; ++m)
{
for (int l = ksize; l + m >= 0; --l, ++count)
{
float4 src1;
src1.x = src[(y + m) * src_step + 4 * (x + l) + 0];
src1.y = src[(y + m) * src_step + 4 * (x + l) + 1];
src1.z = src[(y + m) * src_step + 4 * (x + l) + 2];
src1.w = src[(y + m) * src_step + 4 * (x + l) + 3];
float4 src2;
src2.x = src[(y - m) * src_step + 4 * (x - l) + 0];
src2.y = src[(y - m) * src_step + 4 * (x - l) + 1];
src2.z = src[(y - m) * src_step + 4 * (x - l) + 2];
src2.w = src[(y - m) * src_step + 4 * (x - l) + 3];
dstVal = dstVal + c_btvRegWeights[count] * (diffSign4(srcVal, src1) - diffSign4(src2, srcVal));
}
}
dst[y * dst_step + 4 * x + 0] = dstVal.x;
dst[y * dst_step + 4 * x + 1] = dstVal.y;
dst[y * dst_step + 4 * x + 2] = dstVal.z;
dst[y * dst_step + 4 * x + 3] = dstVal.w;
}
}
}

View File

@ -718,3 +718,195 @@ Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_GPU()
}
#endif // HAVE_OPENCV_GPUOPTFLOW
#ifdef HAVE_OPENCV_OCL
namespace
{
class oclOpticalFlow : public DenseOpticalFlowExt
{
public:
explicit oclOpticalFlow(int work_type);
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
protected:
virtual void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2) = 0;
private:
int work_type_;
cv::ocl::oclMat buf_[6];
cv::ocl::oclMat u_, v_, flow_;
};
oclOpticalFlow::oclOpticalFlow(int work_type) : work_type_(work_type)
{
}
void oclOpticalFlow::calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2)
{
ocl::oclMat& _frame0 = ocl::getOclMatRef(frame0);
ocl::oclMat& _frame1 = ocl::getOclMatRef(frame1);
ocl::oclMat& _flow1 = ocl::getOclMatRef(flow1);
ocl::oclMat& _flow2 = ocl::getOclMatRef(flow2);
CV_Assert( _frame1.type() == _frame0.type() );
CV_Assert( _frame1.size() == _frame0.size() );
cv::ocl::oclMat input0_ = convertToType(_frame0, work_type_, buf_[2], buf_[3]);
cv::ocl::oclMat input1_ = convertToType(_frame1, work_type_, buf_[4], buf_[5]);
impl(input0_, input1_, u_, v_);//go to tvl1 algorithm
u_.copyTo(_flow1);
v_.copyTo(_flow2);
}
void oclOpticalFlow::collectGarbage()
{
for (int i = 0; i < 6; ++i)
buf_[i].release();
u_.release();
v_.release();
flow_.release();
}
}
///////////////////////////////////////////////////////////////////
// PyrLK_OCL
namespace
{
class PyrLK_OCL : public oclOpticalFlow
{
public:
AlgorithmInfo* info() const;
PyrLK_OCL();
void collectGarbage();
protected:
void impl(const ocl::oclMat& input0, const ocl::oclMat& input1, ocl::oclMat& dst1, ocl::oclMat& dst2);
private:
int winSize_;
int maxLevel_;
int iterations_;
ocl::PyrLKOpticalFlow alg_;
};
CV_INIT_ALGORITHM(PyrLK_OCL, "DenseOpticalFlowExt.PyrLK_OCL",
obj.info()->addParam(obj, "winSize", obj.winSize_);
obj.info()->addParam(obj, "maxLevel", obj.maxLevel_);
obj.info()->addParam(obj, "iterations", obj.iterations_));
PyrLK_OCL::PyrLK_OCL() : oclOpticalFlow(CV_8UC1)
{
winSize_ = alg_.winSize.width;
maxLevel_ = alg_.maxLevel;
iterations_ = alg_.iters;
}
void PyrLK_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2)
{
alg_.winSize.width = winSize_;
alg_.winSize.height = winSize_;
alg_.maxLevel = maxLevel_;
alg_.iters = iterations_;
alg_.dense(input0, input1, dst1, dst2);
}
void PyrLK_OCL::collectGarbage()
{
alg_.releaseMemory();
oclOpticalFlow::collectGarbage();
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_PyrLK_OCL()
{
return new PyrLK_OCL;
}
///////////////////////////////////////////////////////////////////
// DualTVL1_OCL
namespace
{
class DualTVL1_OCL : public oclOpticalFlow
{
public:
AlgorithmInfo* info() const;
DualTVL1_OCL();
void collectGarbage();
protected:
void impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2);
private:
double tau_;
double lambda_;
double theta_;
int nscales_;
int warps_;
double epsilon_;
int iterations_;
bool useInitialFlow_;
ocl::OpticalFlowDual_TVL1_OCL alg_;
};
CV_INIT_ALGORITHM(DualTVL1_OCL, "DenseOpticalFlowExt.DualTVL1_OCL",
obj.info()->addParam(obj, "tau", obj.tau_);
obj.info()->addParam(obj, "lambda", obj.lambda_);
obj.info()->addParam(obj, "theta", obj.theta_);
obj.info()->addParam(obj, "nscales", obj.nscales_);
obj.info()->addParam(obj, "warps", obj.warps_);
obj.info()->addParam(obj, "epsilon", obj.epsilon_);
obj.info()->addParam(obj, "iterations", obj.iterations_);
obj.info()->addParam(obj, "useInitialFlow", obj.useInitialFlow_));
DualTVL1_OCL::DualTVL1_OCL() : oclOpticalFlow(CV_8UC1)
{
tau_ = alg_.tau;
lambda_ = alg_.lambda;
theta_ = alg_.theta;
nscales_ = alg_.nscales;
warps_ = alg_.warps;
epsilon_ = alg_.epsilon;
iterations_ = alg_.iterations;
useInitialFlow_ = alg_.useInitialFlow;
}
void DualTVL1_OCL::impl(const cv::ocl::oclMat& input0, const cv::ocl::oclMat& input1, cv::ocl::oclMat& dst1, cv::ocl::oclMat& dst2)
{
alg_.tau = tau_;
alg_.lambda = lambda_;
alg_.theta = theta_;
alg_.nscales = nscales_;
alg_.warps = warps_;
alg_.epsilon = epsilon_;
alg_.iterations = iterations_;
alg_.useInitialFlow = useInitialFlow_;
alg_(input0, input1, dst1, dst2);
}
void DualTVL1_OCL::collectGarbage()
{
alg_.collectGarbage();
oclOpticalFlow::collectGarbage();
}
}
Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_DualTVL1_OCL()
{
return new DualTVL1_OCL;
}
#endif

