Fix ocl compilation error when using Intel OpenCL SDK.
This commit is contained in:
parent
9b5d1596dc
commit
fd77a49e76
@ -16,6 +16,7 @@
|
||||
//
|
||||
// @Authors
|
||||
// Peng Xiao, pengxiao@multicorewareinc.com
|
||||
// Sen Liu, swjtuls1987@126.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
@ -43,9 +44,6 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable
|
||||
#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable
|
||||
|
||||
// specialized for non-image2d_t supported platform, intel HD4000, for example
|
||||
#ifdef DISABLE_IMAGE2D
|
||||
#define IMAGE_INT32 __global uint *
|
||||
@ -105,7 +103,7 @@ __constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAM
|
||||
// for simple haar paatern
|
||||
float icvCalcHaarPatternSum_2(
|
||||
IMAGE_INT32 sumTex,
|
||||
__constant float src[2][5],
|
||||
__constant float2 *src,
|
||||
int oldSize,
|
||||
int newSize,
|
||||
int y, int x,
|
||||
@ -116,21 +114,24 @@ float icvCalcHaarPatternSum_2(
|
||||
|
||||
F d = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 2; ++k)
|
||||
{
|
||||
int dx1 = convert_int_rte(ratio * src[k][0]);
|
||||
int dy1 = convert_int_rte(ratio * src[k][1]);
|
||||
int dx2 = convert_int_rte(ratio * src[k][2]);
|
||||
int dy2 = convert_int_rte(ratio * src[k][3]);
|
||||
int2 dx1 = convert_int2_rte(ratio * src[0]);
|
||||
int2 dy1 = convert_int2_rte(ratio * src[1]);
|
||||
int2 dx2 = convert_int2_rte(ratio * src[2]);
|
||||
int2 dy2 = convert_int2_rte(ratio * src[3]);
|
||||
|
||||
F t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
|
||||
d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
|
||||
}
|
||||
F t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy1.x), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy2.x), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy1.x), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy2.x), rows, cols, elemPerRow );
|
||||
d += t * src[4].x / ((dx2.x - dx1.x) * (dy2.x - dy1.x));
|
||||
|
||||
t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy1.y), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy2.y), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy1.y), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy2.y), rows, cols, elemPerRow );
|
||||
d += t * src[4].y / ((dx2.y - dx1.y) * (dy2.y - dy1.y));
|
||||
|
||||
return (float)d;
|
||||
}
|
||||
@ -138,7 +139,7 @@ float icvCalcHaarPatternSum_2(
|
||||
// N = 3
|
||||
float icvCalcHaarPatternSum_3(
|
||||
IMAGE_INT32 sumTex,
|
||||
__constant float src[2][5],
|
||||
__constant float4 *src,
|
||||
int oldSize,
|
||||
int newSize,
|
||||
int y, int x,
|
||||
@ -149,21 +150,31 @@ float icvCalcHaarPatternSum_3(
|
||||
|
||||
F d = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 3; ++k)
|
||||
{
|
||||
int dx1 = convert_int_rte(ratio * src[k][0]);
|
||||
int dy1 = convert_int_rte(ratio * src[k][1]);
|
||||
int dx2 = convert_int_rte(ratio * src[k][2]);
|
||||
int dy2 = convert_int_rte(ratio * src[k][3]);
|
||||
int4 dx1 = convert_int4_rte(ratio * src[0]);
|
||||
int4 dy1 = convert_int4_rte(ratio * src[1]);
|
||||
int4 dx2 = convert_int4_rte(ratio * src[2]);
|
||||
int4 dy2 = convert_int4_rte(ratio * src[3]);
|
||||
|
||||
F t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
|
||||
d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
|
||||
}
|
||||
F t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy1.x), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy2.x), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy1.x), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy2.x), rows, cols, elemPerRow );
|
||||
d += t * src[4].x / ((dx2.x - dx1.x) * (dy2.x - dy1.x));
|
||||
|
||||
t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy1.y), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy2.y), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy1.y), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy2.y), rows, cols, elemPerRow );
|
||||
d += t * src[4].y / ((dx2.y - dx1.y) * (dy2.y - dy1.y));
|
||||
|
||||
t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy1.z), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy2.z), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy1.z), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy2.z), rows, cols, elemPerRow );
|
||||
d += t * src[4].z / ((dx2.z - dx1.z) * (dy2.z - dy1.z));
|
||||
|
||||
return (float)d;
|
||||
}
|
||||
@ -171,7 +182,7 @@ float icvCalcHaarPatternSum_3(
|
||||
// N = 4
|
||||
float icvCalcHaarPatternSum_4(
|
||||
IMAGE_INT32 sumTex,
|
||||
