make the sparse method give correct results on CPU ocl
Add CL_CPU to supportsFeature check simplify the logic of pyrlk
This commit is contained in:
parent
656594ad4f
commit
fd4a6f0af0
@ -155,7 +155,7 @@ namespace cv
|
||||
static Context* getContext();
|
||||
static void setContext(Info &oclinfo);
|
||||
|
||||
enum {CL_DOUBLE, CL_UNIFIED_MEM};
|
||||
enum {CL_DOUBLE, CL_UNIFIED_MEM, CL_CPU};
|
||||
bool supportsFeature(int ftype);
|
||||
size_t computeUnits();
|
||||
void* oclContext();
|
||||
|
@ -979,6 +979,12 @@ namespace cv
|
||||
return impl->double_support == 1;
|
||||
case CL_UNIFIED_MEM:
|
||||
return impl->unified_memory == 1;
|
||||
case CL_CPU:
|
||||
cl_device_type devicetype;
|
||||
clGetDeviceInfo(impl->devices[impl->devnum],
|
||||
CL_DEVICE_TYPE, sizeof(cl_device_type),
|
||||
&devicetype, NULL);
|
||||
return devicetype == CVCL_DEVICE_TYPE_CPU;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
@ -394,7 +394,7 @@ void cv::ocl::oclMat::convertTo( oclMat &dst, int rtype, double alpha, double be
|
||||
if( rtype < 0 )
|
||||
rtype = type();
|
||||
else
|
||||
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels());
|
||||
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), oclchannels());
|
||||
|
||||
//int scn = channels();
|
||||
int sdepth = depth(), ddepth = CV_MAT_DEPTH(rtype);
|
||||
|
@ -184,6 +184,209 @@ float linearFilter_float(__global const float* src, int srcStep, int cn, float2
|
||||
}
|
||||
|
||||
#define BUFFER 64
|
||||
|
||||
#ifdef CPU
|
||||
void reduce3(float val1, float val2, float val3, __local float* smem1, __local float* smem2, __local float* smem3, int tid)
|
||||
{
|
||||
smem1[tid] = val1;
|
||||
smem2[tid] = val2;
|
||||
smem3[tid] = val3;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
#if BUFFER > 128
|
||||
if (tid < 128)
|
||||
{
|
||||
smem1[tid] = val1 += smem1[tid + 128];
|
||||
smem2[tid] = val2 += smem2[tid + 128];
|
||||
smem3[tid] = val3 += smem3[tid + 128];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
#endif
|
||||
|
||||
#if BUFFER > 64
|
||||
if (tid < 64)
|
||||
{
|
||||
smem1[tid] = val1 += smem1[tid + 64];
|
||||
smem2[tid] = val2 += smem2[tid + 64];
|
||||
smem3[tid] = val3 += smem3[tid + 64];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
#endif
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
smem1[tid] = val1 += smem1[tid + 32];
|
||||
smem2[tid] = val2 += smem2[tid + 32];
|
||||
smem3[tid] = val3 += smem3[tid + 32];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 16)
|
||||
{
|
||||
smem1[tid] = val1 += smem1[tid + 16];
|
||||
smem2[tid] = val2 += smem2[tid + 16];
|
||||
smem3[tid] = val3 += smem3[tid + 16];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 8)
|
||||
{
|
||||
smem1[tid] = val1 += smem1[tid + 8];
|
||||
smem2[tid] = val2 += smem2[tid + 8];
|
||||
smem3[tid] = val3 += smem3[tid + 8];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 4)
|
||||
{
|
||||
smem1[tid] = val1 += smem1[tid + 4];
|
||||
smem2[tid] = val2 += smem2[tid + 4];
|
||||
smem3[tid] = val3 += smem3[tid + 4];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 2)
|
||||
{
|
||||
smem1[tid] = val1 += smem1[tid + 2];
|
||||
smem2[tid] = val2 += smem2[tid + 2];
|
||||
smem3[tid] = val3 += smem3[tid + 2];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 1)
|
||||
{
|
||||
smem1[BUFFER] = val1 += smem1[tid + 1];
|
||||
smem2[BUFFER] = val2 += smem2[tid + 1];
|
||||
smem3[BUFFER] = val3 += smem3[tid + 1];
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
void reduce2(float val1, float val2, volatile __local float* smem1, volatile __local float* smem2, int tid)
|
||||
{
|
||||
smem1[tid] = val1;
|
||||
smem2[tid] = val2;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
#if BUFFER > 128
|
||||
if (tid < 128)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 128]);
|
||||
smem2[tid] = (val2 += smem2[tid + 128]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
#endif
|
||||
|
||||
#if BUFFER > 64
|
||||
if (tid < 64)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 64]);
|
||||
smem2[tid] = (val2 += smem2[tid + 64]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
#endif
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 32]);
|
||||
smem2[tid] = (val2 += smem2[tid + 32]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 16)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 16]);
|
||||
smem2[tid] = (val2 += smem2[tid + 16]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 8)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 8]);
|
||||