View File

@ -81,6 +81,10 @@
# include "opencv2/gpucodec.hpp"
#endif
#ifdef HAVE_OPENCV_OCL
#include "opencv2/ocl/private/util.hpp"
#endif
#ifdef HAVE_OPENCV_HIGHGUI
#include "opencv2/highgui.hpp"
#endif

View File

@ -274,5 +274,12 @@ TEST_F(SuperResolution, BTVL1_GPU)
{
RunTest(cv::superres::createSuperResolution_BTVL1_GPU());
}
#endif
#if defined(HAVE_OPENCV_OCL) && defined(HAVE_OPENCL)
TEST_F(SuperResolution, BTVL1_OCL)
{
std::vector<cv::ocl::Info> infos;
cv::ocl::getDevice(infos);
RunTest(cv::superres::createSuperResolution_BTVL1_OCL());
}
#endif

View File

@ -551,6 +551,13 @@ int main(int argc, char **argv) \
return RUN_ALL_TESTS(); \
}
// This usually only makes sense in perf tests with several implementations,
// some of which are not available.
#define CV_TEST_FAIL_NO_IMPL() do { \
::testing::Test::RecordProperty("custom_status", "noimpl"); \
FAIL() << "No equivalent implementation."; \
} while (0)
#endif
#include "opencv2/ts/ts_perf.hpp"

View File

@ -13,10 +13,17 @@ class TestInfo(object):
self.name = xmlnode.getAttribute("name")
self.value_param = xmlnode.getAttribute("value_param")
self.type_param = xmlnode.getAttribute("type_param")
if xmlnode.getElementsByTagName("failure"):
custom_status = xmlnode.getAttribute("custom_status")
failures = xmlnode.getElementsByTagName("failure")
if len(custom_status) > 0:
self.status = custom_status
elif len(failures) > 0:
self.status = "failed"
else:
self.status = xmlnode.getAttribute("status")
if self.name.startswith("DISABLED_"):
self.status = "disabled"
self.fixture = self.fixture.replace("DISABLED_", "")

