make the sparse method give correct results on CPU ocl

Add CL_CPU to supportsFeature check
simplify the logic of pyrlk
This commit is contained in:
yao 2013-04-03 13:23:04 +08:00
parent 656594ad4f
commit fd4a6f0af0
5 changed files with 307 additions and 501 deletions

View File

@ -155,7 +155,7 @@ namespace cv
static Context* getContext(); static Context* getContext();
static void setContext(Info &oclinfo); static void setContext(Info &oclinfo);
enum {CL_DOUBLE, CL_UNIFIED_MEM}; enum {CL_DOUBLE, CL_UNIFIED_MEM, CL_CPU};
bool supportsFeature(int ftype); bool supportsFeature(int ftype);
size_t computeUnits(); size_t computeUnits();
void* oclContext(); void* oclContext();

View File

@ -979,6 +979,12 @@ namespace cv
return impl->double_support == 1; return impl->double_support == 1;
case CL_UNIFIED_MEM: case CL_UNIFIED_MEM:
return impl->unified_memory == 1; return impl->unified_memory == 1;
case CL_CPU:
cl_device_type devicetype;
clGetDeviceInfo(impl->devices[impl->devnum],
CL_DEVICE_TYPE, sizeof(cl_device_type),
&devicetype, NULL);
return devicetype == CVCL_DEVICE_TYPE_CPU;
default: default:
return false; return false;
} }

View File

@ -394,7 +394,7 @@ void cv::ocl::oclMat::convertTo( oclMat &dst, int rtype, double alpha, double be
if( rtype < 0 ) if( rtype < 0 )
rtype = type(); rtype = type();
else else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), channels()); rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), oclchannels());
//int scn = channels(); //int scn = channels();
int sdepth = depth(), ddepth = CV_MAT_DEPTH(rtype); int sdepth = depth(), ddepth = CV_MAT_DEPTH(rtype);

View File

@ -184,6 +184,209 @@ float linearFilter_float(__global const float* src, int srcStep, int cn, float2
} }
#define BUFFER 64 #define BUFFER 64
#ifdef CPU
void reduce3(float val1, float val2, float val3, __local float* smem1, __local float* smem2, __local float* smem3, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
smem3[tid] = val3;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
smem3[tid] = val3 += smem3[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
smem3[tid] = val3 += smem3[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = val1 += smem1[tid + 32];
smem2[tid] = val2 += smem2[tid + 32];
smem3[tid] = val3 += smem3[tid + 32];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
smem1[tid] = val1 += smem1[tid + 16];
smem2[tid] = val2 += smem2[tid + 16];
smem3[tid] = val3 += smem3[tid + 16];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
smem1[tid] = val1 += smem1[tid + 8];
smem2[tid] = val2 += smem2[tid + 8];
smem3[tid] = val3 += smem3[tid + 8];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 4)
{
smem1[tid] = val1 += smem1[tid + 4];
smem2[tid] = val2 += smem2[tid + 4];
smem3[tid] = val3 += smem3[tid + 4];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 2)
{
smem1[tid] = val1 += smem1[tid + 2];
smem2[tid] = val2 += smem2[tid + 2];
smem3[tid] = val3 += smem3[tid + 2];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 1)
{
smem1[BUFFER] = val1 += smem1[tid + 1];
smem2[BUFFER] = val2 += smem2[tid + 1];
smem3[BUFFER] = val3 += smem3[tid + 1];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
void reduce2(float val1, float val2, volatile __local float* smem1, volatile __local float* smem2, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = (val1 += smem1[tid + 128]);
smem2[tid] = (val2 += smem2[tid + 128]);
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = (val1 += smem1[tid + 64]);
smem2[tid] = (val2 += smem2[tid + 64]);
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = (val1 += smem1[tid + 32]);
smem2[tid] = (val2 += smem2[tid + 32]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
smem1[tid] = (val1 += smem1[tid + 16]);
smem2[tid] = (val2 += smem2[tid + 16]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
smem1[tid] = (val1 += smem1[tid + 8]);
smem2[tid] = (val2 += smem2[tid + 8]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 4)
{
smem1[tid] = (val1 += smem1[tid + 4]);
smem2[tid] = (val2 += smem2[tid + 4]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 2)
{
smem1[tid] = (val1 += smem1[tid + 2]);
smem2[tid] = (val2 += smem2[tid + 2]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 1)
{
smem1[BUFFER] = (val1 += smem1[tid + 1]);
smem2[BUFFER] = (val2 += smem2[tid + 1]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
void reduce1(float val1, volatile __local float* smem1, int tid)
{
smem1[tid] = val1;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = (val1 += smem1[tid + 128]);
