Update face detection samples
This commit is contained in:
parent
9533982729
commit
fd4761ba31
@ -1,17 +1,7 @@
|
|||||||
#include "opencv2/objdetect.hpp"
|
#include "opencv2/objdetect.hpp"
|
||||||
#include "opencv2/imgcodecs.hpp"
|
|
||||||
#include "opencv2/videoio.hpp"
|
|
||||||
#include "opencv2/highgui.hpp"
|
#include "opencv2/highgui.hpp"
|
||||||
#include "opencv2/imgproc.hpp"
|
#include "opencv2/imgproc.hpp"
|
||||||
#include "opencv2/core/utility.hpp"
|
|
||||||
|
|
||||||
#include "opencv2/videoio/videoio_c.h"
|
|
||||||
#include "opencv2/highgui/highgui_c.h"
|
|
||||||
|
|
||||||
#include <cctype>
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <iterator>
|
|
||||||
#include <stdio.h>
|
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace cv;
|
using namespace cv;
|
||||||
@ -28,7 +18,7 @@ static void help()
|
|||||||
" [--try-flip]\n"
|
" [--try-flip]\n"
|
||||||
" [filename|camera_index]\n\n"
|
" [filename|camera_index]\n\n"
|
||||||
"see facedetect.cmd for one call:\n"
|
"see facedetect.cmd for one call:\n"
|
||||||
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye.xml\" --scale=1.3\n\n"
|
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n"
|
||||||
"During execution:\n\tHit any key to quit.\n"
|
"During execution:\n\tHit any key to quit.\n"
|
||||||
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
|
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
|
||||||
}
|
}
|
||||||
@ -42,8 +32,8 @@ string nestedCascadeName = "../../data/haarcascades/haarcascade_eye_tree_eyeglas
|
|||||||
|
|
||||||
int main( int argc, const char** argv )
|
int main( int argc, const char** argv )
|
||||||
{
|
{
|
||||||
CvCapture* capture = 0;
|
VideoCapture capture;
|
||||||
Mat frame, frameCopy, image;
|
Mat frame, image;
|
||||||
const string scaleOpt = "--scale=";
|
const string scaleOpt = "--scale=";
|
||||||
size_t scaleOptLen = scaleOpt.length();
|
size_t scaleOptLen = scaleOpt.length();
|
||||||
const string cascadeOpt = "--cascade=";
|
const string cascadeOpt = "--cascade=";
|
||||||
@ -103,17 +93,17 @@ int main( int argc, const char** argv )
|
|||||||
|
|
||||||
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
|
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
|
||||||
{
|
{
|
||||||
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
|
|
||||||
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
|
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
|
||||||
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl;
|
if(!capture.open(c))
|
||||||
|
cout << "Capture from camera #" << c << " didn't work" << endl;
|
||||||
}
|
}
|
||||||
else if( inputName.size() )
|
else if( inputName.size() )
|
||||||
{
|
{
|
||||||
image = imread( inputName, 1 );
|
image = imread( inputName, 1 );
|
||||||
if( image.empty() )
|
if( image.empty() )
|
||||||
{
|
{
|
||||||
capture = cvCaptureFromAVI( inputName.c_str() );
|
if(!capture.open( inputName ))
|
||||||
if(!capture) cout << "Capture from AVI didn't work" << endl;
|
cout << "Could not read " << inputName << endl;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
@ -122,36 +112,27 @@ int main( int argc, const char** argv )
|
|||||||
if(image.empty()) cout << "Couldn't read ../data/lena.jpg" << endl;
|
if(image.empty()) cout << "Couldn't read ../data/lena.jpg" << endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
cvNamedWindow( "result", 1 );
|
if( capture.isOpened() )
|
||||||
|
|
||||||
if( capture )
|
|
||||||
{
|
{
|
||||||
cout << "In capture ..." << endl;
|
cout << "Video capturing has been started ..." << endl;
|
||||||
|
|
||||||
for(;;)
|
for(;;)
|
||||||
{
|
{
|
||||||
IplImage* iplImg = cvQueryFrame( capture );
|
capture >> frame;
|
||||||
frame = cv::cvarrToMat(iplImg);