smem2[tid] = (val2 += smem2[tid + 8]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 4)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 4]);
|
||||
smem2[tid] = (val2 += smem2[tid + 4]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 2)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 2]);
|
||||
smem2[tid] = (val2 += smem2[tid + 2]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 1)
|
||||
{
|
||||
smem1[BUFFER] = (val1 += smem1[tid + 1]);
|
||||
smem2[BUFFER] = (val2 += smem2[tid + 1]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
void reduce1(float val1, volatile __local float* smem1, int tid)
|
||||
{
|
||||
smem1[tid] = val1;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
#if BUFFER > 128
|
||||
if (tid < 128)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 128]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
#endif
|
||||
|
||||
#if BUFFER > 64
|
||||
if (tid < 64)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 64]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
#endif
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 32]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 16)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 16]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 8)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 8]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 4)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 4]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 2)
|
||||
{
|
||||
smem1[tid] = (val1 += smem1[tid + 2]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (tid < 1)
|
||||
{
|
||||
smem1[BUFFER] = (val1 += smem1[tid + 1]);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
#else
|
||||
void reduce3(float val1, float val2, float val3, __local float* smem1, __local float* smem2, __local float* smem3, int tid)
|
||||
{
|
||||
smem1[tid] = val1;
|
||||
@ -325,6 +528,7 @@ void reduce1(float val1, __local float* smem1, int tid)
|
||||
vmem1[tid] = val1 += vmem1[tid + 1];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#define SCALE (1.0f / (1 << 20))
|
||||
#define THRESHOLD 0.01f
|
||||
@ -411,14 +615,20 @@ void GetError4(image2d_t J, const float x, const float y, const float4* Pch, flo
|
||||
*errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z);
|
||||
}
|
||||
|
||||
|
||||
#define GRIDSIZE 3
|
||||
__kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
|
||||
__global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err,
|
||||
const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
|
||||
{
|
||||
#ifdef CPU
|
||||
__local float smem1[BUFFER+1];
|
||||
__local float smem2[BUFFER+1];
|
||||
__local float smem3[BUFFER+1];
|
||||
#else
|
||||
__local float smem1[BUFFER];
|
||||
__local float smem2[BUFFER];
|
||||
__local float smem3[BUFFER];
|
||||
#endif
|
||||
|
||||
unsigned int xid=get_local_id(0);
|
||||
unsigned int yid=get_local_id(1);
|
||||
@ -431,7 +641,7 @@ __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
|
||||
|
||||
const int tid = mad24(yid, xsize, xid);
|
||||
|
||||
float2 prevPt = prevPts[gid] / (1 << level);
|
||||
float2 prevPt = prevPts[gid] / (float2)(1 << level);
|
||||
|
||||
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
|
||||
{
|
||||
@ -450,9 +660,9 @@ __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
|
||||
float A12 = 0;
|
||||
float A22 = 0;
|
||||
|
||||
float I_patch[3][3];
|
||||
float dIdx_patch[3][3];
|
||||
float dIdy_patch[3][3];
|
||||
float I_patch[GRIDSIZE][GRIDSIZE];
|
||||
float dIdx_patch[GRIDSIZE][GRIDSIZE];
|
||||
float dIdy_patch[GRIDSIZE][GRIDSIZE];
|
||||
|
||||
yBase=yid;
|
||||
{
|
||||
@ -512,12 +722,19 @@ __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
|
||||
&I_patch[2][2], &dIdx_patch[2][2], &dIdy_patch[2][2],
|
||||
&A11, &A12, &A22);
|
||||
}
|
||||
|
||||
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
#ifdef CPU
|
||||
A11 = smem1[BUFFER];
|
||||
A12 = smem2[BUFFER];
|
||||
A22 = smem3[BUFFER];
|
||||
#else
|
||||
A11 = smem1[0];
|
||||
A12 = smem2[0];
|
||||
A22 = smem3[0];
|
||||
#endif
|
||||
|
||||
float D = A11 * A22 - A12 * A12;
|
||||
|
||||
@ -609,8 +826,13 @@ __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
|
||||
reduce2(b1, b2, smem1, smem2, tid);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
#ifdef CPU
|
||||
b1 = smem1[BUFFER];
|
||||
b2 = smem2[BUFFER];
|
||||
#else
|
||||
b1 = smem1[0];
|
||||
b2 = smem2[0];
|
||||
#endif
|
||||
|
||||
float2 delta;
|
||||
delta.x = A12 * b2 - A22 * b1;
|
||||
@ -685,18 +907,28 @@ __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