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = (val1 += smem1[tid + 64]);
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = (val1 += smem1[tid + 32]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
smem1[tid] = (val1 += smem1[tid + 16]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
smem1[tid] = (val1 += smem1[tid + 8]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 4)
{
smem1[tid] = (val1 += smem1[tid + 4]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 2)
{
smem1[tid] = (val1 += smem1[tid + 2]);
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 1)
{
smem1[BUFFER] = (val1 += smem1[tid + 1]);
}
barrier(CLK_LOCAL_MEM_FENCE);
}
#else
void reduce3(float val1, float val2, float val3, __local float* smem1, __local float* smem2, __local float* smem3, int tid) void reduce3(float val1, float val2, float val3, __local float* smem1, __local float* smem2, __local float* smem3, int tid)
{ {
smem1[tid] = val1; smem1[tid] = val1;
@ -325,6 +528,7 @@ void reduce1(float val1, __local float* smem1, int tid)
vmem1[tid] = val1 += vmem1[tid + 1]; vmem1[tid] = val1 += vmem1[tid + 1];
} }
} }
#endif
#define SCALE (1.0f / (1 << 20)) #define SCALE (1.0f / (1 << 20))
#define THRESHOLD 0.01f #define THRESHOLD 0.01f
@ -411,14 +615,20 @@ void GetError4(image2d_t J, const float x, const float y, const float4* Pch, flo
*errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z); *errval += fabs(diff.x) + fabs(diff.y) + fabs(diff.z);
} }
#define GRIDSIZE 3
__kernel void lkSparse_C1_D5(image2d_t I, image2d_t J, __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
__global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err, __global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err,
const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr) const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{ {
#ifdef CPU
__local float smem1[BUFFER+1];
__local float smem2[BUFFER+1];
__local float smem3[BUFFER+1];
#else
__local float smem1[BUFFER]; __local float smem1[BUFFER];
__local float smem2[BUFFER]; __local float smem2[BUFFER];
__local float smem3[BUFFER]; __local float smem3[BUFFER];
#endif
unsigned int xid=get_local_id(0); unsigned int xid=get_local_id(0);
unsigned int yid=get_local_id(1); unsigned int yid=get_local_id(1);
@ -431,7 +641,7 @@ __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
const int tid = mad24(yid, xsize, xid); const int tid = mad24(yid, xsize, xid);
float2 prevPt = prevPts[gid] / (1 << level); float2 prevPt = prevPts[gid] / (float2)(1 << level);
if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows) if (prevPt.x < 0 || prevPt.x >= cols || prevPt.y < 0 || prevPt.y >= rows)
{ {
@ -450,9 +660,9 @@ __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
float A12 = 0; float A12 = 0;
float A22 = 0; float A22 = 0;
float I_patch[3][3]; float I_patch[GRIDSIZE][GRIDSIZE];
float dIdx_patch[3][3]; float dIdx_patch[GRIDSIZE][GRIDSIZE];
float dIdy_patch[3][3]; float dIdy_patch[GRIDSIZE][GRIDSIZE];
yBase=yid; yBase=yid;
{ {
@ -512,12 +722,19 @@ __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
&I_patch[2][2], &dIdx_patch[2][2], &dIdy_patch[2][2], &I_patch[2][2], &dIdx_patch[2][2], &dIdy_patch[2][2],
&A11, &A12, &A22); &A11, &A12, &A22);
} }
reduce3(A11, A12, A22, smem1, smem2, smem3, tid); reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
#ifdef CPU
A11 = smem1[BUFFER];
A12 = smem2[BUFFER];
A22 = smem3[BUFFER];
#else
A11 = smem1[0]; A11 = smem1[0];
A12 = smem2[0]; A12 = smem2[0];
A22 = smem3[0]; A22 = smem3[0];
#endif
float D = A11 * A22 - A12 * A12; float D = A11 * A22 - A12 * A12;
@ -609,8 +826,13 @@ __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
reduce2(b1, b2, smem1, smem2, tid); reduce2(b1, b2, smem1, smem2, tid);
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
#ifdef CPU
b1 = smem1[BUFFER];
b2 = smem2[BUFFER];
#else
b1 = smem1[0]; b1 = smem1[0];
b2 = smem2[0]; b2 = smem2[0];
#endif
float2 delta; float2 delta;
delta.x = A12 * b2 - A22 * b1; delta.x = A12 * b2 - A22 * b1;
@ -685,18 +907,28 @@ __kernel void lkSparse_C1_D5(image2d_t I, image2d_t J,
nextPts[gid] = prevPt; nextPts[gid] = prevPt;
if (calcErr) if (calcErr)
err[gid] = smem1[0] / (c_winSize_x * c_winSize_y); #ifdef CPU
err[gid] = smem1[BUFFER] / (float)(c_winSize_x * c_winSize_y);
#else
err[gid] = smem1[0] / (float)(c_winSize_x * c_winSize_y);
#endif
} }
} }