|
|
||||||
if( frame.empty() )
|
if( frame.empty() )
|
||||||
break;
|
break;
|
||||||
if( iplImg->origin == IPL_ORIGIN_TL )
|
|
||||||
frame.copyTo( frameCopy );
|
|
||||||
else
|
|
||||||
flip( frame, frameCopy, 0 );
|
|
||||||
|
|
||||||
detectAndDraw( frameCopy, cascade, nestedCascade, scale, tryflip );
|
Mat frame1 = frame.clone();
|
||||||
|
detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip );
|
||||||
|
|
||||||
if( waitKey( 10 ) >= 0 )
|
int c = waitKey(10);
|
||||||
goto _cleanup_;
|
if( c == 27 || c == 'q' || c == 'Q' )
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
waitKey(0);
|
|
||||||
|
|
||||||
_cleanup_:
|
|
||||||
cvReleaseCapture( &capture );
|
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
cout << "In image read" << endl;
|
cout << "Detecting face(s) in " << inputName << endl;
|
||||||
if( !image.empty() )
|
if( !image.empty() )
|
||||||
{
|
{
|
||||||
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
|
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
|
||||||
@ -190,8 +171,6 @@ _cleanup_:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
cvDestroyWindow("result");
|
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -199,21 +178,24 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
|||||||
CascadeClassifier& nestedCascade,
|
CascadeClassifier& nestedCascade,
|
||||||
double scale, bool tryflip )
|
double scale, bool tryflip )
|
||||||
{
|
{
|
||||||
int i = 0;
|
|
||||||
double t = 0;
|
double t = 0;
|
||||||
vector<Rect> faces, faces2;
|
vector<Rect> faces, faces2;
|
||||||
const static Scalar colors[] = { CV_RGB(0,0,255),
|
const static Scalar colors[] =
|
||||||
CV_RGB(0,128,255),
|
{
|
||||||
CV_RGB(0,255,255),
|
Scalar(255,0,0),
|
||||||
CV_RGB(0,255,0),
|
Scalar(255,128,0),
|
||||||
CV_RGB(255,128,0),
|
Scalar(255,255,0),
|
||||||
CV_RGB(255,255,0),
|
Scalar(0,255,0),
|
||||||
CV_RGB(255,0,0),
|
Scalar(0,128,255),
|
||||||
CV_RGB(255,0,255)} ;
|
Scalar(0,255,255),
|
||||||
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
Scalar(0,0,255),
|
||||||
|
Scalar(255,0,255)
|
||||||
|
};
|
||||||
|
Mat gray, smallImg;
|
||||||
|
|
||||||
cvtColor( img, gray, COLOR_BGR2GRAY );
|
cvtColor( img, gray, COLOR_BGR2GRAY );
|
||||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
double fx = 1 / scale;
|
||||||
|
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR );
|
||||||
equalizeHist( smallImg, smallImg );
|
equalizeHist( smallImg, smallImg );
|
||||||
|
|
||||||
t = (double)cvGetTickCount();
|
t = (double)cvGetTickCount();
|
||||||
@ -221,8 +203,7 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
|||||||
1.1, 2, 0
|
1.1, 2, 0
|
||||||
//|CASCADE_FIND_BIGGEST_OBJECT
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||||||
//|CASCADE_DO_ROUGH_SEARCH
|
//|CASCADE_DO_ROUGH_SEARCH
|
||||||
|CASCADE_SCALE_IMAGE
|
|CASCADE_SCALE_IMAGE,
|
||||||
,
|
|
||||||
Size(30, 30) );
|
Size(30, 30) );
|
||||||
if( tryflip )
|
if( tryflip )
|
||||||
{
|
{
|
||||||
@ -231,8 +212,7 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
|||||||
1.1, 2, 0
|
1.1, 2, 0
|
||||||
//|CASCADE_FIND_BIGGEST_OBJECT
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||||||
//|CASCADE_DO_ROUGH_SEARCH
|
//|CASCADE_DO_ROUGH_SEARCH
|
||||||
|CASCADE_SCALE_IMAGE
|
|CASCADE_SCALE_IMAGE,
|
||||||
,
|
|
||||||
Size(30, 30) );
|
Size(30, 30) );
|
||||||
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
|
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
|
||||||
{
|
{
|
||||||
@ -241,44 +221,45 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
|||||||
}
|
}
|
||||||
t = (double)cvGetTickCount() - t;
|
t = (double)cvGetTickCount() - t;
|
||||||
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||||||