View File

@ -64,6 +64,10 @@
Name for the sheet. If this parameter is missing, the name of sheet's directory
will be used.
* 'sheet_properties': [(string, string)]
List of arbitrary (key, value) pairs that somehow describe the sheet. Will be
dumped into the first row of the sheet in string form.
Note that all keys are optional, although to get useful results, you'll want to
specify at least 'configurations' and 'configuration_matchers'.
@ -100,6 +104,7 @@ bad_speedup_style = xlwt.easyxf('font: color red', num_format_str='#0.00')
no_speedup_style = no_time_style
error_speedup_style = xlwt.easyxf('pattern: pattern solid, fore_color orange')
header_style = xlwt.easyxf('font: bold true; alignment: horizontal centre, vertical top, wrap True')
subheader_style = xlwt.easyxf('alignment: horizontal centre, vertical top')
class Collector(object):
def __init__(self, config_match_func, include_unmatched):
@ -189,6 +194,8 @@ def main():
arg_parser.add_argument('-c', '--config', metavar='CONF', help='global configuration file')
arg_parser.add_argument('--include-unmatched', action='store_true',
help='include results from XML files that were not recognized by configuration matchers')
arg_parser.add_argument('--show-times-per-pixel', action='store_true',
help='for tests that have an image size parameter, show per-pixel time, as well as total time')
args = arg_parser.parse_args()
@ -231,24 +238,64 @@ def main():
sheet = wb.add_sheet(sheet_conf.get('sheet_name', os.path.basename(os.path.abspath(sheet_path))))
sheet.row(0).height = 800
sheet_properties = sheet_conf.get('sheet_properties', [])
sheet.write(0, 0, 'Properties:')
sheet.write(0, 1,
'N/A' if len(sheet_properties) == 0 else
' '.join(str(k) + '=' + repr(v) for (k, v) in sheet_properties))
sheet.row(2).height = 800
sheet.panes_frozen = True
sheet.remove_splits = True
sheet.horz_split_pos = 1
sheet.horz_split_first_visible = 1
sheet_comparisons = sheet_conf.get('comparisons', [])
for i, w in enumerate([2000, 15000, 2500, 2000, 15000]
+ (len(config_names) + 1 + len(sheet_comparisons)) * [4000]):
sheet.col(i).width = w
row = 2
for i, caption in enumerate(['Module', 'Test', 'Image\nsize', 'Data\ntype', 'Parameters']
+ config_names + [None]
+ [comp['to'] + '\nvs\n' + comp['from'] for comp in sheet_comparisons]):
sheet.row(0).write(i, caption, header_style)
col = 0
row = 1
for (w, caption) in [
(2500, 'Module'),
(10000, 'Test'),
(2500, 'Image\nsize'),
(2000, 'Data\ntype'),
(7500, 'Other parameters')]:
sheet.col(col).width = w
if args.show_times_per_pixel:
sheet.write_merge(row, row + 1, col, col, caption, header_style)
else:
sheet.write(row, col, caption, header_style)
col += 1
for config_name in config_names:
if args.show_times_per_pixel:
sheet.col(col).width = 3000
sheet.col(col + 1).width = 3000
sheet.write_merge(row, row, col, col + 1, config_name, header_style)
sheet.write(row + 1, col, 'total, ms', subheader_style)
sheet.write(row + 1, col + 1, 'per pixel, ns', subheader_style)
col += 2
else:
sheet.col(col).width = 4000
sheet.write(row, col, config_name, header_style)
col += 1
col += 1 # blank column between configurations and comparisons
for comp in sheet_comparisons:
sheet.col(col).width = 4000
caption = comp['to'] + '\nvs\n' + comp['from']
if args.show_times_per_pixel:
sheet.write_merge(row, row + 1, col, col, caption, header_style)
else:
sheet.write(row, col, caption, header_style)
row += 2 if args.show_times_per_pixel else 1
sheet.horz_split_pos = row
sheet.horz_split_first_visible = row
module_colors = sheet_conf.get('module_colors', {})
module_styles = {module: xlwt.easyxf('pattern: pattern solid, fore_color {}'.format(color))
@ -259,21 +306,49 @@ def main():
sheet.write(row, 0, module, module_styles.get(module, xlwt.Style.default_style))
sheet.write(row, 1, test)
param_list = param[1:-1].split(", ")
sheet.write(row, 2, next(ifilter(re_image_size.match, param_list), None))
sheet.write(row, 3, next(ifilter(re_data_type.match, param_list), None))
param_list = param[1:-1].split(', ') if param.startswith('(') and param.endswith(')') else [param]
sheet.row(row).write(4, param)
for i, c in enumerate(config_names):
image_size = next(ifilter(re_image_size.match, param_list), None)
if image_size is not None:
sheet.write(row, 2, image_size)
del param_list[param_list.index(image_size)]
data_type = next(ifilter(re_data_type.match, param_list), None)
if data_type is not None:
sheet.write(row, 3, data_type)
del param_list[param_list.index(data_type)]
sheet.row(row).write(4, ' | '.join(param_list))
col = 5
for c in config_names:
if c in configs:
sheet.write(row, 5 + i, configs[c], time_style)
sheet.write(row, col, configs[c], time_style)
else:
sheet.write(row, 5 + i, None, no_time_style)
sheet.write(row, col, None, no_time_style)
col += 1
if args.show_times_per_pixel:
sheet.write(row, col,
xlwt.Formula(
'''
{0} * 1000000 / (
VALUE(MID({1}; 1; SEARCH("x"; {1}) - 1))
* VALUE(MID({1}; SEARCH("x"; {1}) + 1; LEN({1})))
)
'''.replace('\n', '').replace(' ', '').format(
xlwt.Utils.rowcol_to_cell(row, col - 1),
xlwt.Utils.rowcol_to_cell(row, 2)
)
),
time_style)
col += 1
for i, comp in enumerate(sheet_comparisons):
col += 1 # blank column
for comp in sheet_comparisons:
cmp_from = configs.get(comp["from"])
cmp_to = configs.get(comp["to"])
col = 5 + len(config_names) + 1 + i
if isinstance(cmp_from, numbers.Number) and isinstance(cmp_to, numbers.Number):
try:
@ -286,6 +361,8 @@ def main():
else:
sheet.write(row, col, None, no_speedup_style)
col += 1
row += 1
if row % 1000 == 0: sheet.flush_row_data()