__constant float src[2][5],
|
||||
__constant float4 *src,
|
||||
int oldSize,
|
||||
int newSize,
|
||||
int y, int x,
|
||||
@ -182,21 +193,38 @@ float icvCalcHaarPatternSum_4(
|
||||
|
||||
F d = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 4; ++k)
|
||||
{
|
||||
int dx1 = convert_int_rte(ratio * src[k][0]);
|
||||
int dy1 = convert_int_rte(ratio * src[k][1]);
|
||||
int dx2 = convert_int_rte(ratio * src[k][2]);
|
||||
int dy2 = convert_int_rte(ratio * src[k][3]);
|
||||
int4 dx1 = convert_int4_rte(ratio * src[0]);
|
||||
int4 dy1 = convert_int4_rte(ratio * src[1]);
|
||||
int4 dx2 = convert_int4_rte(ratio * src[2]);
|
||||
int4 dy2 = convert_int4_rte(ratio * src[3]);
|
||||
|
||||
F t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy1), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1, y + dy2), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy1), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2, y + dy2), rows, cols, elemPerRow );
|
||||
d += t * src[k][4] / ((dx2 - dx1) * (dy2 - dy1));
|
||||
}
|
||||
F t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy1.x), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.x, y + dy2.x), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy1.x), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.x, y + dy2.x), rows, cols, elemPerRow );
|
||||
d += t * src[4].x / ((dx2.x - dx1.x) * (dy2.x - dy1.x));
|
||||
|
||||
t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy1.y), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.y, y + dy2.y), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy1.y), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.y, y + dy2.y), rows, cols, elemPerRow );
|
||||
d += t * src[4].y / ((dx2.y - dx1.y) * (dy2.y - dy1.y));
|
||||
|
||||
t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy1.z), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.z, y + dy2.z), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy1.z), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.z, y + dy2.z), rows, cols, elemPerRow );
|
||||
d += t * src[4].z / ((dx2.z - dx1.z) * (dy2.z - dy1.z));
|
||||
|
||||
t = 0;
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx1.w, y + dy1.w), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx1.w, y + dy2.w), rows, cols, elemPerRow );
|
||||
t -= read_sumTex( sumTex, sampler, (int2)(x + dx2.w, y + dy1.w), rows, cols, elemPerRow );
|
||||
t += read_sumTex( sumTex, sampler, (int2)(x + dx2.w, y + dy2.w), rows, cols, elemPerRow );
|
||||
d += t * src[4].w / ((dx2.w - dx1.w) * (dy2.w - dy1.w));
|
||||
|
||||
return (float)d;
|
||||
}
|
||||
@ -204,9 +232,9 @@ float icvCalcHaarPatternSum_4(
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// Hessian
|
||||
|
||||
__constant float c_DX [3][5] = { {0, 2, 3, 7, 1}, {3, 2, 6, 7, -2}, {6, 2, 9, 7, 1} };
|
||||
__constant float c_DY [3][5] = { {2, 0, 7, 3, 1}, {2, 3, 7, 6, -2}, {2, 6, 7, 9, 1} };
|
||||
__constant float c_DXY[4][5] = { {1, 1, 4, 4, 1}, {5, 1, 8, 4, -1}, {1, 5, 4, 8, -1}, {5, 5, 8, 8, 1} };
|
||||
__constant float4 c_DX[5] = { (float4)(0, 3, 6, 0), (float4)(2, 2, 2, 0), (float4)(3, 6, 9, 0), (float4)(7, 7, 7, 0), (float4)(1, -2, 1, 0) };
|
||||
__constant float4 c_DY[5] = { (float4)(2, 2, 2, 0), (float4)(0, 3, 6, 0), (float4)(7, 7, 7, 0), (float4)(3, 6, 9, 0), (float4)(1, -2, 1, 0) };
|
||||
__constant float4 c_DXY[5] = { (float4)(1, 5, 1, 5), (float4)(1, 1, 5, 5), (float4)(4, 8, 4, 8), (float4)(4, 4, 8, 8), (float4)(1, -1, -1, 1) };// Use integral image to calculate haar wavelets.
|
||||
|
||||
__inline int calcSize(int octave, int layer)
|
||||
{
|
||||
@ -236,7 +264,7 @@ __kernel void icvCalcLayerDetAndTrace(
|
||||
int c_octave,
|
||||
int c_layer_rows,
|
||||
int sumTex_step
|
||||
)
|
||||
)
|
||||
{
|
||||
det_step /= sizeof(*det);
|
||||
trace_step /= sizeof(*trace);
|
||||
@ -300,7 +328,7 @@ bool within_check(IMAGE_INT32 maskSumTex, int sum_i, int sum_j, int size, int ro
|
||||
|
||||
// Non-maximal suppression to further filtering the candidates from previous step
|
||||
__kernel
|
||||
void icvFindMaximaInLayer_withmask(
|
||||
void icvFindMaximaInLayer_withmask(
|
||||
__global const float * det,
|
||||
__global const float * trace,
|
||||
__global int4 * maxPosBuffer,
|
||||
@ -318,7 +346,7 @@ __kernel
|
||||
float c_hessianThreshold,
|
||||
IMAGE_INT32 maskSumTex,
|
||||
int mask_step
|
||||
)
|
||||
)
|
||||
{
|
||||
volatile __local float N9[768]; // threads.x * threads.y * 3
|
||||
|
||||
@ -347,26 +375,26 @@ __kernel
|
||||