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
for ( size_t i = 0; i < faces.size(); i++ )
|
||||||
{
|
{
|
||||||
|
Rect r = faces[i];
|
||||||
Mat smallImgROI;
|
Mat smallImgROI;
|
||||||
vector<Rect> nestedObjects;
|
vector<Rect> nestedObjects;
|
||||||
Point center;
|
Point center;
|
||||||
Scalar color = colors[i%8];
|
Scalar color = colors[i%8];
|
||||||
int radius;
|
int radius;
|
||||||
|
|
||||||
double aspect_ratio = (double)r->width/r->height;
|
double aspect_ratio = (double)r.width/r.height;
|
||||||
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
|
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
|
||||||
{
|
{
|
||||||
center.x = cvRound((r->x + r->width*0.5)*scale);
|
center.x = cvRound((r.x + r.width*0.5)*scale);
|
||||||
center.y = cvRound((r->y + r->height*0.5)*scale);
|
center.y = cvRound((r.y + r.height*0.5)*scale);
|
||||||
radius = cvRound((r->width + r->height)*0.25*scale);
|
radius = cvRound((r.width + r.height)*0.25*scale);
|
||||||
circle( img, center, radius, color, 3, 8, 0 );
|
circle( img, center, radius, color, 3, 8, 0 );
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),
|
rectangle( img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
|
||||||
cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),
|
cvPoint(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
|
||||||
color, 3, 8, 0);
|
color, 3, 8, 0);
|
||||||
if( nestedCascade.empty() )
|
if( nestedCascade.empty() )
|
||||||
continue;
|
continue;
|
||||||
smallImgROI = smallImg(*r);
|
smallImgROI = smallImg( r );
|
||||||
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
|
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
|
||||||
1.1, 2, 0
|
1.1, 2, 0
|
||||||
//|CASCADE_FIND_BIGGEST_OBJECT
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||||||
//|CASCADE_DO_ROUGH_SEARCH
|
//|CASCADE_DO_ROUGH_SEARCH
|
||||||
//|CASCADE_DO_CANNY_PRUNING
|
//|CASCADE_DO_CANNY_PRUNING
|
||||||
|CASCADE_SCALE_IMAGE
|
|CASCADE_SCALE_IMAGE,
|
||||||
,
|
|
||||||
Size(30, 30) );
|
Size(30, 30) );
|
||||||
for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ )
|
for ( size_t j = 0; j < nestedObjects.size(); j++ )
|
||||||
{
|
{
|
||||||
center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
|
Rect nr = nestedObjects[j];
|
||||||
center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
|
center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
|
||||||
radius = cvRound((nr->width + nr->height)*0.25*scale);
|
center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
|
||||||
|
radius = cvRound((nr.width + nr.height)*0.25*scale);
|
||||||
circle( img, center, radius, color, 3, 8, 0 );
|
circle( img, center, radius, color, 3, 8, 0 );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
cv::imshow( "result", img );
|
imshow( "result", img );
|
||||||
}
|
}
|
||||||
|
@ -1,15 +1,7 @@
|
|||||||
#include "opencv2/objdetect.hpp"
|
#include "opencv2/objdetect.hpp"
|
||||||
#include "opencv2/highgui.hpp"
|
#include "opencv2/highgui.hpp"
|
||||||
#include "opencv2/imgproc.hpp"
|
#include "opencv2/imgproc.hpp"
|
||||||
#include "opencv2/core/utility.hpp"
|
|
||||||
|
|
||||||
#include "opencv2/videoio/videoio_c.h"
|
|
||||||
#include "opencv2/highgui/highgui_c.h"
|
|
||||||
|
|
||||||
#include <cctype>
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <iterator>
|
|
||||||
#include <stdio.h>
|
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace cv;
|
using namespace cv;
|
||||||
@ -36,11 +28,10 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
|||||||
string cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
string cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||||||
string nestedCascadeName = "../../data/haarcascades/haarcascade_smile.xml";
|