|
||||
nextPts[gid] = prevPt;
|
||||
|
||||
if (calcErr)
|
||||
err[gid] = smem1[0] / (c_winSize_x * c_winSize_y);
|
||||
#ifdef CPU
|
||||
err[gid] = smem1[BUFFER] / (float)(c_winSize_x * c_winSize_y);
|
||||
#else
|
||||
err[gid] = smem1[0] / (float)(c_winSize_x * c_winSize_y);
|
||||
#endif
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
__kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
|
||||
__global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err,
|
||||
const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
|
||||
{
|
||||
#ifdef CPU
|
||||
__local float smem1[BUFFER+1];
|
||||
__local float smem2[BUFFER+1];
|
||||
__local float smem3[BUFFER+1];
|
||||
#else
|
||||
__local float smem1[BUFFER];
|
||||
__local float smem2[BUFFER];
|
||||
__local float smem3[BUFFER];
|
||||
#endif
|
||||
|
||||
unsigned int xid=get_local_id(0);
|
||||
unsigned int yid=get_local_id(1);
|
||||
@ -709,7 +941,7 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
|
||||
|
||||
const int tid = mad24(yid, xsize, xid);
|
||||
|
||||
float2 nextPt = prevPts[gid]/(1<<level);
|
||||
float2 nextPt = prevPts[gid]/(float2)(1<<level);
|
||||
|
||||
if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
|
||||
{
|
||||
@ -725,9 +957,9 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
|
||||
|
||||
// extract the patch from the first image, compute covariation matrix of derivatives
|
||||
|
||||
float A11 = 0;
|
||||
float A12 = 0;
|
||||
float A22 = 0;
|
||||
float A11 = 0.0f;
|
||||
float A12 = 0.0f;
|
||||
float A22 = 0.0f;
|
||||
|
||||
float4 I_patch[8];
|
||||
float4 dIdx_patch[8];
|
||||
@ -797,9 +1029,15 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
|
||||
reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
#ifdef CPU
|
||||
A11 = smem1[BUFFER];
|
||||
A12 = smem2[BUFFER];
|
||||
A22 = smem3[BUFFER];
|
||||
#else
|
||||
A11 = smem1[0];
|
||||
A12 = smem2[0];
|
||||
A22 = smem3[0];
|
||||
#endif
|
||||
|
||||
float D = A11 * A22 - A12 * A12;
|
||||
|
||||
@ -888,12 +1126,16 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
|
||||
&b1, &b2);
|
||||
}
|
||||
|
||||
|
||||
reduce2(b1, b2, smem1, smem2, tid);
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
#ifdef CPU
|
||||
b1 = smem1[BUFFER];
|
||||
b2 = smem2[BUFFER];
|
||||
#else
|
||||
b1 = smem1[0];
|
||||
b2 = smem2[0];
|
||||
#endif
|
||||
|
||||
float2 delta;
|
||||
delta.x = A12 * b2 - A22 * b1;
|
||||
@ -967,7 +1209,11 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
|
||||
nextPts[gid] = nextPt;
|
||||
|
||||
if (calcErr)
|
||||
err[gid] = smem1[0] / (3 * c_winSize_x * c_winSize_y);
|
||||
#ifdef CPU
|
||||
err[gid] = smem1[BUFFER] / (float)(3 * c_winSize_x * c_winSize_y);
|
||||
#else
|
||||
err[gid] = smem1[0] / (float)(3 * c_winSize_x * c_winSize_y);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -16,7 +16,7 @@
|
||||
//
|
||||
// @Authors
|
||||
// Dachuan Zhao, dachuan@multicorewareinc.com
|
||||
// Yao Wang, yao@multicorewareinc.com
|
||||
// Yao Wang, bitwangyaoyao@gmail.com
|
||||
// Nathan, liujun@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
@ -47,6 +47,7 @@
|
||||
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
@ -58,11 +59,7 @@ namespace ocl
|
||||
///////////////////////////OpenCL kernel strings///////////////////////////
|
||||
extern const char *pyrlk;
|
||||
extern const char *pyrlk_no_image;
|
||||
extern const char *operator_setTo;
|
||||
extern const char *operator_convertTo;
|
||||
extern const char *operator_copyToM;
|
||||
extern const char *arithm_mul;
|
||||
extern const char *pyr_down;
|
||||
}
|
||||
}
|
||||
|
||||
@ -105,364 +102,7 @@ void calcPatchSize(cv::Size winSize, int cn, dim3 &block, dim3 &patch, bool isDe
|
||||
}
|
||||
}
|
||||
|
||||
inline int divUp(int total, int grain)
|
||||
{
|
||||
return (total + grain - 1) / grain;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// ConvertTo ////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
static void convert_run_cus(const oclMat &src, oclMat &dst, double alpha, double beta)
|
||||
{
|
||||
string kernelName = "convert_to_S";
|
||||
stringstream idxStr;
|
||||
idxStr << src.depth();
|
||||
kernelName += idxStr.str();
|
||||
float alpha_f = (float)alpha, beta_f = (float)beta;
|
||||
CV_DbgAssert(src.rows == dst.rows && src.cols == dst.cols);
|
||||
vector<pair<size_t , const void *> > args;
|
||||
size_t localThreads[3] = {16, 16, 1};
|
||||
size_t globalThreads[3];
|
||||
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
|
||||
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
