trying to eliminate compile problems
This commit is contained in:
parent
ff87385201
commit
fe11ca886a
@ -221,44 +221,6 @@ The function is parallelized with the TBB library.
|
||||
* (Python) A face detection example using cascade classifiers can be found at opencv_source_code/samples/python2/facedetect.py
|
||||
|
||||
|
||||
CascadeClassifier::setImage
|
||||
-------------------------------
|
||||
Sets an image for detection.
|
||||
|
||||
.. ocv:function:: bool CascadeClassifier::setImage( Ptr<FeatureEvaluator>& feval, const Mat& image )
|
||||
|
||||
.. ocv:cfunction:: void cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade, const CvArr* sum, const CvArr* sqsum, const CvArr* tilted_sum, double scale )
|
||||
|
||||
:param cascade: Haar classifier cascade (OpenCV 1.x API only). See :ocv:func:`CascadeClassifier::detectMultiScale` for more information.
|
||||
|
||||
:param feval: Pointer to the feature evaluator used for computing features.
|
||||
|
||||
:param image: Matrix of the type ``CV_8UC1`` containing an image where the features are computed.
|
||||
|
||||
The function is automatically called by :ocv:func:`CascadeClassifier::detectMultiScale` at every image scale. But if you want to test various locations manually using :ocv:func:`CascadeClassifier::runAt`, you need to call the function before, so that the integral images are computed.
|
||||
|
||||
.. note:: in the old API you need to supply integral images (that can be obtained using :ocv:cfunc:`Integral`) instead of the original image.
|
||||
|
||||
|
||||
CascadeClassifier::runAt
|
||||
----------------------------
|
||||
Runs the detector at the specified point.
|
||||
|
||||
.. ocv:function:: int CascadeClassifier::runAt( Ptr<FeatureEvaluator>& feval, Point pt, double& weight )
|
||||
|
||||
.. ocv:cfunction:: int cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade, CvPoint pt, int start_stage=0 )
|
||||
|
||||
:param cascade: Haar classifier cascade (OpenCV 1.x API only). See :ocv:func:`CascadeClassifier::detectMultiScale` for more information.
|
||||
|
||||
:param feval: Feature evaluator used for computing features.
|
||||
|
||||
:param pt: Upper left point of the window where the features are computed. Size of the window is equal to the size of training images.
|
||||
|
||||
The function returns 1 if the cascade classifier detects an object in the given location.
|
||||
Otherwise, it returns negated index of the stage at which the candidate has been rejected.
|
||||
|
||||
Use :ocv:func:`CascadeClassifier::setImage` to set the image for the detector to work with.
|
||||
|
||||
groupRectangles
|
||||
-------------------
|
||||
Groups the object candidate rectangles.
|
||||
|
@ -193,22 +193,23 @@ public:
|
||||
virtual Ptr<MaskGenerator> getMaskGenerator() = 0;
|
||||
};
|
||||
|
||||
class CV_EXPORTS_W CascadeClassifier : public BaseCascadeClassifier
|
||||
class CV_EXPORTS_W CascadeClassifier
|
||||
{
|
||||
public:
|
||||
CV_WRAP CascadeClassifier();
|
||||
CV_WRAP explicit CascadeClassifier(const String& filename);
|
||||
virtual ~CascadeClassifier();
|
||||
CV_WRAP virtual bool empty() const;
|
||||
CV_WRAP virtual bool load( const String& filename );
|
||||
CV_WRAP virtual void detectMultiScale( InputArray image,
|
||||
~CascadeClassifier();
|
||||
CV_WRAP bool empty() const;
|
||||
CV_WRAP bool load( const String& filename );
|
||||
CV_WRAP bool read( const FileNode& node );
|
||||
CV_WRAP void detectMultiScale( InputArray image,
|
||||
CV_OUT std::vector<Rect>& objects,
|
||||
double scaleFactor = 1.1,
|
||||
int minNeighbors = 3, int flags = 0,
|
||||
Size minSize = Size(),
|
||||
Size maxSize = Size() );
|
||||
|
||||