string nestedCascadeName = "../../data/haarcascades/haarcascade_smile.xml";
|
||||||
|
|
||||||
|
|
||||||
int main( int argc, const char** argv )
|
int main( int argc, const char** argv )
|
||||||
{
|
{
|
||||||
CvCapture* capture = 0;
|
VideoCapture capture;
|
||||||
Mat frame, frameCopy, image;
|
Mat frame, image;
|
||||||
const string scaleOpt = "--scale=";
|
const string scaleOpt = "--scale=";
|
||||||
size_t scaleOptLen = scaleOpt.length();
|
size_t scaleOptLen = scaleOpt.length();
|
||||||
const string cascadeOpt = "--cascade=";
|
const string cascadeOpt = "--cascade=";
|
||||||
@ -104,44 +95,34 @@ int main( int argc, const char** argv )
|
|||||||
|
|
||||||
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
|
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
|
||||||
{
|
{
|
||||||
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
|
|
||||||
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
|
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
|
||||||
if(!capture) cout << "Capture from CAM " << c << " didn't work" << endl;
|
if(!capture.open(c))
|
||||||
|
cout << "Capture from camera #" << c << " didn't work" << endl;
|
||||||
}
|
}
|
||||||
else if( inputName.size() )
|
else if( inputName.size() )
|
||||||
{
|
{
|
||||||
capture = cvCaptureFromAVI( inputName.c_str() );
|
if(!capture.open( inputName ))
|
||||||
if(!capture) cout << "Capture from AVI didn't work" << endl;
|
cout << "Could not read " << inputName << endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
cvNamedWindow( "result", 1 );
|
if( capture.isOpened() )
|
||||||
|
|
||||||
if( capture )
|
|
||||||
{
|
{
|
||||||
cout << "In capture ..." << endl;
|
cout << "Video capturing has been started ..." << endl;
|
||||||
cout << endl << "NOTE: Smile intensity will only be valid after a first smile has been detected" << endl;
|
cout << endl << "NOTE: Smile intensity will only be valid after a first smile has been detected" << endl;
|
||||||
|
|
||||||
for(;;)
|
for(;;)
|
||||||
{
|
{
|
||||||
IplImage* iplImg = cvQueryFrame( capture );
|
capture >> frame;
|
||||||
frame = cv::cvarrToMat(iplImg);
|
|
||||||
if( frame.empty() )
|
if( frame.empty() )
|
||||||
break;
|
break;
|
||||||
if( iplImg->origin == IPL_ORIGIN_TL )
|
|
||||||
frame.copyTo( frameCopy );
|
|
||||||
else
|
|
||||||
flip( frame, frameCopy, 0 );
|
|
||||||
|
|
||||||
detectAndDraw( frameCopy, cascade, nestedCascade, scale, tryflip );
|
Mat frame1 = frame.clone();
|
||||||
|
detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip );
|
||||||
|
|
||||||
if( waitKey( 10 ) >= 0 )
|
int c = waitKey(10);
|
||||||
goto _cleanup_;
|
if( c == 27 || c == 'q' || c == 'Q' )
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
waitKey(0);
|
|
||||||
|
|
||||||
_cleanup_:
|
|
||||||
cvReleaseCapture( &capture );
|
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
@ -150,7 +131,6 @@ _cleanup_:
|
|||||||
return -1;
|
return -1;
|
||||||
}
|
}
|
||||||
|
|
||||||
cvDestroyWindow("result");
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -158,28 +138,31 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
|||||||
CascadeClassifier& nestedCascade,
|
CascadeClassifier& nestedCascade,
|
||||||
double scale, bool tryflip)
|
double scale, bool tryflip)
|
||||||
{
|
{
|
||||||
int i = 0;
|
|
||||||
vector<Rect> faces, faces2;
|
vector<Rect> faces, faces2;
|
||||||
const static Scalar colors[] = { CV_RGB(0,0,255),
|
const static Scalar colors[] =
|
||||||
CV_RGB(0,128,255),
|
{
|
||||||
CV_RGB(0,255,255),
|
Scalar(255,0,0),
|
||||||
CV_RGB(0,255,0),
|
Scalar(255,128,0),
|
||||||
CV_RGB(255,128,0),
|
Scalar(255,255,0),
|
||||||
CV_RGB(255,255,0),
|
Scalar(0,255,0),
|
||||||
CV_RGB(255,0,0),
|
Scalar(0,128,255),
|
||||||
CV_RGB(255,0,255)} ;