|
||||
globalThreads[2] = 1;
|
||||
int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize();
|
||||
int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize();
|
||||
if(dst.type() == CV_8UC1)
|
||||
{
|
||||
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0]) / localThreads[0] * localThreads[0];
|
||||
}
|
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
|
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&srcstep_in_pixel ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&srcoffset_in_pixel ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dststep_in_pixel ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstoffset_in_pixel ));
|
||||
args.push_back( make_pair( sizeof(cl_float) , (void *)&alpha_f ));
|
||||
args.push_back( make_pair( sizeof(cl_float) , (void *)&beta_f ));
|
||||
openCLExecuteKernel2(dst.clCxt , &operator_convertTo, kernelName, globalThreads,
|
||||
localThreads, args, dst.oclchannels(), dst.depth(), CLFLUSH);
|
||||
}
|
||||
void convertTo( const oclMat &src, oclMat &m, int rtype, double alpha = 1, double beta = 0 );
|
||||
void convertTo( const oclMat &src, oclMat &dst, int rtype, double alpha, double beta )
|
||||
{
|
||||
//cout << "cv::ocl::oclMat::convertTo()" << endl;
|
||||
|
||||
bool noScale = fabs(alpha - 1) < std::numeric_limits<double>::epsilon()
|
||||
&& fabs(beta) < std::numeric_limits<double>::epsilon();
|
||||
|
||||
if( rtype < 0 )
|
||||
rtype = src.type();
|
||||
else
|
||||
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), src.oclchannels());
|
||||
|
||||
int sdepth = src.depth(), ddepth = CV_MAT_DEPTH(rtype);
|
||||
if( sdepth == ddepth && noScale )
|
||||
{
|
||||
src.copyTo(dst);
|
||||
return;
|
||||
}
|
||||
|
||||
oclMat temp;
|
||||
const oclMat *psrc = &src;
|
||||
if( sdepth != ddepth && psrc == &dst )
|
||||
psrc = &(temp = src);
|
||||
|
||||
dst.create( src.size(), rtype );
|
||||
convert_run_cus(*psrc, dst, alpha, beta);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// setTo ////////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
//oclMat &operator = (const Scalar &s)
|
||||
//{
|
||||
// //cout << "cv::ocl::oclMat::=" << endl;
|
||||
// setTo(s);
|
||||
// return *this;
|
||||
//}
|
||||
static void set_to_withoutmask_run_cus(const oclMat &dst, const Scalar &scalar, string kernelName)
|
||||
{
|
||||
vector<pair<size_t , const void *> > args;
|
||||
|
||||
size_t localThreads[3] = {16, 16, 1};
|
||||
size_t globalThreads[3];
|
||||
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
|
||||
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
|
||||
globalThreads[2] = 1;
|
||||
int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize();
|
||||
if(dst.type() == CV_8UC1)
|
||||
{
|
||||
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0];
|
||||
}
|
||||
char compile_option[32];
|
||||
union sc
|
||||
{
|
||||
cl_uchar4 uval;
|
||||
cl_char4 cval;
|
||||
cl_ushort4 usval;
|
||||
cl_short4 shval;
|
||||
cl_int4 ival;
|
||||
cl_float4 fval;
|
||||
cl_double4 dval;
|
||||
} val;
|
||||
switch(dst.depth())
|
||||
{
|
||||
case 0:
|
||||
val.uval.s[0] = saturate_cast<uchar>(scalar.val[0]);
|
||||
val.uval.s[1] = saturate_cast<uchar>(scalar.val[1]);
|
||||
val.uval.s[2] = saturate_cast<uchar>(scalar.val[2]);
|
||||
val.uval.s[3] = saturate_cast<uchar>(scalar.val[3]);
|
||||
switch(dst.oclchannels())
|
||||
{
|
||||
case 1:
|
||||
sprintf(compile_option, "-D GENTYPE=uchar");
|
||||
args.push_back( make_pair( sizeof(cl_uchar) , (void *)&val.uval.s[0] ));
|
||||
break;
|
||||
case 4:
|
||||
sprintf(compile_option, "-D GENTYPE=uchar4");
|
||||
args.push_back( make_pair( sizeof(cl_uchar4) , (void *)&val.uval ));
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
val.cval.s[0] = saturate_cast<char>(scalar.val[0]);
|
||||
val.cval.s[1] = saturate_cast<char>(scalar.val[1]);
|
||||
val.cval.s[2] = saturate_cast<char>(scalar.val[2]);
|
||||
val.cval.s[3] = saturate_cast<char>(scalar.val[3]);
|
||||
switch(dst.oclchannels())
|
||||
{
|
||||
case 1:
|
||||
sprintf(compile_option, "-D GENTYPE=char");
|
||||
args.push_back( make_pair( sizeof(cl_char) , (void *)&val.cval.s[0] ));
|
||||
break;
|
||||
case 4:
|
||||
sprintf(compile_option, "-D GENTYPE=char4");
|
||||
args.push_back( make_pair( sizeof(cl_char4) , (void *)&val.cval ));
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
val.usval.s[0] = saturate_cast<ushort>(scalar.val[0]);
|
||||
val.usval.s[1] = saturate_cast<ushort>(scalar.val[1]);
|
||||
val.usval.s[2] = saturate_cast<ushort>(scalar.val[2]);
|
||||
val.usval.s[3] = saturate_cast<ushort>(scalar.val[3]);