const int localLin = get_local_id(0) + get_local_id(1) * get_local_size(0) + zoff;
|
||||
N9[localLin - zoff] =
|
||||
det[det_step *
|
||||
(c_layer_rows * (layer - 1) + min(max(i, 0), c_img_rows - 1)) // y
|
||||
+ min(max(j, 0), c_img_cols - 1)]; // x
|
||||
(c_layer_rows * (layer - 1) + min(max(i, 0), c_img_rows - 1)) // y
|
||||
+ min(max(j, 0), c_img_cols - 1)]; // x
|
||||
N9[localLin ] =
|
||||
det[det_step *
|
||||
(c_layer_rows * (layer ) + min(max(i, 0), c_img_rows - 1)) // y
|
||||
+ min(max(j, 0), c_img_cols - 1)]; // x
|
||||
(c_layer_rows * (layer ) + min(max(i, 0), c_img_rows - 1)) // y
|
||||
+ min(max(j, 0), c_img_cols - 1)]; // x
|
||||
N9[localLin + zoff] =
|
||||
det[det_step *
|
||||
(c_layer_rows * (layer + 1) + min(max(i, 0), c_img_rows - 1)) // y
|
||||
+ min(max(j, 0), c_img_cols - 1)]; // x
|
||||
(c_layer_rows * (layer + 1) + min(max(i, 0), c_img_rows - 1)) // y
|
||||
+ min(max(j, 0), c_img_cols - 1)]; // x
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (i < c_layer_rows - margin
|
||||
&& j < c_layer_cols - margin
|
||||
&& get_local_id(0) > 0
|
||||
&& get_local_id(0) < get_local_size(0) - 1
|
||||
&& get_local_id(1) > 0
|
||||
&& get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
|
||||
)
|
||||
&& j < c_layer_cols - margin
|
||||
&& get_local_id(0) > 0
|
||||
&& get_local_id(0) < get_local_size(0) - 1
|
||||
&& get_local_id(1) > 0
|
||||
&& get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
|
||||
)
|
||||
{
|
||||
float val0 = N9[localLin];
|
||||
|
||||
@ -382,34 +410,34 @@ __kernel
|
||||
{
|
||||
// Check to see if we have a max (in its 26 neighbours)
|
||||
const bool condmax = val0 > N9[localLin - 1 - get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin - get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin - 1 - zoff]
|
||||
&& val0 > N9[localLin - zoff]
|
||||
&& val0 > N9[localLin + 1 - zoff]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin - get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin - 1 - zoff]
|
||||
&& val0 > N9[localLin - zoff]
|
||||
&& val0 > N9[localLin + 1 - zoff]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0) - zoff]
|
||||
|
||||
&& val0 > N9[localLin - 1 - get_local_size(0)]
|
||||
&& val0 > N9[localLin - get_local_size(0)]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0)]
|
||||
&& val0 > N9[localLin - 1 ]
|
||||
&& val0 > N9[localLin + 1 ]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0)]
|
||||
&& val0 > N9[localLin + get_local_size(0)]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0)]
|
||||
&& val0 > N9[localLin - 1 - get_local_size(0)]
|
||||
&& val0 > N9[localLin - get_local_size(0)]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0)]
|
||||
&& val0 > N9[localLin - 1 ]
|
||||
&& val0 > N9[localLin + 1 ]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0)]
|
||||
&& val0 > N9[localLin + get_local_size(0)]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0)]
|
||||
|
||||
&& val0 > N9[localLin - 1 - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin - 1 + zoff]
|
||||
&& val0 > N9[localLin + zoff]
|
||||
&& val0 > N9[localLin + 1 + zoff]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0) + zoff]
|
||||
;
|
||||
&& val0 > N9[localLin - 1 - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin - 1 + zoff]
|
||||
&& val0 > N9[localLin + zoff]
|
||||
&& val0 > N9[localLin + 1 + zoff]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0) + zoff]
|
||||
;
|
||||
|
||||
if(condmax)
|
||||
{
|
||||
@ -428,7 +456,7 @@ __kernel
|
||||
}
|
||||
|
||||
__kernel
|
||||
void icvFindMaximaInLayer(
|
||||
void icvFindMaximaInLayer(
|
||||
__global float * det,
|
||||
__global float * trace,
|
||||
__global int4 * maxPosBuffer,
|
||||
@ -444,7 +472,7 @@ __kernel
|
||||
int c_layer_cols,
|
||||
int c_max_candidates,
|
||||
float c_hessianThreshold
|
||||
)
|
||||
)
|
||||
{
|
||||
volatile __local float N9[768]; // threads.x * threads.y * 3
|
||||
|
||||
@ -483,12 +511,12 @@ __kernel
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (i < c_layer_rows - margin
|
||||
&& j < c_layer_cols - margin
|
||||
&& get_local_id(0) > 0
|
||||
&& get_local_id(0) < get_local_size(0) - 1
|
||||
&& get_local_id(1) > 0
|
||||
&& get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
|
||||
)
|
||||
&& j < c_layer_cols - margin
|
||||
&& get_local_id(0) > 0
|
||||
&& get_local_id(0) < get_local_size(0) - 1
|
||||
&& get_local_id(1) > 0
|
||||
&& get_local_id(1) < get_local_size(1) - 1 // these are unnecessary conditions ported from CUDA
|
||||
)
|
||||
{
|
||||