|
Scalar(0,255,255),
|
||||||
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
Scalar(0,0,255),
|
||||||
|
Scalar(255,0,255)
|
||||||
|
};
|
||||||
|
Mat gray, smallImg;
|
||||||
|
|
||||||
cvtColor( img, gray, COLOR_BGR2GRAY );
|
cvtColor( img, gray, COLOR_BGR2GRAY );
|
||||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
|
||||||
|
double fx = 1 / scale;
|
||||||
|
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR );
|
||||||
equalizeHist( smallImg, smallImg );
|
equalizeHist( smallImg, smallImg );
|
||||||
|
|
||||||
cascade.detectMultiScale( smallImg, faces,
|
cascade.detectMultiScale( smallImg, faces,
|
||||||
1.1, 2, 0
|
1.1, 2, 0
|
||||||
//|CASCADE_FIND_BIGGEST_OBJECT
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||||||
//|CASCADE_DO_ROUGH_SEARCH
|
//|CASCADE_DO_ROUGH_SEARCH
|
||||||
|CASCADE_SCALE_IMAGE
|
|CASCADE_SCALE_IMAGE,
|
||||||
,
|
|
||||||
Size(30, 30) );
|
Size(30, 30) );
|
||||||
if( tryflip )
|
if( tryflip )
|
||||||
{
|
{
|
||||||
@ -188,8 +171,7 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
|||||||
1.1, 2, 0
|
1.1, 2, 0
|
||||||
//|CASCADE_FIND_BIGGEST_OBJECT
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||||||
//|CASCADE_DO_ROUGH_SEARCH
|
//|CASCADE_DO_ROUGH_SEARCH
|
||||||
|CASCADE_SCALE_IMAGE
|
|CASCADE_SCALE_IMAGE,
|
||||||
,
|
|
||||||
Size(30, 30) );
|
Size(30, 30) );
|
||||||
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
|
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
|
||||||
{
|
{
|
||||||
@ -197,38 +179,38 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for( vector<Rect>::iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
for ( size_t i = 0; i < faces.size(); i++ )
|
||||||
{
|
{
|
||||||
|
Rect r = faces[i];
|
||||||
Mat smallImgROI;
|
Mat smallImgROI;
|
||||||
vector<Rect> nestedObjects;
|
vector<Rect> nestedObjects;
|
||||||
Point center;
|
Point center;
|
||||||
Scalar color = colors[i%8];
|
Scalar color = colors[i%8];
|
||||||
int radius;
|
int radius;
|
||||||
|
|
||||||
double aspect_ratio = (double)r->width/r->height;
|
double aspect_ratio = (double)r.width/r.height;
|
||||||
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
|
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
|
||||||
{
|
{
|
||||||
center.x = cvRound((r->x + r->width*0.5)*scale);
|
center.x = cvRound((r.x + r.width*0.5)*scale);
|
||||||
center.y = cvRound((r->y + r->height*0.5)*scale);
|
center.y = cvRound((r.y + r.height*0.5)*scale);
|
||||||
radius = cvRound((r->width + r->height)*0.25*scale);
|
radius = cvRound((r.width + r.height)*0.25*scale);
|
||||||
circle( img, center, radius, color, 3, 8, 0 );
|
circle( img, center, radius, color, 3, 8, 0 );
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),
|
rectangle( img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
|
||||||
cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),
|
cvPoint(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
|
||||||
color, 3, 8, 0);
|
color, 3, 8, 0);
|
||||||
|
|
||||||
const int half_height=cvRound((float)r->height/2);
|
const int half_height=cvRound((float)r.height/2);
|
||||||
r->y=r->y + half_height;
|
r.y=r.y + half_height;
|
||||||
r->height = half_height;
|
r.height = half_height-1;
|
||||||
smallImgROI = smallImg(*r);
|
smallImgROI = smallImg( r );
|
||||||
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
|
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
|
||||||
1.1, 0, 0
|
1.1, 0, 0
|
||||||
//|CASCADE_FIND_BIGGEST_OBJECT
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||||||
//|CASCADE_DO_ROUGH_SEARCH
|
//|CASCADE_DO_ROUGH_SEARCH
|
||||||
//|CASCADE_DO_CANNY_PRUNING
|
//|CASCADE_DO_CANNY_PRUNING
|
||||||
|CASCADE_SCALE_IMAGE
|
|CASCADE_SCALE_IMAGE,
|
||||||
,
|
|
