moved GpuMat and DevMem2D to core module, some code refactoring
This commit is contained in:
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -45,421 +45,423 @@
|
||||
#include "opencv2/gpu/device/vec_distance.hpp"
|
||||
#include "opencv2/gpu/device/datamov_utils.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace cv { namespace gpu { namespace bf_radius_match
|
||||
namespace bf_radius_match {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Match Unrolled
|
||||
|
||||
template <int BLOCK_SIZE, int MAX_DESC_LEN, bool SAVE_IMG_IDX, typename Dist, typename T, typename Mask>
|
||||
__global__ void matchUnrolled(const DevMem2D_<T> query, int imgIdx, const DevMem2D_<T> train, float maxDistance, const Mask mask,
|
||||
PtrStepi bestTrainIdx, PtrStepi bestImgIdx, PtrStepf bestDistance, unsigned int* nMatches, int maxCount)
|
||||
{
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Match Unrolled
|
||||
#if __CUDA_ARCH__ >= 110
|
||||
|
||||
template <int BLOCK_SIZE, int MAX_DESC_LEN, bool SAVE_IMG_IDX, typename Dist, typename T, typename Mask>
|
||||
__global__ void matchUnrolled(const DevMem2D_<T> query, int imgIdx, const DevMem2D_<T> train, float maxDistance, const Mask mask,
|
||||
PtrStepi bestTrainIdx, PtrStepi bestImgIdx, PtrStepf bestDistance, unsigned int* nMatches, int maxCount)
|
||||
extern __shared__ int smem[];
|
||||
|
||||
const int queryIdx = blockIdx.y * BLOCK_SIZE + threadIdx.y;
|
||||
const int trainIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
|
||||
|
||||
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
|
||||
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
Dist dist;
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 110
|
||||
const int loadX = threadIdx.x + i * BLOCK_SIZE;
|
||||
|
||||
extern __shared__ int smem[];
|
||||
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
|
||||
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
|
||||
|
||||
const int queryIdx = blockIdx.y * BLOCK_SIZE + threadIdx.y;
|
||||
const int trainIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
|
||||
if (loadX < query.cols)
|
||||
{
|
||||
T val;
|
||||
|
||||
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
|
||||
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
||||
ForceGlob<T>::Load(query.ptr(::min(queryIdx, query.rows - 1)), loadX, val);
|
||||
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
|
||||
|
||||
Dist dist;
|
||||
ForceGlob<T>::Load(train.ptr(::min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
|
||||
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
|
||||
{
|
||||
const int loadX = threadIdx.x + i * BLOCK_SIZE;
|
||||
for (int j = 0; j < BLOCK_SIZE; ++j)
|
||||
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
|
||||
|
||||
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
|
||||
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
|
||||
|
||||
if (loadX < query.cols)
|
||||
{
|
||||
T val;
|
||||
|
||||
ForceGlob<T>::Load(query.ptr(min(queryIdx, query.rows - 1)), loadX, val);
|
||||
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
|
||||
|
||||
ForceGlob<T>::Load(train.ptr(min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
|
||||
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < BLOCK_SIZE; ++j)
|
||||
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
|
||||
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
float distVal = (typename Dist::result_type)dist;
|
||||
|
||||
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx) && distVal < maxDistance)
|
||||
{
|
||||
unsigned int ind = atomicInc(nMatches + queryIdx, (unsigned int) -1);
|
||||
if (ind < maxCount)
|
||||
{
|
||||
bestTrainIdx.ptr(queryIdx)[ind] = trainIdx;
|
||||
if (SAVE_IMG_IDX) bestImgIdx.ptr(queryIdx)[ind] = imgIdx;
|
||||
bestDistance.ptr(queryIdx)[ind] = distVal;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
||||
void matchUnrolled(const DevMem2D_<T>& query, const DevMem2D_<T>& train, float maxDistance, const Mask& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, cudaStream_t stream)
|
||||
float distVal = (typename Dist::result_type)dist;
|
||||
|
||||
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx) && distVal < maxDistance)
|
||||
{
|
||||
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
||||
unsigned int ind = atomicInc(nMatches + queryIdx, (unsigned int) -1);
|
||||
if (ind < maxCount)
|
||||
{
|
||||
bestTrainIdx.ptr(queryIdx)[ind] = trainIdx;
|
||||
if (SAVE_IMG_IDX) bestImgIdx.ptr(queryIdx)[ind] = imgIdx;
|
||||
bestDistance.ptr(queryIdx)[ind] = distVal;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
|
||||
void matchUnrolled(const DevMem2D_<T>& query, const DevMem2D_<T>& train, float maxDistance, const Mask& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
||||
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
|
||||
|
||||
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
||||
|
||||
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, false, Dist><<<grid, block, smemSize, stream>>>(query, 0, train, maxDistance, mask,