float val0 = N9[localLin];
|
||||
if (val0 > c_hessianThreshold)
|
||||
@ -499,38 +527,38 @@ __kernel
|
||||
|
||||
// Check to see if we have a max (in its 26 neighbours)
|
||||
const bool condmax = val0 > N9[localLin - 1 - get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin - get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin - 1 - zoff]
|
||||
&& val0 > N9[localLin - zoff]
|
||||
&& val0 > N9[localLin + 1 - zoff]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin - get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin - 1 - zoff]
|
||||
&& val0 > N9[localLin - zoff]
|
||||
&& val0 > N9[localLin + 1 - zoff]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + get_local_size(0) - zoff]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0) - zoff]
|
||||
|
||||
&& val0 > N9[localLin - 1 - get_local_size(0)]
|
||||
&& val0 > N9[localLin - get_local_size(0)]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0)]
|
||||
&& val0 > N9[localLin - 1 ]
|
||||
&& val0 > N9[localLin + 1 ]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0)]
|
||||
&& val0 > N9[localLin + get_local_size(0)]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0)]
|
||||
&& val0 > N9[localLin - 1 - get_local_size(0)]
|
||||
&& val0 > N9[localLin - get_local_size(0)]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0)]
|
||||
&& val0 > N9[localLin - 1 ]
|
||||
&& val0 > N9[localLin + 1 ]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0)]
|
||||
&& val0 > N9[localLin + get_local_size(0)]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0)]
|
||||
|
||||
&& val0 > N9[localLin - 1 - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin - 1 + zoff]
|
||||
&& val0 > N9[localLin + zoff]
|
||||
&& val0 > N9[localLin + 1 + zoff]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0) + zoff]
|
||||
;
|
||||
&& val0 > N9[localLin - 1 - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + 1 - get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin - 1 + zoff]
|
||||
&& val0 > N9[localLin + zoff]
|
||||
&& val0 > N9[localLin + 1 + zoff]
|
||||
&& val0 > N9[localLin - 1 + get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + get_local_size(0) + zoff]
|
||||
&& val0 > N9[localLin + 1 + get_local_size(0) + zoff]
|
||||
;
|
||||
|
||||
if(condmax)
|
||||
{
|
||||
int ind = atomic_inc(maxCounter);
|
||||
int ind = atomic_inc(maxCounter);
|
||||
|
||||
if (ind < c_max_candidates)
|
||||
{
|
||||
@ -544,30 +572,30 @@ __kernel
|
||||
}
|
||||
|
||||
// solve 3x3 linear system Ax=b for floating point input
|
||||
inline bool solve3x3_float(volatile __local const float A[3][3], volatile __local const float b[3], volatile __local float x[3])
|
||||
inline bool solve3x3_float(volatile __local const float4 *A, volatile __local const float *b, volatile __local float *x)
|
||||
{
|
||||
float det = A[0][0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1])
|
||||
- A[0][1] * (A[1][0] * A[2][2] - A[1][2] * A[2][0])
|
||||
+ A[0][2] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]);
|
||||
float det = A[0].x * (A[1].y * A[2].z - A[1].z * A[2].y)
|
||||
- A[0].y * (A[1].x * A[2].z - A[1].z * A[2].x)
|
||||
+ A[0].z * (A[1].x * A[2].y - A[1].y * A[2].x);
|
||||
|
||||
if (det != 0)
|
||||
{
|
||||
F invdet = 1.0 / det;
|
||||
|
||||
x[0] = invdet *
|
||||
(b[0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) -
|
||||
A[0][1] * (b[1] * A[2][2] - A[1][2] * b[2] ) +
|
||||
A[0][2] * (b[1] * A[2][1] - A[1][1] * b[2] ));
|
||||
(b[0] * (A[1].y * A[2].z - A[1].z * A[2].y) -
|
||||
A[0].y * (b[1] * A[2].z - A[1].z * b[2] ) +
|
||||
A[0].z * (b[1] * A[2].y - A[1].y * b[2] ));
|
||||
|
||||
x[1] = invdet *
|
||||
(A[0][0] * (b[1] * A[2][2] - A[1][2] * b[2] ) -
|
||||
b[0] * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) +
|
||||
A[0][2] * (A[1][0] * b[2] - b[1] * A[2][0]));
|
||||
(A[0].x * (b[1] * A[2].z - A[1].z * b[2] ) -
|
||||
b[0] * (A[1].x * A[2].z - A[1].z * A[2].x) +
|
||||
A[0].z * (A[1].x * b[2] - b[1] * A[2].x));
|
||||
|
||||
x[2] = invdet *
|
||||
(A[0][0] * (A[1][1] * b[2] - b[1] * A[2][1]) -
|
||||
A[0][1] * (A[1][0] * b[2] - b[1] * A[2][0]) +
|
||||
b[0] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]));
|
||||
(A[0].x * (A[1].y * b[2] - b[1] * A[2].y) -
|
||||
A[0].y * (A[1].x * b[2] - b[1] * A[2].x) +
|
||||
b[0] * (A[1].x * A[2].y - A[1].y * A[2].x));
|
||||
|
||||
return true;
|
||||
}
|
||||
@ -586,7 +614,7 @@ inline bool solve3x3_float(volatile __local const float A[3][3], volatile __loc
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// INTERPOLATION