||||||
Size(30, 30) );
|
Size(30, 30) );
|
||||||
|
|
||||||
// The number of detected neighbors depends on image size (and also illumination, etc.). The
|
// The number of detected neighbors depends on image size (and also illumination, etc.). The
|
||||||
@ -243,9 +225,9 @@ void detectAndDraw( Mat& img, CascadeClassifier& cascade,
|
|||||||
// Draw rectangle on the left side of the image reflecting smile intensity
|
// Draw rectangle on the left side of the image reflecting smile intensity
|
||||||
float intensityZeroOne = ((float)smile_neighbors - min_neighbors) / (max_neighbors - min_neighbors + 1);
|
float intensityZeroOne = ((float)smile_neighbors - min_neighbors) / (max_neighbors - min_neighbors + 1);
|
||||||
int rect_height = cvRound((float)img.rows * intensityZeroOne);
|
int rect_height = cvRound((float)img.rows * intensityZeroOne);
|
||||||
CvScalar col = CV_RGB((float)255 * intensityZeroOne, 0, 0);
|
Scalar col = Scalar((float)255 * intensityZeroOne, 0, 0);
|
||||||
rectangle(img, cvPoint(0, img.rows), cvPoint(img.cols/10, img.rows - rect_height), col, -1);
|
rectangle(img, cvPoint(0, img.rows), cvPoint(img.cols/10, img.rows - rect_height), col, -1);
|
||||||
}
|
}
|
||||||
|
|
||||||
cv::imshow( "result", img );
|
imshow( "result", img );
|
||||||
}
|
}
|
||||||
|
@ -1,15 +1,8 @@
|
|||||||
#include "opencv2/objdetect.hpp"
|
#include "opencv2/objdetect.hpp"
|
||||||
#include "opencv2/imgcodecs.hpp"
|
|
||||||
#include "opencv2/videoio.hpp"
|
|
||||||
#include "opencv2/highgui.hpp"
|
#include "opencv2/highgui.hpp"
|
||||||
#include "opencv2/imgproc.hpp"
|
#include "opencv2/imgproc.hpp"
|
||||||
#include "opencv2/core/utility.hpp"
|
|
||||||
#include "opencv2/core/ocl.hpp"
|
#include "opencv2/core/ocl.hpp"
|
||||||
|
|
||||||
#include <cctype>
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <iterator>
|
|
||||||
#include <stdio.h>
|
|
||||||
|
|
||||||
using namespace std;
|
using namespace std;
|
||||||
using namespace cv;
|
using namespace cv;
|
||||||
@ -20,13 +13,13 @@ static void help()
|
|||||||
"This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
|
"This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
|
||||||
"It's most known use is for faces.\n"
|
"It's most known use is for faces.\n"
|
||||||
"Usage:\n"
|
"Usage:\n"
|
||||||
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
|
"./ufacedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
|
||||||
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
|
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
|
||||||
" [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
|
" [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
|
||||||
" [--try-flip]\n"
|
" [--try-flip]\n"
|
||||||
" [filename|camera_index]\n\n"
|
" [filename|camera_index]\n\n"
|
||||||
"see facedetect.cmd for one call:\n"
|
"see facedetect.cmd for one call:\n"
|
||||||
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye.xml\" --scale=1.3\n\n"
|
"./ufacedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n"
|
||||||
"During execution:\n\tHit any key to quit.\n"
|
"During execution:\n\tHit any key to quit.\n"
|
||||||
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
|
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
|
||||||
}
|
}
|
||||||
@ -76,7 +69,7 @@ int main( int argc, const char** argv )
|
|||||||
}
|
}
|
||||||
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
|
else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
|
||||||
{
|
{
|
||||||
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale > 1 )
|
if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) )
|
||||||
scale = 1;
|
scale = 1;
|
||||||
cout << " from which we read scale = " << scale << endl;
|