__kernel void lkSparse_C4_D5(image2d_t I, image2d_t J, __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
__global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err, __global const float2* prevPts, int prevPtsStep, __global float2* nextPts, int nextPtsStep, __global uchar* status, __global float* err,
const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr) const int level, const int rows, const int cols, int PATCH_X, int PATCH_Y, int cn, int c_winSize_x, int c_winSize_y, int c_iters, char calcErr)
{ {
__local float smem1[BUFFER]; #ifdef CPU
__local float smem2[BUFFER]; __local float smem1[BUFFER+1];
__local float smem3[BUFFER]; __local float smem2[BUFFER+1];
__local float smem3[BUFFER+1];
#else
__local float smem1[BUFFER];
__local float smem2[BUFFER];
__local float smem3[BUFFER];
#endif
unsigned int xid=get_local_id(0); unsigned int xid=get_local_id(0);
unsigned int yid=get_local_id(1); unsigned int yid=get_local_id(1);
@ -709,7 +941,7 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
const int tid = mad24(yid, xsize, xid); const int tid = mad24(yid, xsize, xid);
float2 nextPt = prevPts[gid]/(1<<level); float2 nextPt = prevPts[gid]/(float2)(1<<level);
if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows) if (nextPt.x < 0 || nextPt.x >= cols || nextPt.y < 0 || nextPt.y >= rows)
{ {
@ -725,9 +957,9 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
// extract the patch from the first image, compute covariation matrix of derivatives // extract the patch from the first image, compute covariation matrix of derivatives
float A11 = 0; float A11 = 0.0f;
float A12 = 0; float A12 = 0.0f;
float A22 = 0; float A22 = 0.0f;
float4 I_patch[8]; float4 I_patch[8];
float4 dIdx_patch[8]; float4 dIdx_patch[8];
@ -797,9 +1029,15 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
reduce3(A11, A12, A22, smem1, smem2, smem3, tid); reduce3(A11, A12, A22, smem1, smem2, smem3, tid);
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
#ifdef CPU
A11 = smem1[BUFFER];
A12 = smem2[BUFFER];
A22 = smem3[BUFFER];
#else
A11 = smem1[0]; A11 = smem1[0];
A12 = smem2[0]; A12 = smem2[0];
A22 = smem3[0]; A22 = smem3[0];
#endif
float D = A11 * A22 - A12 * A12; float D = A11 * A22 - A12 * A12;
@ -888,12 +1126,16 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
&b1, &b2); &b1, &b2);
} }
reduce2(b1, b2, smem1, smem2, tid); reduce2(b1, b2, smem1, smem2, tid);
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
#ifdef CPU
b1 = smem1[BUFFER];
b2 = smem2[BUFFER];
#else
b1 = smem1[0]; b1 = smem1[0];
b2 = smem2[0]; b2 = smem2[0];
#endif
float2 delta; float2 delta;
delta.x = A12 * b2 - A22 * b1; delta.x = A12 * b2 - A22 * b1;
@ -967,7 +1209,11 @@ __kernel void lkSparse_C4_D5(image2d_t I, image2d_t J,
nextPts[gid] = nextPt; nextPts[gid] = nextPt;
if (calcErr) if (calcErr)
err[gid] = smem1[0] / (3 * c_winSize_x * c_winSize_y); #ifdef CPU
err[gid] = smem1[BUFFER] / (float)(3 * c_winSize_x * c_winSize_y);
#else
err[gid] = smem1[0] / (float)(3 * c_winSize_x * c_winSize_y);
#endif
} }
} }

View File

@ -16,7 +16,7 @@
// //
// @Authors // @Authors
// Dachuan Zhao, dachuan@multicorewareinc.com // Dachuan Zhao, dachuan@multicorewareinc.com
// Yao Wang, yao@multicorewareinc.com // Yao Wang, bitwangyaoyao@gmail.com
// Nathan, liujun@multicorewareinc.com // Nathan, liujun@multicorewareinc.com
// //
// Redistribution and use in source and binary forms, with or without modification, // Redistribution and use in source and binary forms, with or without modification,
@ -47,6 +47,7 @@
#include "precomp.hpp" #include "precomp.hpp"
using namespace std; using namespace std;
using namespace cv; using namespace cv;
using namespace cv::ocl; using namespace cv::ocl;
@ -58,11 +59,7 @@ namespace ocl
///////////////////////////OpenCL kernel strings/////////////////////////// ///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *pyrlk; extern const char *pyrlk;
extern const char *pyrlk_no_image; extern const char *pyrlk_no_image;
extern const char *operator_setTo;
extern const char *operator_convertTo;
extern const char *operator_copyToM;
extern const char *arithm_mul; extern const char *arithm_mul;
extern const char *pyr_down;
} }
} }
@ -105,364 +102,7 @@ void calcPatchSize(cv::Size winSize, int cn, dim3 &block, dim3 &patch, bool isDe
} }
} }
inline int divUp(int total, int grain) static void multiply_cus(const oclMat &src1, oclMat &dst, float scalar)
{
return (total + grain - 1) / grain;
}
///////////////////////////////////////////////////////////////////////////
//////////////////////////////// ConvertTo ////////////////////////////////
///////////////////////////////////////////////////////////////////////////