|
||||
__kernel
|
||||
void icvInterpolateKeypoint(
|
||||
void icvInterpolateKeypoint(
|
||||
__global const float * det,
|
||||
__global const int4 * maxPosBuffer,
|
||||
__global float * keypoints,
|
||||
@ -598,7 +626,7 @@ __kernel
|
||||
int c_octave,
|
||||
int c_layer_rows,
|
||||
int c_max_features
|
||||
)
|
||||
)
|
||||
{
|
||||
det_step /= sizeof(*det);
|
||||
keypoints_step /= sizeof(*keypoints);
|
||||
@ -632,26 +660,26 @@ __kernel
|
||||
//ds
|
||||
dD[2] = -0.5f * (N9[2][1][1] - N9[0][1][1]);
|
||||
|
||||
volatile __local float H[3][3];
|
||||
volatile __local float4 H[3];
|
||||
|
||||
//dxx
|
||||
H[0][0] = N9[1][1][0] - 2.0f * N9[1][1][1] + N9[1][1][2];
|
||||
H[0].x = N9[1][1][0] - 2.0f * N9[1][1][1] + N9[1][1][2];
|
||||
//dxy
|
||||
H[0][1]= 0.25f * (N9[1][2][2] - N9[1][2][0] - N9[1][0][2] + N9[1][0][0]);
|
||||
H[0].y= 0.25f * (N9[1][2][2] - N9[1][2][0] - N9[1][0][2] + N9[1][0][0]);
|
||||
//dxs
|
||||
H[0][2]= 0.25f * (N9[2][1][2] - N9[2][1][0] - N9[0][1][2] + N9[0][1][0]);
|
||||
H[0].z= 0.25f * (N9[2][1][2] - N9[2][1][0] - N9[0][1][2] + N9[0][1][0]);
|
||||
//dyx = dxy
|
||||
H[1][0] = H[0][1];
|
||||
H[1].x = H[0].y;
|
||||
//dyy
|
||||
H[1][1] = N9[1][0][1] - 2.0f * N9[1][1][1] + N9[1][2][1];
|
||||
H[1].y = N9[1][0][1] - 2.0f * N9[1][1][1] + N9[1][2][1];
|
||||
//dys
|
||||
H[1][2]= 0.25f * (N9[2][2][1] - N9[2][0][1] - N9[0][2][1] + N9[0][0][1]);
|
||||
H[1].z= 0.25f * (N9[2][2][1] - N9[2][0][1] - N9[0][2][1] + N9[0][0][1]);
|
||||
//dsx = dxs
|
||||
H[2][0] = H[0][2];
|
||||
H[2].x = H[0].z;
|
||||
//dsy = dys
|
||||
H[2][1] = H[1][2];
|
||||
H[2].y = H[1].z;
|
||||
//dss
|
||||
H[2][2] = N9[0][1][1] - 2.0f * N9[1][1][1] + N9[2][1][1];
|
||||
H[2].z = N9[0][1][1] - 2.0f * N9[1][1][1] + N9[2][1][1];
|
||||
|
||||
volatile __local float x[3];
|
||||
|
||||
@ -689,7 +717,7 @@ __kernel
|
||||
if ((c_img_rows + 1) >= grad_wav_size && (c_img_cols + 1) >= grad_wav_size)
|
||||
{
|
||||
// Get a new feature index.
|
||||
int ind = atomic_inc(featureCounter);
|
||||
int ind = atomic_inc(featureCounter);
|
||||
|
||||
if (ind < c_max_features)
|
||||
{
|
||||
@ -716,31 +744,32 @@ __kernel
|
||||
__constant float c_aptX[ORI_SAMPLES] = {-6, -5, -5, -5, -5, -5, -5, -5, -4, -4, -4, -4, -4, -4, -4, -4, -4, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6};
|
||||
__constant float c_aptY[ORI_SAMPLES] = {0, -3, -2, -1, 0, 1, 2, 3, -4, -3, -2, -1, 0, 1, 2, 3, 4, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -4, -3, -2, -1, 0, 1, 2, 3, 4, -3, -2, -1, 0, 1, 2, 3, 0};
|
||||
__constant float c_aptW[ORI_SAMPLES] = {0.001455130288377404f, 0.001707611023448408f, 0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f,
|
||||
0.003238451667129993f, 0.002547456417232752f, 0.001707611023448408f, 0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f,
|
||||
0.00665318313986063f, 0.00720730796456337f, 0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f,
|
||||
0.002003900473937392f, 0.001707611023448408f, 0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f,
|
||||
0.01164754293859005f, 0.01261763460934162f, 0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f,
|
||||
0.0035081731621176f, 0.001707611023448408f, 0.002547456417232752f, 0.005233579315245152f, 0.009162282571196556f,
|
||||
0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 0.01366852037608624f,
|
||||
0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.003238451667129993f, 0.00665318313986063f,
|
||||
0.01164754293859005f, 0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f,
|
||||
0.01737609319388866f, 0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.001455130288377404f,
|
||||
0.0035081731621176f, 0.00720730796456337f, 0.01261763460934162f, 0.0188232995569706f, 0.02392910048365593f,
|
||||
0.02592208795249462f, 0.02392910048365593f, 0.0188232995569706f, 0.01261763460934162f, 0.00720730796456337f,
|
||||
0.0035081731621176f, 0.001455130288377404f, 0.003238451667129993f, 0.00665318313986063f, 0.01164754293859005f,
|
||||
0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 0.01737609319388866f,
|
||||
0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.002547456417232752f, 0.005233579315245152f,
|
||||
0.009162282571196556f, 0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f,
|
||||
0.01366852037608624f, 0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.001707611023448408f,
|
||||
0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 0.01164754293859005f, 0.01261763460934162f,
|
||||