CV_WRAP virtual void detectMultiScale( InputArray image,
|
||||
CV_WRAP void detectMultiScale( InputArray image,
|
||||
CV_OUT std::vector<Rect>& objects,
|
||||
CV_OUT std::vector<int>& numDetections,
|
||||
double scaleFactor=1.1,
|
||||
@ -216,7 +217,7 @@ public:
|
||||
Size minSize=Size(),
|
||||
Size maxSize=Size() );
|
||||
|
||||
CV_WRAP virtual void detectMultiScale( InputArray image,
|
||||
CV_WRAP void detectMultiScale( InputArray image,
|
||||
CV_OUT std::vector<Rect>& objects,
|
||||
CV_OUT std::vector<int>& rejectLevels,
|
||||
CV_OUT std::vector<double>& levelWeights,
|
||||
@ -226,18 +227,18 @@ public:
|
||||
Size maxSize = Size(),
|
||||
bool outputRejectLevels = false );
|
||||
|
||||
CV_WRAP virtual bool isOldFormatCascade() const;
|
||||
CV_WRAP virtual Size getOriginalWindowSize() const;
|
||||
CV_WRAP virtual int getFeatureType() const;
|
||||
virtual void* getOldCascade();
|
||||
CV_WRAP bool isOldFormatCascade() const;
|
||||
CV_WRAP Size getOriginalWindowSize() const;
|
||||
CV_WRAP int getFeatureType() const;
|
||||
void* getOldCascade();
|
||||
|
||||
virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator);
|
||||
virtual Ptr<MaskGenerator> getMaskGenerator();
|
||||
void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator);
|
||||
Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator();
|
||||
protected:
|
||||
Ptr<BaseCascadeClassifier> cc;
|
||||
};
|
||||
|
||||
CV_EXPORTS Ptr<CascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator();
|
||||
CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator();
|
||||
|
||||
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
|
||||
|
||||
|
@ -918,12 +918,12 @@ Ptr<CascadeClassifierImpl::MaskGenerator> CascadeClassifierImpl::getMaskGenerato
|
||||
return maskGenerator;
|
||||
}
|
||||
|
||||
Ptr<CascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator()
|
||||
Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator()
|
||||
{
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
return tegra::getCascadeClassifierMaskGenerator(*this);
|
||||
#else
|
||||
return Ptr<CascadeClassifierImpl::MaskGenerator>();
|
||||
return Ptr<BaseCascadeClassifier::MaskGenerator>();
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -1390,6 +1390,17 @@ bool CascadeClassifier::load( const String& filename )
|
||||
return !empty();
|
||||
}
|
||||
|
||||
bool CascadeClassifier::read(const FileNode &root)
|
||||
{
|
||||
Ptr<CascadeClassifierImpl> ccimpl;
|
||||
bool ok = ccimpl->read_(root);
|
||||
if( ok )
|
||||
cc = ccimpl.staticCast<BaseCascadeClassifier>();
|
||||
else
|
||||
cc.release();
|
||||
return ok;
|
||||
}
|
||||
|
||||
void CascadeClassifier::detectMultiScale( InputArray image,
|
||||
CV_OUT std::vector<Rect>& objects,
|
||||
double scaleFactor,
|
||||
@ -1452,7 +1463,7 @@ void* CascadeClassifier::getOldCascade()
|
||||
return cc->getOldCascade();
|
||||
}
|
||||
|
||||
void CascadeClassifier::setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator)
|
||||
void CascadeClassifier::setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator)
|
||||
{
|
||||
CV_Assert(!empty());
|
||||
cc->setMaskGenerator(maskGenerator);
|
||||
|
@ -86,7 +86,7 @@ protected:
|
||||
class Data
|
||||
{
|
||||
public:
|
||||
struct CV_EXPORTS DTreeNode
|
||||
struct DTreeNode
|
||||
{
|
||||
int featureIdx;
|
||||
float threshold; // for ordered features only
|
||||
@ -94,12 +94,12 @@ protected:
|
||||
int right;
|
||||
};
|
||||
|
||||
struct CV_EXPORTS DTree
|
||||
struct DTree
|
||||
{
|
||||
int nodeCount;
|
||||
};
|
||||
|
||||
struct CV_EXPORTS Stage
|
||||
struct Stage
|
||||
{
|
||||
int first;
|
||||
int ntrees;
|
||||
|
Loading…
Reference in New Issue
Block a user