static void convert_run_cus(const oclMat &src, oclMat &dst, double alpha, double beta)
{
string kernelName = "convert_to_S";
stringstream idxStr;
idxStr << src.depth();
kernelName += idxStr.str();
float alpha_f = (float)alpha, beta_f = (float)beta;
CV_DbgAssert(src.rows == dst.rows && src.cols == dst.cols);
vector<pair<size_t , const void *> > args;
size_t localThreads[3] = {16, 16, 1};
size_t globalThreads[3];
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
globalThreads[2] = 1;
int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize();
int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize();
if(dst.type() == CV_8UC1)
{
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0]) / localThreads[0] * localThreads[0];
}
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&srcstep_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&srcoffset_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dststep_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstoffset_in_pixel ));
args.push_back( make_pair( sizeof(cl_float) , (void *)&alpha_f ));
args.push_back( make_pair( sizeof(cl_float) , (void *)&beta_f ));
openCLExecuteKernel2(dst.clCxt , &operator_convertTo, kernelName, globalThreads,
localThreads, args, dst.oclchannels(), dst.depth(), CLFLUSH);
}
void convertTo( const oclMat &src, oclMat &m, int rtype, double alpha = 1, double beta = 0 );
void convertTo( const oclMat &src, oclMat &dst, int rtype, double alpha, double beta )
{
//cout << "cv::ocl::oclMat::convertTo()" << endl;
bool noScale = fabs(alpha - 1) < std::numeric_limits<double>::epsilon()
&& fabs(beta) < std::numeric_limits<double>::epsilon();
if( rtype < 0 )
rtype = src.type();
else
rtype = CV_MAKETYPE(CV_MAT_DEPTH(rtype), src.oclchannels());
int sdepth = src.depth(), ddepth = CV_MAT_DEPTH(rtype);
if( sdepth == ddepth && noScale )
{
src.copyTo(dst);
return;
}
oclMat temp;
const oclMat *psrc = &src;
if( sdepth != ddepth && psrc == &dst )
psrc = &(temp = src);
dst.create( src.size(), rtype );
convert_run_cus(*psrc, dst, alpha, beta);
}
///////////////////////////////////////////////////////////////////////////
//////////////////////////////// setTo ////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
//oclMat &operator = (const Scalar &s)
//{
// //cout << "cv::ocl::oclMat::=" << endl;
// setTo(s);
// return *this;
//}
static void set_to_withoutmask_run_cus(const oclMat &dst, const Scalar &scalar, string kernelName)
{
vector<pair<size_t , const void *> > args;
size_t localThreads[3] = {16, 16, 1};
size_t globalThreads[3];
globalThreads[0] = (dst.cols + localThreads[0] - 1) / localThreads[0] * localThreads[0];
globalThreads[1] = (dst.rows + localThreads[1] - 1) / localThreads[1] * localThreads[1];
globalThreads[2] = 1;
int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize();
if(dst.type() == CV_8UC1)
{
globalThreads[0] = ((dst.cols + 4) / 4 + localThreads[0] - 1) / localThreads[0] * localThreads[0];
}
char compile_option[32];
union sc
{
cl_uchar4 uval;
cl_char4 cval;
cl_ushort4 usval;
cl_short4 shval;
cl_int4 ival;
cl_float4 fval;
cl_double4 dval;
} val;
switch(dst.depth())
{
case 0:
val.uval.s[0] = saturate_cast<uchar>(scalar.val[0]);
val.uval.s[1] = saturate_cast<uchar>(scalar.val[1]);
val.uval.s[2] = saturate_cast<uchar>(scalar.val[2]);
val.uval.s[3] = saturate_cast<uchar>(scalar.val[3]);
switch(dst.oclchannels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=uchar");
args.push_back( make_pair( sizeof(cl_uchar) , (void *)&val.uval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=uchar4");
args.push_back( make_pair( sizeof(cl_uchar4) , (void *)&val.uval ));
break;
default:
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
}
break;
case 1:
val.cval.s[0] = saturate_cast<char>(scalar.val[0]);
val.cval.s[1] = saturate_cast<char>(scalar.val[1]);
val.cval.s[2] = saturate_cast<char>(scalar.val[2]);
val.cval.s[3] = saturate_cast<char>(scalar.val[3]);
switch(dst.oclchannels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=char");
args.push_back( make_pair( sizeof(cl_char) , (void *)&val.cval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=char4");
args.push_back( make_pair( sizeof(cl_char4) , (void *)&val.cval ));
break;
default:
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
}
break;
case 2:
val.usval.s[0] = saturate_cast<ushort>(scalar.val[0]);
val.usval.s[1] = saturate_cast<ushort>(scalar.val[1]);
val.usval.s[2] = saturate_cast<ushort>(scalar.val[2]);
val.usval.s[3] = saturate_cast<ushort>(scalar.val[3]);