cout << " from which we read scale = " << scale << endl;
|
||||||
}
|
}
|
||||||
@ -87,7 +80,7 @@ int main( int argc, const char** argv )
|
|||||||
}
|
}
|
||||||
else if( argv[i][0] == '-' )
|
else if( argv[i][0] == '-' )
|
||||||
{
|
{
|
||||||
cerr << "WARNING: Unknown option %s" << argv[i] << endl;
|
cerr << "WARNING: Unknown option " << argv[i] << endl;
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
inputName = argv[i];
|
inputName = argv[i];
|
||||||
@ -120,8 +113,6 @@ int main( int argc, const char** argv )
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
namedWindow( "result", 1 );
|
|
||||||
|
|
||||||
if( capture.isOpened() )
|
if( capture.isOpened() )
|
||||||
{
|
{
|
||||||
cout << "Video capturing has been started ..." << endl;
|
cout << "Video capturing has been started ..." << endl;
|
||||||
@ -133,7 +124,8 @@ int main( int argc, const char** argv )
|
|||||||
|
|
||||||
detectAndDraw( frame, canvas, cascade, nestedCascade, scale, tryflip );
|
detectAndDraw( frame, canvas, cascade, nestedCascade, scale, tryflip );
|
||||||
|
|
||||||
if( waitKey( 10 ) >= 0 )
|
int c = waitKey(10);
|
||||||
|
if( c == 27 || c == 'q' || c == 'Q' )
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -183,46 +175,44 @@ int main( int argc, const char** argv )
|
|||||||
|
|
||||||
void detectAndDraw( UMat& img, Mat& canvas, CascadeClassifier& cascade,
|
void detectAndDraw( UMat& img, Mat& canvas, CascadeClassifier& cascade,
|
||||||
CascadeClassifier& nestedCascade,
|
CascadeClassifier& nestedCascade,
|
||||||
double scale0, bool tryflip )
|
double scale, bool tryflip )
|
||||||
{
|
{
|
||||||
int i = 0;
|
double t = 0;
|
||||||
double t = 0, scale=1;
|
|
||||||
vector<Rect> faces, faces2;
|
vector<Rect> faces, faces2;
|
||||||
const static Scalar colors[] =
|
const static Scalar colors[] =
|
||||||
{
|
{
|
||||||
Scalar(0,0,255),
|
Scalar(255,0,0),
|
||||||
Scalar(0,128,255),
|
|
||||||
Scalar(0,255,255),
|
|
||||||
Scalar(0,255,0),
|
|
||||||
Scalar(255,128,0),
|
Scalar(255,128,0),
|
||||||
Scalar(255,255,0),
|
Scalar(255,255,0),
|
||||||
Scalar(255,0,0),
|
Scalar(0,255,0),
|
||||||
|
Scalar(0,128,255),
|
||||||
|
Scalar(0,255,255),
|
||||||
|
Scalar(0,0,255),
|
||||||
Scalar(255,0,255)
|
Scalar(255,0,255)
|
||||||
};
|
};
|
||||||
static UMat gray, smallImg;
|
static UMat gray, smallImg;
|
||||||
|
|
||||||
t = (double)getTickCount();
|
t = (double)getTickCount();
|
||||||
|
|
||||||
resize( img, smallImg, Size(), scale0, scale0, INTER_LINEAR );
|
cvtColor( img, gray, COLOR_BGR2GRAY );
|
||||||
cvtColor( smallImg, gray, COLOR_BGR2GRAY );
|
double fx = 1 / scale;
|
||||||
equalizeHist( gray, gray );
|
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR );
|
||||||
|
equalizeHist( smallImg, smallImg );
|
||||||
|
|
||||||
cascade.detectMultiScale( gray, faces,
|
cascade.detectMultiScale( smallImg, faces,
|
||||||
1.1, 3, 0
|
1.1, 3, 0
|
||||||
//|CASCADE_FIND_BIGGEST_OBJECT
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||||||
//|CASCADE_DO_ROUGH_SEARCH
|
//|CASCADE_DO_ROUGH_SEARCH
|
||||||
|CASCADE_SCALE_IMAGE
|
|CASCADE_SCALE_IMAGE,
|
||||||
,
|
|
||||||
Size(30, 30) );
|
Size(30, 30) );
|
||||||
if( tryflip )
|
if( tryflip )
|
||||||
{
|
{
|
||||||
flip(gray, gray, 1);
|
flip(smallImg, smallImg, 1);
|
||||||
cascade.detectMultiScale( gray, faces2,
|
cascade.detectMultiScale( smallImg, faces2,
|
||||||
1.1, 2, 0
|
1.1, 2, 0
|
||||||
//|CASCADE_FIND_BIGGEST_OBJECT
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||||||
//|CASCADE_DO_ROUGH_SEARCH
|
//|CASCADE_DO_ROUGH_SEARCH
|
||||||
|CASCADE_SCALE_IMAGE
|
|CASCADE_SCALE_IMAGE,
|
||||||
,
|
|
||||||
Size(30, 30) );
|
Size(30, 30) );
|
||||||
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
|