0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f, 0.0035081731621176f, 0.001707611023448408f,
|
||||
0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 0.00665318313986063f, 0.00720730796456337f,
|
||||
0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 0.002003900473937392f, 0.001707611023448408f,
|
||||
0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f, 0.003238451667129993f, 0.002547456417232752f,
|
||||
0.001707611023448408f, 0.001455130288377404f};
|
||||
0.003238451667129993f, 0.002547456417232752f, 0.001707611023448408f, 0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f,
|
||||
0.00665318313986063f, 0.00720730796456337f, 0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f,
|
||||
0.002003900473937392f, 0.001707611023448408f, 0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f,
|
||||
0.01164754293859005f, 0.01261763460934162f, 0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f,
|
||||
0.0035081731621176f, 0.001707611023448408f, 0.002547456417232752f, 0.005233579315245152f, 0.009162282571196556f,
|
||||
0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f, 0.01366852037608624f,
|
||||
0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.003238451667129993f, 0.00665318313986063f,
|
||||
0.01164754293859005f, 0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f,
|
||||
0.01737609319388866f, 0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.001455130288377404f,
|
||||
0.0035081731621176f, 0.00720730796456337f, 0.01261763460934162f, 0.0188232995569706f, 0.02392910048365593f,
|
||||
0.02592208795249462f, 0.02392910048365593f, 0.0188232995569706f, 0.01261763460934162f, 0.00720730796456337f,
|
||||
0.0035081731621176f, 0.001455130288377404f, 0.003238451667129993f, 0.00665318313986063f, 0.01164754293859005f,
|
||||
0.01737609319388866f, 0.02208934165537357f, 0.02392910048365593f, 0.02208934165537357f, 0.01737609319388866f,
|
||||
0.01164754293859005f, 0.00665318313986063f, 0.003238451667129993f, 0.002547456417232752f, 0.005233579315245152f,
|
||||
0.009162282571196556f, 0.01366852037608624f, 0.01737609319388866f, 0.0188232995569706f, 0.01737609319388866f,
|
||||
0.01366852037608624f, 0.009162282571196556f, 0.005233579315245152f, 0.002547456417232752f, 0.001707611023448408f,
|
||||
0.0035081731621176f, 0.006141661666333675f, 0.009162282571196556f, 0.01164754293859005f, 0.01261763460934162f,
|
||||
0.01164754293859005f, 0.009162282571196556f, 0.006141661666333675f, 0.0035081731621176f, 0.001707611023448408f,
|
||||
0.002003900473937392f, 0.0035081731621176f, 0.005233579315245152f, 0.00665318313986063f, 0.00720730796456337f,
|
||||
0.00665318313986063f, 0.005233579315245152f, 0.0035081731621176f, 0.002003900473937392f, 0.001707611023448408f,
|
||||
0.002547456417232752f, 0.003238451667129993f, 0.0035081731621176f, 0.003238451667129993f, 0.002547456417232752f,
|
||||
0.001707611023448408f, 0.001455130288377404f
|
||||
};
|
||||
|
||||
__constant float c_NX[2][5] = {{0, 0, 2, 4, -1}, {2, 0, 4, 4, 1}};
|
||||
__constant float c_NY[2][5] = {{0, 0, 4, 2, 1}, {0, 2, 4, 4, -1}};
|
||||
__constant float2 c_NX[5] = { (float2)(0, 2), (float2)(0, 0), (float2)(2, 4), (float2)(4, 4), (float2)(-1, 1) };
|
||||
__constant float2 c_NY[5] = { (float2)(0, 0), (float2)(0, 2), (float2)(4, 4), (float2)(2, 4), (float2)(1, -1) };
|
||||
|
||||
void reduce_32_sum(volatile __local float * data, volatile float* partial_reduction, int tid)
|
||||
{
|
||||
@ -759,14 +788,14 @@ void reduce_32_sum(volatile __local float * data, volatile float* partial_reduc
|
||||
if (tid < 8)
|
||||
{
|
||||
#endif
|
||||
data[tid] = *partial_reduction = op(partial_reduction, data[tid + 8 ]);
|
||||
data[tid] = *partial_reduction = op(partial_reduction, data[tid + 8]);
|
||||
#if WAVE_SIZE < 8
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (tid < 4)
|
||||
{
|
||||
#endif
|
||||
data[tid] = *partial_reduction = op(partial_reduction, data[tid + 4 ]);
|
||||
data[tid] = *partial_reduction = op(partial_reduction, data[tid + 4]);
|
||||
#if WAVE_SIZE < 4
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -787,14 +816,14 @@ void reduce_32_sum(volatile __local float * data, volatile float* partial_reduc
|
||||
}
|
||||
|
||||
__kernel
|
||||
void icvCalcOrientation(
|
||||
void icvCalcOrientation(
|
||||
IMAGE_INT32 sumTex,
|
||||
__global float * keypoints,
|
||||
int keypoints_step,
|
||||
int c_img_rows,
|
||||
int c_img_cols,
|
||||
int sum_step
|
||||
)
|
||||
)
|
||||
{
|
||||
keypoints_step /= sizeof(*keypoints);
|
||||
sum_step /= sizeof(uint);
|
||||