switch(dst.oclchannels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=ushort");
args.push_back( make_pair( sizeof(cl_ushort) , (void *)&val.usval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=ushort4");
args.push_back( make_pair( sizeof(cl_ushort4) , (void *)&val.usval ));
break;
default:
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
}
break;
case 3:
val.shval.s[0] = saturate_cast<short>(scalar.val[0]);
val.shval.s[1] = saturate_cast<short>(scalar.val[1]);
val.shval.s[2] = saturate_cast<short>(scalar.val[2]);
val.shval.s[3] = saturate_cast<short>(scalar.val[3]);
switch(dst.oclchannels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=short");
args.push_back( make_pair( sizeof(cl_short) , (void *)&val.shval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=short4");
args.push_back( make_pair( sizeof(cl_short4) , (void *)&val.shval ));
break;
default:
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
}
break;
case 4:
val.ival.s[0] = saturate_cast<int>(scalar.val[0]);
val.ival.s[1] = saturate_cast<int>(scalar.val[1]);
val.ival.s[2] = saturate_cast<int>(scalar.val[2]);
val.ival.s[3] = saturate_cast<int>(scalar.val[3]);
switch(dst.oclchannels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=int");
args.push_back( make_pair( sizeof(cl_int) , (void *)&val.ival.s[0] ));
break;
case 2:
sprintf(compile_option, "-D GENTYPE=int2");
cl_int2 i2val;
i2val.s[0] = val.ival.s[0];
i2val.s[1] = val.ival.s[1];
args.push_back( make_pair( sizeof(cl_int2) , (void *)&i2val ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=int4");
args.push_back( make_pair( sizeof(cl_int4) , (void *)&val.ival ));
break;
default:
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
}
break;
case 5:
val.fval.s[0] = (float)scalar.val[0];
val.fval.s[1] = (float)scalar.val[1];
val.fval.s[2] = (float)scalar.val[2];
val.fval.s[3] = (float)scalar.val[3];
switch(dst.oclchannels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=float");
args.push_back( make_pair( sizeof(cl_float) , (void *)&val.fval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=float4");
args.push_back( make_pair( sizeof(cl_float4) , (void *)&val.fval ));
break;
default:
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
}
break;
case 6:
val.dval.s[0] = scalar.val[0];
val.dval.s[1] = scalar.val[1];
val.dval.s[2] = scalar.val[2];
val.dval.s[3] = scalar.val[3];
switch(dst.oclchannels())
{
case 1:
sprintf(compile_option, "-D GENTYPE=double");
args.push_back( make_pair( sizeof(cl_double) , (void *)&val.dval.s[0] ));
break;
case 4:
sprintf(compile_option, "-D GENTYPE=double4");
args.push_back( make_pair( sizeof(cl_double4) , (void *)&val.dval ));
break;
default:
CV_Error(CV_StsUnsupportedFormat, "unsupported channels");
}
break;
default:
CV_Error(CV_StsUnsupportedFormat, "unknown depth");
}
#ifdef CL_VERSION_1_2
if(dst.offset == 0 && dst.cols == dst.wholecols)
{
clEnqueueFillBuffer((cl_command_queue)dst.clCxt->oclCommandQueue(), (cl_mem)dst.data, args[0].second, args[0].first, 0, dst.step * dst.rows, 0, NULL, NULL);
}
else
{
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&step_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset_in_pixel));
openCLExecuteKernel2(dst.clCxt , &operator_setTo, kernelName, globalThreads,
localThreads, args, -1, -1, compile_option, CLFLUSH);
}
#else
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&step_in_pixel ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset_in_pixel));
openCLExecuteKernel2(dst.clCxt , &operator_setTo, kernelName, globalThreads,
localThreads, args, -1, -1, compile_option, CLFLUSH);
#endif
}
static oclMat &setTo(oclMat &src, const Scalar &scalar)
{
CV_Assert( src.depth() >= 0 && src.depth() <= 6 );
CV_DbgAssert( !src.empty());
if(src.type() == CV_8UC1)
{
set_to_withoutmask_run_cus(src, scalar, "set_to_without_mask_C1_D0");
}
else
{
set_to_withoutmask_run_cus(src, scalar, "set_to_without_mask");
}
return src;
}
///////////////////////////////////////////////////////////////////////////
////////////////////////////////// CopyTo /////////////////////////////////
///////////////////////////////////////////////////////////////////////////
// static void copy_to_with_mask_cus(const oclMat &src, oclMat &dst, const oclMat &mask, string kernelName)
// {
// CV_DbgAssert( dst.rows == mask.rows && dst.cols == mask.cols &&
// src.rows == dst.rows && src.cols == dst.cols
// && mask.type() == CV_8UC1);
// vector<pair<size_t , const void *> > args;
// std::string string_types[4][7] = {{"uchar", "char", "ushort", "short", "int", "float", "double"},