|
||||
switch(dst.oclchannels())
|
||||
{
|
||||
case 1:
|
||||
sprintf(compile_option, "-D GENTYPE=ushort");
|
||||
args.push_back( make_pair( sizeof(cl_ushort) , (void *)&val.usval.s[0] ));
|
||||
break;
|
||||
case 4:
|
||||
sprintf(compile_option, "-D GENTYPE=ushort4");
|
||||
args.push_back( make_pair( sizeof(cl_ushort4) , (void *)&val.usval ));
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
val.shval.s[0] = saturate_cast<short>(scalar.val[0]);
|
||||
val.shval.s[1] = saturate_cast<short>(scalar.val[1]);
|
||||
val.shval.s[2] = saturate_cast<short>(scalar.val[2]);
|
||||
val.shval.s[3] = saturate_cast<short>(scalar.val[3]);
|
||||
switch(dst.oclchannels())
|
||||
{
|
||||
case 1:
|
||||
sprintf(compile_option, "-D GENTYPE=short");
|
||||
args.push_back( make_pair( sizeof(cl_short) , (void *)&val.shval.s[0] ));
|
||||
break;
|
||||
case 4:
|
||||
sprintf(compile_option, "-D GENTYPE=short4");
|
||||
args.push_back( make_pair( sizeof(cl_short4) , (void *)&val.shval ));
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
|
||||
}
|
||||
break;
|
||||
case 4:
|
||||
val.ival.s[0] = saturate_cast<int>(scalar.val[0]);
|
||||
val.ival.s[1] = saturate_cast<int>(scalar.val[1]);
|
||||
val.ival.s[2] = saturate_cast<int>(scalar.val[2]);
|
||||
val.ival.s[3] = saturate_cast<int>(scalar.val[3]);
|
||||
switch(dst.oclchannels())
|
||||
{
|
||||
case 1:
|
||||
sprintf(compile_option, "-D GENTYPE=int");
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&val.ival.s[0] ));
|
||||
break;
|
||||
case 2:
|
||||
sprintf(compile_option, "-D GENTYPE=int2");
|
||||
cl_int2 i2val;
|
||||
i2val.s[0] = val.ival.s[0];
|
||||
i2val.s[1] = val.ival.s[1];
|
||||
args.push_back( make_pair( sizeof(cl_int2) , (void *)&i2val ));
|
||||
break;
|
||||
case 4:
|
||||
sprintf(compile_option, "-D GENTYPE=int4");
|
||||
args.push_back( make_pair( sizeof(cl_int4) , (void *)&val.ival ));
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
|
||||
}
|
||||
break;
|
||||
case 5:
|
||||
val.fval.s[0] = (float)scalar.val[0];
|
||||
val.fval.s[1] = (float)scalar.val[1];
|
||||
val.fval.s[2] = (float)scalar.val[2];
|
||||
val.fval.s[3] = (float)scalar.val[3];
|
||||
switch(dst.oclchannels())
|
||||
{
|
||||
case 1:
|
||||
sprintf(compile_option, "-D GENTYPE=float");
|
||||
args.push_back( make_pair( sizeof(cl_float) , (void *)&val.fval.s[0] ));
|
||||
break;
|
||||
case 4:
|
||||
sprintf(compile_option, "-D GENTYPE=float4");
|
||||
args.push_back( make_pair( sizeof(cl_float4) , (void *)&val.fval ));
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
|
||||
}
|
||||
break;
|
||||
case 6:
|
||||
val.dval.s[0] = scalar.val[0];
|
||||
val.dval.s[1] = scalar.val[1];
|
||||
val.dval.s[2] = scalar.val[2];
|
||||
val.dval.s[3] = scalar.val[3];
|
||||
switch(dst.oclchannels())
|
||||
{
|
||||
case 1:
|
||||
sprintf(compile_option, "-D GENTYPE=double");
|
||||
args.push_back( make_pair( sizeof(cl_double) , (void *)&val.dval.s[0] ));
|
||||
break;
|
||||
case 4:
|
||||
sprintf(compile_option, "-D GENTYPE=double4");
|
||||
args.push_back( make_pair( sizeof(cl_double4) , (void *)&val.dval ));
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsUnsupportedFormat, "unknown depth");
|
||||
}
|
||||
#ifdef CL_VERSION_1_2
|
||||
if(dst.offset == 0 && dst.cols == dst.wholecols)
|
||||
{
|
||||
clEnqueueFillBuffer((cl_command_queue)dst.clCxt->oclCommandQueue(), (cl_mem)dst.data, args[0].second, args[0].first, 0, dst.step * dst.rows, 0, NULL, NULL);
|
||||
}
|
||||
else
|
||||
{
|
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&step_in_pixel ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset_in_pixel));
|
||||
openCLExecuteKernel2(dst.clCxt , &operator_setTo, kernelName, globalThreads,
|
||||
localThreads, args, -1, -1, compile_option, CLFLUSH);
|
||||
}
|
||||
#else
|
||||
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&step_in_pixel ));
|
||||
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset_in_pixel));
|
||||
openCLExecuteKernel2(dst.clCxt , &operator_setTo, kernelName, globalThreads,
|
||||
localThreads, args, -1, -1, compile_option, CLFLUSH);
|
||||
#endif
|
||||
}
|
||||
|
||||
static oclMat &setTo(oclMat &src, const Scalar &scalar)
|
||||
{
|
||||
CV_Assert( src.depth() >= 0 && src.depth() <= 6 );
|
||||
CV_DbgAssert( !src.empty());
|
||||
|
||||
if(src.type() == CV_8UC1)
|
||||
{
|
||||
set_to_withoutmask_run_cus(src, scalar, "set_to_without_mask_C1_D0");
|
||||
}
|
||||
else
|
||||
{
|
||||
set_to_withoutmask_run_cus(src, scalar, "set_to_without_mask");
|
||||
}
|
||||
|
||||