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
|
||||||
{
|
{
|
||||||
@ -230,7 +220,7 @@ void detectAndDraw( UMat& img, Mat& canvas, CascadeClassifier& cascade,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
t = (double)getTickCount() - t;
|
t = (double)getTickCount() - t;
|
||||||
smallImg.copyTo(canvas);
|
img.copyTo(canvas);
|
||||||
|
|
||||||
double fps = getTickFrequency()/t;
|
double fps = getTickFrequency()/t;
|
||||||
static double avgfps = 0;
|
static double avgfps = 0;
|
||||||
@ -242,41 +232,43 @@ void detectAndDraw( UMat& img, Mat& canvas, CascadeClassifier& cascade,
|
|||||||
putText(canvas, format("OpenCL: %s, fps: %.1f", ocl::useOpenCL() ? "ON" : "OFF", avgfps), Point(50, 30),
|
putText(canvas, format("OpenCL: %s, fps: %.1f", ocl::useOpenCL() ? "ON" : "OFF", avgfps), Point(50, 30),
|
||||||
FONT_HERSHEY_SIMPLEX, 0.8, Scalar(0,255,0), 2);
|
FONT_HERSHEY_SIMPLEX, 0.8, Scalar(0,255,0), 2);
|
||||||
|
|
||||||
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
for ( size_t i = 0; i < faces.size(); i++ )
|
||||||
{
|
{
|
||||||
|
Rect r = faces[i];
|
||||||
vector<Rect> nestedObjects;
|
vector<Rect> nestedObjects;
|
||||||
Point center;
|
Point center;
|
||||||
Scalar color = colors[i%8];
|
Scalar color = colors[i%8];
|
||||||
int radius;
|
int radius;
|
||||||
|
|
||||||
double aspect_ratio = (double)r->width/r->height;
|
double aspect_ratio = (double)r.width/r.height;
|
||||||
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
|
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
|
||||||
{
|
{
|
||||||
center.x = cvRound((r->x + r->width*0.5)*scale);
|
center.x = cvRound((r.x + r.width*0.5)*scale);
|
||||||
center.y = cvRound((r->y + r->height*0.5)*scale);
|
center.y = cvRound((r.y + r.height*0.5)*scale);
|
||||||
radius = cvRound((r->width + r->height)*0.25*scale);
|
radius = cvRound((r.width + r.height)*0.25*scale);
|
||||||
circle( canvas, center, radius, color, 3, 8, 0 );
|
circle( canvas, center, radius, color, 3, 8, 0 );
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
rectangle( canvas, Point(cvRound(r->x*scale), cvRound(r->y*scale)),
|
rectangle( canvas, Point(cvRound(r.x*scale), cvRound(r.y*scale)),
|
||||||
Point(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),
|
Point(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
|
||||||
color, 3, 8, 0);
|
color, 3, 8, 0);
|
||||||
if( nestedCascade.empty() )
|
if( nestedCascade.empty() )
|
||||||
continue;
|
continue;
|
||||||
UMat smallImgROI = gray(*r);
|
UMat smallImgROI = smallImg(r);
|
||||||
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
|
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
|
||||||
1.1, 2, 0
|
1.1, 2, 0
|
||||||
//|CASCADE_FIND_BIGGEST_OBJECT
|
//|CASCADE_FIND_BIGGEST_OBJECT
|
||||||
//|CASCADE_DO_ROUGH_SEARCH
|
//|CASCADE_DO_ROUGH_SEARCH
|
||||||
//|CASCADE_DO_CANNY_PRUNING
|
//|CASCADE_DO_CANNY_PRUNING
|
||||||
|CASCADE_SCALE_IMAGE
|
|CASCADE_SCALE_IMAGE,
|
||||||
,
|
|
||||||
Size(30, 30) );
|
Size(30, 30) );
|
||||||
for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ )
|
|
||||||
|
for ( size_t j = 0; j < nestedObjects.size(); j++ )
|
||||||
{
|
{
|
||||||
center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
|
Rect nr = nestedObjects[j];
|
||||||
center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
|
center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
|
||||||
radius = cvRound((nr->width + nr->height)*0.25*scale);
|
center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
|
||||||
|
radius = cvRound((nr.width + nr.height)*0.25*scale);
|
||||||
circle( canvas, center, radius, color, 3, 8, 0 );
|
circle( canvas, center, radius, color, 3, 8, 0 );
|
||||||
}
|
}
|
||||||
}
|
}
|
Loading…
x
Reference in New Issue
Block a user