// {"uchar2", "char2", "ushort2", "short2", "int2", "float2", "double2"},
// {"uchar3", "char3", "ushort3", "short3", "int3", "float3", "double3"},
// {"uchar4", "char4", "ushort4", "short4", "int4", "float4", "double4"}
// };
// char compile_option[32];
// sprintf(compile_option, "-D GENTYPE=%s", string_types[dst.oclchannels() - 1][dst.depth()].c_str());
// size_t localThreads[3] = {16, 16, 1};
// size_t globalThreads[3];
// globalThreads[0] = divUp(dst.cols, localThreads[0]) * localThreads[0];
// globalThreads[1] = divUp(dst.rows, localThreads[1]) * localThreads[1];
// globalThreads[2] = 1;
// int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize();
// int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize();
// args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
// args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
// args.push_back( make_pair( sizeof(cl_mem) , (void *)&mask.data ));
// args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
// args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
// args.push_back( make_pair( sizeof(cl_int) , (void *)&srcstep_in_pixel ));
// args.push_back( make_pair( sizeof(cl_int) , (void *)&srcoffset_in_pixel ));
// args.push_back( make_pair( sizeof(cl_int) , (void *)&dststep_in_pixel ));
// args.push_back( make_pair( sizeof(cl_int) , (void *)&dstoffset_in_pixel ));
// args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.step ));
// args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.offset ));
// openCLExecuteKernel2(dst.clCxt , &operator_copyToM, kernelName, globalThreads,
// localThreads, args, -1, -1, compile_option, CLFLUSH);
// }
static void copyTo(const oclMat &src, oclMat &m )
{
CV_DbgAssert(!src.empty());
m.create(src.size(), src.type());
openCLCopyBuffer2D(src.clCxt, m.data, m.step, m.offset,
src.data, src.step, src.cols * src.elemSize(), src.rows, src.offset);
}
// static void copyTo(const oclMat &src, oclMat &mat, const oclMat &mask)
// {
// if (mask.empty())
// {
// copyTo(src, mat);
// }
// else
// {
// mat.create(src.size(), src.type());
// copy_to_with_mask_cus(src, mat, mask, "copy_to_with_mask");
// }
// }
static void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, const char **kernelString, void *_scalar)
{ {
if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F) if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F)
{ {
@ -470,9 +110,6 @@ static void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, c
return; return;
} }
//dst.create(src1.size(), src1.type());
//CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols &&
// src1.rows == src2.rows && src2.rows == dst.rows);
CV_Assert(src1.cols == dst.cols && CV_Assert(src1.cols == dst.cols &&
src1.rows == dst.rows); src1.rows == dst.rows);
@ -480,24 +117,8 @@ static void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, c
CV_Assert(src1.depth() != CV_8S); CV_Assert(src1.depth() != CV_8S);
Context *clCxt = src1.clCxt; Context *clCxt = src1.clCxt;
//int channels = dst.channels();
//int depth = dst.depth();
//int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1},
// {4, 0, 4, 4, 1, 1, 1},
// {4, 0, 4, 4, 1, 1, 1},
// {4, 0, 4, 4, 1, 1, 1}
//};
//size_t vector_length = vector_lengths[channels-1][depth];
//int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1);
//int cols = divUp(dst.cols * channels + offset_cols, vector_length);
size_t localThreads[3] = { 16, 16, 1 }; size_t localThreads[3] = { 16, 16, 1 };
//size_t globalThreads[3] = { divUp(cols, localThreads[0]) * localThreads[0],
// divUp(dst.rows, localThreads[1]) * localThreads[1],
// 1
// };
size_t globalThreads[3] = { src1.cols, size_t globalThreads[3] = { src1.cols,
src1.rows, src1.rows,
1 1
@ -508,67 +129,20 @@ static void arithmetic_run(const oclMat &src1, oclMat &dst, string kernelName, c
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset ));
//args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data ));
//args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step ));
//args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&src1.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
args.push_back( make_pair( sizeof(float), (float *)&scalar ));
//if(_scalar != NULL) openCLExecuteKernel(clCxt, &arithm_mul, "arithm_muls", globalThreads, localThreads, args, -1, src1.depth());
//{
float scalar1 = *((float *)_scalar);
args.push_back( make_pair( sizeof(float), (float *)&scalar1 ));
//}
openCLExecuteKernel2(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, src1.depth(), CLFLUSH);