return src;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////// CopyTo /////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// static void copy_to_with_mask_cus(const oclMat &src, oclMat &dst, const oclMat &mask, string kernelName)
|
||||
// {
|
||||
// CV_DbgAssert( dst.rows == mask.rows && dst.cols == mask.cols &&
|
||||
// src.rows == dst.rows && src.cols == dst.cols
|
||||
// && mask.type() == CV_8UC1);
|
||||
|
||||
// vector<pair<size_t , const void *> > args;
|
||||
|
||||
// std::string string_types[4][7] = {{"uchar", "char", "ushort", "short", "int", "float", "double"},
|
||||
// {"uchar2", "char2", "ushort2", "short2", "int2", "float2", "double2"},
|
||||
// {"uchar3", "char3", "ushort3", "short3", "int3", "float3", "double3"},
|
||||
// {"uchar4", "char4", "ushort4", "short4", "int4", "float4", "double4"}
|
||||
// };
|
||||
// char compile_option[32];
|
||||
// sprintf(compile_option, "-D GENTYPE=%s", string_types[dst.oclchannels() - 1][dst.depth()].c_str());
|
||||
// size_t localThreads[3] = {16, 16, 1};
|
||||
// size_t globalThreads[3];
|
||||
|
||||
// globalThreads[0] = divUp(dst.cols, localThreads[0]) * localThreads[0];
|
||||
// globalThreads[1] = divUp(dst.rows, localThreads[1]) * localThreads[1];
|
||||
// globalThreads[2] = 1;
|
||||
|
||||
// int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize();
|
||||
// int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize();
|
||||
|
||||
// args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
|
||||
// args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
|
||||
// args.push_back( make_pair( sizeof(cl_mem) , (void *)&mask.data ));
|
||||
// args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
|
||||
// args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
|
||||
// args.push_back( make_pair( sizeof(cl_int) , (void *)&srcstep_in_pixel ));
|
||||
// args.push_back( make_pair( sizeof(cl_int) , (void *)&srcoffset_in_pixel ));
|
||||
// args.push_back( make_pair( sizeof(cl_int) , (void *)&dststep_in_pixel ));
|
||||
// args.push_back( make_pair( sizeof(cl_int) , (void *)&dstoffset_in_pixel ));
|
||||
// args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.step ));
|
||||
// args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.offset ));
|
||||
|
||||
// openCLExecuteKernel2(dst.clCxt , &operator_copyToM, kernelName, globalThreads,
|
||||
// localThreads, args, -1, -1, compile_option, CLFLUSH);
|
||||
// }
|
||||
|
||||
static void copyTo(const oclMat &src, oclMat &m )
|
||||
{
|
||||
CV_DbgAssert(!src.empty());
|
||||
m.create(src.size(), src.type());
|
||||
openCLCopyBuffer2D(src.clCxt, m.data, m.step, m.offset,
|
||||
src.data, src.step, src.cols * src.elemSize(), src.rows, src.offset);
|
||||
}
|
||||
|
||||
// static void copyTo(const oclMat &src, oclMat &mat, const oclMat &mask)
|
||||
// {
|
||||
// if (mask.empty())
|
||||
// {
|
||||
// copyTo(src, mat);
|
||||
// }
|
||||
// else
|
||||
// {
|
||||
// mat.create(src.size(), src.type());
|
||||
// copy_to_with_mask_cus(src, mat, mask, "copy_to_with_mask");
|
||||
// }
|
||||
// }
|
||||
|
||||
static void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, const char **kernelString, void *_scalar)
|
||||
static void multiply_cus(const oclMat &src1, oclMat &dst, float scalar)
|
||||
{
|
||||
if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F)
|
||||
{
|
||||
@ -470,9 +110,6 @@ static void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, c
|
||||
return;
|
||||
}
|
||||
|
||||
//dst.create(src1.size(), src1.type());
|
||||
//CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols &&
|
||||
// src1.rows == src2.rows && src2.rows == dst.rows);
|
||||
CV_Assert(src1.cols == dst.cols &&
|
||||
src1.rows == dst.rows);
|
||||
|
||||
@ -480,24 +117,8 @@ static void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, c
|
||||
CV_Assert(src1.depth() != CV_8S);
|
||||
|
||||
Context *clCxt = src1.clCxt;
|
||||
//int channels = dst.channels();
|
||||
//int depth = dst.depth();
|
||||
|
||||
//int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1},
|
||||
// {4, 0, 4, 4, 1, 1, 1},
|
||||
// {4, 0, 4, 4, 1, 1, 1},
|
||||
// {4, 0, 4, 4, 1, 1, 1}
|
||||
//};
|
||||
|
||||
//size_t vector_length = vector_lengths[channels-1][depth];
|
||||
//int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1);
|
||||
//int cols = divUp(dst.cols * channels + offset_cols, vector_length);
|
||||
|
||||
size_t localThreads[3] = { 16, 16, 1 };
|
||||
//size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0],
|
||||