@ -838,7 +867,7 @@ __kernel
|
||||
const int y = convert_int_rte(featureY[get_group_id(0)] + c_aptY[tid] * s - margin);
|
||||
|
||||
if (y >= 0 && y < (c_img_rows + 1) - grad_wav_size &&
|
||||
x >= 0 && x < (c_img_cols + 1) - grad_wav_size)
|
||||
x >= 0 && x < (c_img_cols + 1) - grad_wav_size)
|
||||
{
|
||||
X = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NX, 4, grad_wav_size, y, x, c_img_rows, c_img_cols, sum_step);
|
||||
Y = c_aptW[tid] * icvCalcHaarPatternSum_2(sumTex, c_NY, 4, grad_wav_size, y, x, c_img_rows, c_img_cols, sum_step);
|
||||
@ -934,11 +963,11 @@ __kernel
|
||||
|
||||
|
||||
__kernel
|
||||
void icvSetUpright(
|
||||
void icvSetUpright(
|
||||
__global float * keypoints,
|
||||
int keypoints_step,
|
||||
int nFeatures
|
||||
)
|
||||
)
|
||||
{
|
||||
keypoints_step /= sizeof(*keypoints);
|
||||
__global float* featureDir = keypoints + ANGLE_ROW * keypoints_step;
|
||||
@ -988,7 +1017,7 @@ inline uchar readerGet(
|
||||
IMAGE_INT8 src,
|
||||
const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir,
|
||||
int i, int j, int rows, int cols, int elemPerRow
|
||||
)
|
||||
)
|
||||
{
|
||||
float pixel_x = centerX + (win_offset + j) * cos_dir + (win_offset + i) * sin_dir;
|
||||
float pixel_y = centerY - (win_offset + j) * sin_dir + (win_offset + i) * cos_dir;
|
||||
@ -999,7 +1028,7 @@ inline float linearFilter(
|
||||
IMAGE_INT8 src,
|
||||
const float centerX, const float centerY, const float win_offset, const float cos_dir, const float sin_dir,
|
||||
float y, float x, int rows, int cols, int elemPerRow
|
||||
)
|
||||
)
|
||||
{
|
||||
x -= 0.5f;
|
||||
y -= 0.5f;
|
||||
@ -1028,9 +1057,9 @@ inline float linearFilter(
|
||||
|
||||
void calc_dx_dy(
|
||||
IMAGE_INT8 imgTex,
|
||||
volatile __local float s_dx_bin[25],
|
||||
volatile __local float s_dy_bin[25],
|
||||
volatile __local float s_PATCH[6][6],
|
||||
volatile __local float *s_dx_bin,
|
||||
volatile __local float *s_dy_bin,
|
||||
volatile __local float *s_PATCH,
|
||||
__global const float* featureX,
|
||||
__global const float* featureY,
|
||||
__global const float* featureSize,
|
||||
@ -1038,7 +1067,7 @@ void calc_dx_dy(
|
||||
int rows,
|
||||
int cols,
|
||||
int elemPerRow
|
||||
)
|
||||
)
|
||||
{
|
||||
const float centerX = featureX[get_group_id(0)];
|
||||
const float centerY = featureY[get_group_id(0)];
|
||||
@ -1048,6 +1077,7 @@ void calc_dx_dy(
|
||||
{
|
||||
descriptor_dir = 0.0f;
|
||||
}
|
||||
|
||||
descriptor_dir *= (float)(CV_PI_F / 180.0f);
|
||||
|
||||
/* The sampling intervals and wavelet sized for selecting an orientation
|
||||
@ -1074,7 +1104,7 @@ void calc_dx_dy(
|
||||
const float icoo = ((float)yIndex / (PATCH_SZ + 1)) * win_size;
|
||||
const float jcoo = ((float)xIndex / (PATCH_SZ + 1)) * win_size;
|
||||
|
||||
s_PATCH[get_local_id(1)][get_local_id(0)] = linearFilter(imgTex, centerX, centerY, win_offset, cos_dir, sin_dir, icoo, jcoo, rows, cols, elemPerRow);
|
||||
s_PATCH[get_local_id(1) * 6 + get_local_id(0)] = linearFilter(imgTex, centerX, centerY, win_offset, cos_dir, sin_dir, icoo, jcoo, rows, cols, elemPerRow);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
@ -1085,17 +1115,17 @@ void calc_dx_dy(
|
||||
const float dw = c_DW[yIndex * PATCH_SZ + xIndex];
|
||||
|
||||
const float vx = (
|
||||
s_PATCH[get_local_id(1) ][get_local_id(0) + 1] -
|
||||
s_PATCH[get_local_id(1) ][get_local_id(0) ] +
|
||||
s_PATCH[get_local_id(1) + 1][get_local_id(0) + 1] -
|
||||
s_PATCH[get_local_id(1) + 1][get_local_id(0) ])
|
||||
* dw;
|
||||
s_PATCH[ get_local_id(1) * 6 + get_local_id(0) + 1] -
|
||||
s_PATCH[ get_local_id(1) * 6 + get_local_id(0) ] +
|
||||
s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0) + 1] -
|
||||
s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0) ])
|
||||
* dw;
|
||||
const float vy = (
|
||||
s_PATCH[get_local_id(1) + 1][get_local_id(0) ] -
|
||||
s_PATCH[get_local_id(1) ][get_local_id(0) ] +
|
||||
s_PATCH[get_local_id(1) + 1][get_local_id(0) + 1] -
|
||||
s_PATCH[get_local_id(1) ][get_local_id(0) + 1])
|
||||
* dw;
|
||||
s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0) ] -
|
||||
s_PATCH[ get_local_id(1) * 6 + get_local_id(0) ] +
|
||||
s_PATCH[(get_local_id(1) + 1) * 6 + get_local_id(0) + 1] -
|
||||
s_PATCH[ get_local_id(1) * 6 + get_local_id(0) + 1])
|
||||
* dw;
|
||||
s_dx_bin[tid] = vx;
|
||||
s_dy_bin[tid] = vy;
|
||||
}
|
||||
@ -1106,7 +1136,7 @@ void reduce_sum25(
|
||||
volatile __local float* sdata3,
|
||||
volatile __local float* sdata4,
|
||||
int tid
|
||||
)
|
||||
)
|
||||