}
static void multiply_cus(const oclMat &src1, oclMat &dst, float scalar)
{
arithmetic_run(src1, dst, "arithm_muls", &arithm_mul, (void *)(&scalar));
}
static void pyrdown_run_cus(const oclMat &src, const oclMat &dst)
{
CV_Assert(src.type() == dst.type());
CV_Assert(src.depth() != CV_8S);
Context *clCxt = src.clCxt;
string kernelName = "pyrDown";
size_t localThreads[3] = { 256, 1, 1 };
size_t globalThreads[3] = { src.cols, dst.rows, 1};
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.cols));
openCLExecuteKernel2(clCxt, &pyr_down, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth(), CLFLUSH);
}
static void pyrDown_cus(const oclMat &src, oclMat &dst)
{
CV_Assert(src.depth() <= CV_32F && src.channels() <= 4);
dst.create((src.rows + 1) / 2, (src.cols + 1) / 2, src.type());
pyrdown_run_cus(src, dst);
} }
static void lkSparse_run(oclMat &I, oclMat &J, static void lkSparse_run(oclMat &I, oclMat &J,
const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat& err, bool /*GET_MIN_EIGENVALS*/, int ptcount, const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat& err, bool /*GET_MIN_EIGENVALS*/, int ptcount,
int level, /*dim3 block, */dim3 patch, Size winSize, int iters) int level, dim3 patch, Size winSize, int iters)
{ {
Context *clCxt = I.clCxt; Context *clCxt = I.clCxt;
int elemCntPerRow = I.step / I.elemSize(); int elemCntPerRow = I.step / I.elemSize();
@ -603,7 +177,7 @@ static void lkSparse_run(oclMat &I, oclMat &J,
args.push_back( make_pair( sizeof(cl_int), (void *)&level )); args.push_back( make_pair( sizeof(cl_int), (void *)&level ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&I.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&I.cols ));
if (!isImageSupported) if (!isImageSupported)
args.push_back( make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) ); args.push_back( make_pair( sizeof(cl_int), (void *)&elemCntPerRow ) );
args.push_back( make_pair( sizeof(cl_int), (void *)&patch.x )); args.push_back( make_pair( sizeof(cl_int), (void *)&patch.x ));
args.push_back( make_pair( sizeof(cl_int), (void *)&patch.y )); args.push_back( make_pair( sizeof(cl_int), (void *)&patch.y ));
@ -613,15 +187,24 @@ static void lkSparse_run(oclMat &I, oclMat &J,
args.push_back( make_pair( sizeof(cl_int), (void *)&iters )); args.push_back( make_pair( sizeof(cl_int), (void *)&iters ));
args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr )); args.push_back( make_pair( sizeof(cl_char), (void *)&calcErr ));
if(isImageSupported) if (clCxt->supportsFeature(Context::CL_CPU))
{ {
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH); openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), (char*)" -D CPU");
releaseTexture(ITex); releaseTexture(ITex);
releaseTexture(JTex); releaseTexture(JTex);
} }
else else
{ {
openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH); if(isImageSupported)
{
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
releaseTexture(ITex);
releaseTexture(JTex);
}
else
{
openCLExecuteKernel(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
}
} }
} }
@ -631,7 +214,7 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
{ {
nextPts.release(); nextPts.release();
status.release(); status.release();
//if (err) err->release(); if (err) err->release();
return; return;
} }
@ -657,13 +240,11 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
oclMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1); oclMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1);
oclMat temp2 = nextPts.reshape(1); oclMat temp2 = nextPts.reshape(1);
//oclMat scalar(temp1.rows, temp1.cols, temp1.type(), Scalar(1.0f / (1 << maxLevel) / 2.0f));
multiply_cus(temp1, temp2, 1.0f / (1 << maxLevel) / 2.0f); multiply_cus(temp1, temp2, 1.0f / (1 << maxLevel) / 2.0f);
//::multiply(temp1, 1.0f / (1 << maxLevel) / 2.0f, temp2); //::multiply(temp1, 1.0f / (1 << maxLevel) / 2.0f, temp2);
ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status); ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status);
//status.setTo(Scalar::all(1)); status.setTo(Scalar::all(1));
setTo(status, Scalar::all(1));
bool errMat = false; bool errMat = false;
if (!err) if (!err)
@ -673,7 +254,6 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
} }
else else
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err); ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
//ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, err);
// build the image pyramids. // build the image pyramids.