// divUp(dst.rows, localThreads[1]) * localThreads[1],
|
||||
// 1
|
||||
// };
|
||||
size_t globalThreads[3] = { src1.cols,
|
||||
src1.rows,
|
||||
1
|
||||
@ -508,67 +129,20 @@ static void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, c
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset ));
|
||||
//args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data ));
|
||||
//args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step ));
|
||||
//args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset ));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.cols ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
|
||||
args.push_back( make_pair( sizeof(float), (float *)&scalar ));
|
||||
|
||||
//if(_scalar != NULL)
|
||||
//{
|
||||
float scalar1 = *((float *)_scalar);
|
||||
args.push_back( make_pair( sizeof(float), (float *)&scalar1 ));
|
||||
//}
|
||||
|
||||
openCLExecuteKernel2(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, src1.depth(), CLFLUSH);
|
||||
}
|
||||
|
||||
static void multiply_cus(const oclMat &src1, oclMat &dst, float scalar)
|
||||
{
|
||||
arithmetic_run(src1, dst, "arithm_muls", &arithm_mul, (void *)(&scalar));
|
||||
}
|
||||
|
||||
static void pyrdown_run_cus(const oclMat &src, const oclMat &dst)
|
||||
{
|
||||
|
||||
CV_Assert(src.type() == dst.type());
|
||||
CV_Assert(src.depth() != CV_8S);
|
||||
|
||||
Context *clCxt = src.clCxt;
|
||||
|
||||
string kernelName = "pyrDown";
|
||||
|
||||
size_t localThreads[3] = { 256, 1, 1 };
|
||||
size_t globalThreads[3] = { src.cols, dst.rows, 1};
|
||||
|
||||
vector<pair<size_t , const void *> > args;
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.cols));
|
||||
|
||||
openCLExecuteKernel2(clCxt, &pyr_down, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth(), CLFLUSH);
|
||||
}
|
||||
|
||||
static void pyrDown_cus(const oclMat &src, oclMat &dst)
|
||||
{
|
||||
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
|
||||
|
||||
dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type());
|
||||
|
||||
pyrdown_run_cus(src, dst);
|
||||
openCLExecuteKernel(clCxt, &arithm_mul, "arithm_muls", globalThreads, localThreads, args, -1, src1.depth());
|
||||
}
|
||||
|
||||
static void lkSparse_run(oclMat &I, oclMat &J,
|
||||
const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat& err, bool /*GET_MIN_EIGENVALS*/, int ptcount,
|
||||
int level, /*dim3 block, */dim3 patch, Size winSize, int iters)
|
||||
int level, dim3 patch, Size winSize, int iters)
|
||||
{
|
||||
Context *clCxt = I.clCxt;
|
||||
int elemCntPerRow = I.step / I.elemSize();
|
||||
@ -613,15 +187,24 @@ static void lkSparse_run(oclMat &I, oclMat &J,
|
||||
args.push_back( make_pair( sizeof(cl_int), (void *)&iters ));
|
||||
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr ));
|
||||
|
||||
if(isImageSupported)
|
||||
if (clCxt->supportsFeature(Context::CL_CPU))
|
||||
{
|
||||
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
|
||||
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), (char*)" -D CPU");
|
||||
releaseTexture(ITex);
|
||||
releaseTexture(JTex);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
|
||||
if(isImageSupported)
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
|
||||
releaseTexture(ITex);
|
||||
releaseTexture(JTex);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLExecuteKernel(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -631,7 +214,7 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
|
||||
{
|
||||
nextPts.release();
|
||||
status.release();
|
||||
//if (err) err->release();
|
||||
if (err) err->release();
|
||||
return;
|
||||
}
|
||||
|
||||
@ -657,13 +240,11 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
|
||||
|
||||
oclMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1);
|
||||
oclMat temp2 = nextPts.reshape(1);
|
||||
//oclMat scalar(temp1.rows, temp1.cols, temp1.type(), Scalar(1.0f / (1 << maxLevel) / 2.0f));
|
||||
multiply_cus(temp1, temp2, 1.0f / (1 << maxLevel) / 2.0f);
|
||||
//::multiply(temp1, 1.0f / (1 << maxLevel) / 2.0f, temp2);
|
||||
|
||||
ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status);
|
||||
//status.setTo(Scalar::all(1));
|
||||
setTo(status, Scalar::all(1));
|
||||
status.setTo(Scalar::all(1));
|
||||
|
||||
bool errMat = false;
|
||||
if (!err)
|
||||
@ -673,7 +254,6 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
|
||||
}
|
||||
else
|
||||
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
|
||||
//ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, err);
|
||||
|
||||
// build the image pyramids.