{
|
||||
#ifndef WAVE_SIZE
|
||||
#define WAVE_SIZE 1
|
||||
@ -1125,11 +1155,8 @@ void reduce_sum25(
|
||||
{
|
||||
#endif
|
||||
sdata1[tid] += sdata1[tid + 8];
|
||||
|
||||
sdata2[tid] += sdata2[tid + 8];
|
||||
|
||||
sdata3[tid] += sdata3[tid + 8];
|
||||
|
||||
sdata4[tid] += sdata4[tid + 8];
|
||||
#if WAVE_SIZE < 8
|
||||
}
|
||||
@ -1166,7 +1193,7 @@ void reduce_sum25(
|
||||
}
|
||||
|
||||
__kernel
|
||||
void compute_descriptors64(
|
||||
void compute_descriptors64(
|
||||
IMAGE_INT8 imgTex,
|
||||
__global float * descriptors,
|
||||
__global const float * keypoints,
|
||||
@ -1175,7 +1202,7 @@ __kernel
|
||||
int rows,
|
||||
int cols,
|
||||
int img_step
|
||||
)
|
||||
)
|
||||
{
|
||||
descriptors_step /= sizeof(float);
|
||||
keypoints_step /= sizeof(float);
|
||||
@ -1189,7 +1216,7 @@ __kernel
|
||||
volatile __local float sdy[25];
|
||||
volatile __local float sdxabs[25];
|
||||
volatile __local float sdyabs[25];
|
||||
volatile __local float s_PATCH[6][6];
|
||||
volatile __local float s_PATCH[6*6];
|
||||
|
||||
calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir, rows, cols, img_step);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -1203,7 +1230,7 @@ __kernel
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
reduce_sum25(sdx, sdy, sdxabs, sdyabs, tid);
|
||||
reduce_sum25(sdx, sdy, sdxabs, sdyabs, tid);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (tid < 25)
|
||||
@ -1221,7 +1248,7 @@ __kernel
|
||||
}
|
||||
}
|
||||
__kernel
|
||||
void compute_descriptors128(
|
||||
void compute_descriptors128(
|
||||
IMAGE_INT8 imgTex,
|
||||
__global float * descriptors,
|
||||
__global float * keypoints,
|
||||
@ -1230,7 +1257,7 @@ __kernel
|
||||
int rows,
|
||||
int cols,
|
||||
int img_step
|
||||
)
|
||||
)
|
||||
{
|
||||
descriptors_step /= sizeof(*descriptors);
|
||||
keypoints_step /= sizeof(*keypoints);
|
||||
@ -1249,7 +1276,7 @@ __kernel
|
||||
volatile __local float sd2[25];
|
||||
volatile __local float sdabs1[25];
|
||||
volatile __local float sdabs2[25];
|
||||
volatile __local float s_PATCH[6][6];
|
||||
volatile __local float s_PATCH[6*6];
|
||||
|
||||
calc_dx_dy(imgTex, sdx, sdy, s_PATCH, featureX, featureY, featureSize, featureDir, rows, cols, img_step);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -1275,7 +1302,7 @@ __kernel
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
|
||||
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
__global float* descriptors_block = descriptors + descriptors_step * get_group_id(0) + (get_group_id(1) << 3);
|
||||
@ -1306,8 +1333,7 @@ __kernel
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
|
||||
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 25)
|
||||
@ -1322,11 +1348,13 @@ __kernel
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void reduce_sum128(volatile __local float* smem, int tid)
|
||||
{
|
||||
#ifndef WAVE_SIZE
|
||||
#define WAVE_SIZE 1
|
||||
#endif
|
||||
|
||||
if (tid < 64)
|
||||
{
|
||||
smem[tid] += smem[tid + 64];
|
||||
@ -1374,6 +1402,8 @@ void reduce_sum128(volatile __local float* smem, int tid)
|
||||
smem[tid] += smem[tid + 1];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void reduce_sum64(volatile __local float* smem, int tid)
|
||||
{
|
||||
#ifndef WAVE_SIZE
|
||||
@ -1421,7 +1451,7 @@ void reduce_sum64(volatile __local float* smem, int tid)
|
||||
}
|
||||
|
||||
__kernel
|
||||
void normalize_descriptors128(__global float * descriptors, int descriptors_step)
|
||||
void normalize_descriptors128(__global float * descriptors, int descriptors_step)
|
||||
{
|
||||
descriptors_step /= sizeof(*descriptors);
|
||||
// no need for thread ID
|
||||
@ -1436,8 +1466,6 @@ __kernel
|
||||
reduce_sum128(sqDesc, get_local_id(0));
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
|
||||
|
||||
// compute length (square root)
|
||||
volatile __local float len;
|
||||
if (get_local_id(0) == 0)
|
||||
@ -1450,7 +1478,7 @@ __kernel
|
||||
descriptor_base[get_local_id(0)] = lookup / len;
|
||||
}
|
||||
__kernel
|
||||
void normalize_descriptors64(__global float * descriptors, int descriptors_step)
|
||||
void normalize_descriptors64(__global float * descriptors, int descriptors_step)
|
||||
{
|
||||
descriptors_step /= sizeof(*descriptors);
|
||||
// no need for thread ID
|
||||
@ -1462,7 +1490,6 @@ __kernel
|
||||
sqDesc[get_local_id(0)] = lookup * lookup;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
|
||||
reduce_sum64(sqDesc, get_local_id(0));
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user