@ -682,25 +262,14 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
if (cn == 1 || cn == 4) if (cn == 1 || cn == 4)
{ {
//prevImg.convertTo(prevPyr_[0], CV_32F); prevImg.convertTo(prevPyr_[0], CV_32F);
//nextImg.convertTo(nextPyr_[0], CV_32F); nextImg.convertTo(nextPyr_[0], CV_32F);
convertTo(prevImg, prevPyr_[0], CV_32F);
convertTo(nextImg, nextPyr_[0], CV_32F);
}
else
{
//oclMat buf_;
// cvtColor(prevImg, buf_, COLOR_BGR2BGRA);
// buf_.convertTo(prevPyr_[0], CV_32F);
// cvtColor(nextImg, buf_, COLOR_BGR2BGRA);
// buf_.convertTo(nextPyr_[0], CV_32F);
} }
for (int level = 1; level <= maxLevel; ++level) for (int level = 1; level <= maxLevel; ++level)
{ {
pyrDown_cus(prevPyr_[level - 1], prevPyr_[level]); pyrDown(prevPyr_[level - 1], prevPyr_[level]);
pyrDown_cus(nextPyr_[level - 1], nextPyr_[level]); pyrDown(nextPyr_[level - 1], nextPyr_[level]);
} }
// dI/dx ~ Ix, dI/dy ~ Iy // dI/dx ~ Ix, dI/dy ~ Iy
@ -709,17 +278,15 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
{ {
lkSparse_run(prevPyr_[level], nextPyr_[level], lkSparse_run(prevPyr_[level], nextPyr_[level],
prevPts, nextPts, status, *err, getMinEigenVals, prevPts.cols, prevPts, nextPts, status, *err, getMinEigenVals, prevPts.cols,
level, /*block, */patch, winSize, iters); level, patch, winSize, iters);
} }
clFinish((cl_command_queue)prevImg.clCxt->oclCommandQueue());
if(errMat) if(errMat)
delete err; delete err;
} }
static void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v, static void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
oclMat &prevU, oclMat &prevV, oclMat *err, Size winSize, int iters) oclMat &prevU, oclMat &prevV, oclMat *err, Size winSize, int iters)
{ {
Context *clCxt = I.clCxt; Context *clCxt = I.clCxt;
bool isImageSupported = support_image2d(); bool isImageSupported = support_image2d();
@ -754,11 +321,6 @@ static void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
JTex = (cl_mem)J.data; JTex = (cl_mem)J.data;
} }
//int2 halfWin = {(winSize.width - 1) / 2, (winSize.height - 1) / 2};
//const int patchWidth = 16 + 2 * halfWin.x;
//const int patchHeight = 16 + 2 * halfWin.y;
//size_t smem_size = 3 * patchWidth * patchHeight * sizeof(int);
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&ITex )); args.push_back( make_pair( sizeof(cl_mem), (void *)&ITex ));
@ -787,15 +349,14 @@ static void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
if (isImageSupported) if (isImageSupported)
{ {
openCLExecuteKernel2(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH); openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
releaseTexture(ITex); releaseTexture(ITex);
releaseTexture(JTex); releaseTexture(JTex);
} }
else else
{ {
//printf("Warning: The image2d_t is not supported by the device. Using alternative method!\n"); openCLExecuteKernel(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
openCLExecuteKernel2(clCxt, &pyrlk_no_image, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth(), CLFLUSH);
} }
} }
@ -813,23 +374,20 @@ void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &prevImg, const oclMat &nextI
nextPyr_.resize(maxLevel + 1); nextPyr_.resize(maxLevel + 1);
prevPyr_[0] = prevImg; prevPyr_[0] = prevImg;
//nextImg.convertTo(nextPyr_[0], CV_32F); nextImg.convertTo(nextPyr_[0], CV_32F);
convertTo(nextImg, nextPyr_[0], CV_32F);
for (int level = 1; level <= maxLevel; ++level) for (int level = 1; level <= maxLevel; ++level)
{ {
pyrDown_cus(prevPyr_[level - 1], prevPyr_[level]); pyrDown(prevPyr_[level - 1], prevPyr_[level]);
pyrDown_cus(nextPyr_[level - 1], nextPyr_[level]); pyrDown(nextPyr_[level - 1], nextPyr_[level]);
} }
ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[0]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[0]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[0]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[0]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[1]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, uPyr_[1]);
ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[1]); ensureSizeIsEnough(prevImg.size(), CV_32FC1, vPyr_[1]);
//uPyr_[1].setTo(Scalar::all(0)); uPyr_[1].setTo(Scalar::all(0));
//vPyr_[1].setTo(Scalar::all(0)); vPyr_[1].setTo(Scalar::all(0));
setTo(uPyr_[1], Scalar::all(0));
setTo(vPyr_[1], Scalar::all(0));
Size winSize2i(winSize.width, winSize.height); Size winSize2i(winSize.width, winSize.height);
@ -846,10 +404,6 @@ void cv::ocl::PyrLKOpticalFlow::dense(const oclMat &prevImg, const oclMat &nextI
idx = idx2; idx = idx2;
} }
//uPyr_[idx].copyTo(u); uPyr_[idx].copyTo(u);
//vPyr_[idx].copyTo(v); vPyr_[idx].copyTo(v);
copyTo(uPyr_[idx], u);
copyTo(vPyr_[idx], v);
clFinish((cl_command_queue)prevImg.clCxt->oclCommandQueue());
} }