|
||||
|
||||
@ -682,25 +262,14 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
|
||||
|
||||
if (cn == 1 || cn == 4)
|
||||
{
|
||||
//prevImg.convertTo(prevPyr_[0], CV_32F);
|
||||
//nextImg.convertTo(nextPyr_[0], CV_32F);
|
||||
convertTo(prevImg, prevPyr_[0], CV_32F);
|
||||
convertTo(nextImg, nextPyr_[0], CV_32F);
|
||||
}
|
||||
else
|
||||
{
|
||||
//oclMat buf_;
|
||||
// cvtColor(prevImg, buf_, COLOR_BGR2BGRA);
|
||||
// buf_.convertTo(prevPyr_[0], CV_32F);
|
||||
|
||||
// cvtColor(nextImg, buf_, COLOR_BGR2BGRA);
|
||||
// buf_.convertTo(nextPyr_[0], CV_32F);
|
||||
prevImg.convertTo(prevPyr_[0], CV_32F);
|
||||
nextImg.convertTo(nextPyr_[0], CV_32F);
|
||||
}
|
||||
|
||||
for (int level = 1; level <= maxLevel; ++level)
|
||||
{
|
||||
pyrDown_cus(prevPyr_[level - 1], prevPyr_[level]);
|
||||
pyrDown_cus(nextPyr_[level - 1], nextPyr_[level]);
|
||||
pyrDown(prevPyr_[level - 1], prevPyr_[level]);
|
||||
pyrDown(nextPyr_[level - 1], nextPyr_[level]);
|
||||
}
|
||||
|
||||
// dI/dx ~ Ix, dI/dy ~ Iy
|
||||
@ -709,11 +278,9 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
|
||||
{
|
||||
lkSparse_run(prevPyr_[level], nextPyr_[level],
|
||||
prevPts, nextPts, status, *err, getMinEigenVals, prevPts.cols,
|
||||
level, /*block, */patch, winSize, iters);
|
||||
level, patch, winSize, iters);
|
||||
}
|
||||
|
||||
clFinish((cl_command_queue)prevImg.clCxt->oclCommandQueue());
|
||||
|
||||
if(errMat)
|
||||
delete err;
|
||||
}
|
||||
@ -754,11 +321,6 @@ static void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
|
||||
JTex = (cl_mem)J.data;
|
||||
}
|
||||
|
||||
//int2 halfWin = {(winSize.width - 1) / 2, (winSize.height - 1) / 2};
|
||||
//const int patchWidth = 16 + 2 * halfWin.x;
|
||||
//const int patchHeight = 16 + 2 * halfWin.y;
|
||||
//size_t smem_size = 3 * patchWidth * patchHeight * sizeof(int);
|
||||
|
||||
vector<pair<size_t , const void *> > args;
|
||||
|
||||
args.push_back( make_pair( sizeof(cl_mem), (void *)&ITex ));
|
||||
@ -787,15 +349,14 @@ static void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
|
||||
|
||||
if (isImageSupported)
|
||||
{
|
||||
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
|
||||
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
|
||||
|
||||
releaseTexture(ITex);
|
||||
releaseTexture(JTex);
|
||||
}
|
||||
else
|
||||
{
|
||||
//printf("Warning: The image2d_t is not supported by the device. Using alternative method!\n");
|
||||
openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
|
||||
openCLExecuteKernel(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
|
||||
}
|
||||
}
|
||||
|
||||
@ -813,23 +374,20 @@ void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &prevImg, const oclMat &nextI
|
||||
nextPyr_.resize(maxLevel + 1);
|
||||
|
||||
prevPyr_[0] = prevImg;
|
||||
//nextImg.convertTo(nextPyr_[0], CV_32F);
|
||||
convertTo(nextImg, nextPyr_[0], CV_32F);
|
||||
nextImg.convertTo(nextPyr_[0], CV_32F);
|
||||
|
||||
for (int level = 1; level <= maxLevel; ++level)
|
||||
{
|
||||
pyrDown_cus(prevPyr_[level - 1], prevPyr_[level]);
|
||||
pyrDown_cus(nextPyr_[level - 1], nextPyr_[level]);
|
||||
pyrDown(prevPyr_[level - 1], prevPyr_[level]);
|
||||
pyrDown(nextPyr_[level - 1], nextPyr_[level]);
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[0]);
|
||||
ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[0]);
|
||||
ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[1]);
|
||||
ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[1]);
|
||||
//uPyr_[1].setTo(Scalar::all(0));
|
||||
//vPyr_[1].setTo(Scalar::all(0));
|
||||
setTo(uPyr_[1], Scalar::all(0));
|
||||
setTo(vPyr_[1], Scalar::all(0));
|
||||
uPyr_[1].setTo(Scalar::all(0));
|
||||
vPyr_[1].setTo(Scalar::all(0));
|
||||
|
||||
Size winSize2i(winSize.width, winSize.height);
|
||||
|
||||
@ -846,10 +404,6 @@ void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &prevImg, const oclMat &nextI
|
||||
idx = idx2;
|
||||
}
|
||||
|
||||
//uPyr_[idx].copyTo(u);
|
||||
//vPyr_[idx].copyTo(v);
|
||||
copyTo(uPyr_[idx], u);
|
||||
copyTo(vPyr_[idx], v);
|
||||
|
||||
clFinish((cl_command_queue)prevImg.clCxt->oclCommandQueue());
|
||||
uPyr_[idx].copyTo(u);
|
||||
vPyr_[idx].copyTo(v);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user