|
||||
trainIdx, PtrStepi(), distance, nMatches.data, trainIdx.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T>
|
||||
void matchUnrolled(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
||||
|
||||
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
||||
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
const DevMem2D_<T> train = trains[i];
|
||||
|
||||
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
|
||||
|
||||
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
||||
|
||||
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, false, Dist><<<grid, block, smemSize, stream>>>(query, 0, train, maxDistance, mask,
|
||||
trainIdx, PtrStepi(), distance, nMatches.data, trainIdx.cols);
|
||||
if (masks != 0 && masks[i].data)
|
||||
{
|
||||
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, SingleMask(masks[i]),
|
||||
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
|
||||
}
|
||||
else
|
||||
{
|
||||
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, WithOutMask(),
|
||||
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
|
||||
}
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T>
|
||||
void matchUnrolled(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
||||
|
||||
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
||||
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
const DevMem2D_<T> train = trains[i];
|
||||
|
||||
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
|
||||
|
||||
if (masks != 0 && masks[i].data)
|
||||
{
|
||||
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, SingleMask(masks[i]),
|
||||
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
|
||||
}
|
||||
else
|
||||
{
|
||||
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, WithOutMask(),
|
||||
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
|
||||
}
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Match
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <int BLOCK_SIZE, bool SAVE_IMG_IDX, typename Dist, typename T, typename Mask>
|
||||
__global__ void match(const DevMem2D_<T> query, int imgIdx, const DevMem2D_<T> train, float maxDistance, const Mask mask,
|
||||
PtrStepi bestTrainIdx, PtrStepi bestImgIdx, PtrStepf bestDistance, unsigned int* nMatches, int maxCount)
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Match
|
||||
|
||||
template <int BLOCK_SIZE, bool SAVE_IMG_IDX, typename Dist, typename T, typename Mask>
|
||||
__global__ void match(const DevMem2D_<T> query, int imgIdx, const DevMem2D_<T> train, float maxDistance, const Mask mask,
|
||||
PtrStepi bestTrainIdx, PtrStepi bestImgIdx, PtrStepf bestDistance, unsigned int* nMatches, int maxCount)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 110
|
||||
|
||||
extern __shared__ int smem[];
|
||||
|
||||
const int queryIdx = blockIdx.y * BLOCK_SIZE + threadIdx.y;
|
||||
const int trainIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
|
||||
|
||||
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
|
||||
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
Dist dist;
|
||||
|
||||
for (int i = 0, endi = (query.cols + BLOCK_SIZE - 1) / BLOCK_SIZE; i < endi; ++i)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 110
|
||||
const int loadX = threadIdx.x + i * BLOCK_SIZE;
|
||||
|
||||
extern __shared__ int smem[];
|
||||
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
|
||||
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
|
||||
|
||||
const int queryIdx = blockIdx.y * BLOCK_SIZE + threadIdx.y;
|
||||
const int trainIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
|
||||
|
||||
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
|
||||
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
Dist dist;
|
||||
|
||||
for (int i = 0, endi = (query.cols + BLOCK_SIZE - 1) / BLOCK_SIZE; i < endi; ++i)
|
||||
if (loadX < query.cols)
|
||||
{
|
||||
const int loadX = threadIdx.x + i * BLOCK_SIZE;
|
||||
T val;
|
||||
|
||||
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
|
||||
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
|
||||
ForceGlob<T>::Load(query.ptr(::min(queryIdx, query.rows - 1)), loadX, val);
|
||||
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
|
||||
|
||||
if (loadX < query.cols)
|
||||
{
|
||||
T val;
|
||||
|
||||
ForceGlob<T>::Load(query.ptr(min(queryIdx, query.rows - 1)), loadX, val);
|
||||
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
|
||||
|
||||
ForceGlob<T>::Load(train.ptr(min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
|
||||
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < BLOCK_SIZE; ++j)
|
||||
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
|
||||
|
||||
__syncthreads();
|
||||
ForceGlob<T>::Load(train.ptr(::min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
|
||||
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
|
||||
}
|
||||
|
||||
float distVal = (typename Dist::result_type)dist;
|
||||
__syncthreads();
|
||||
|
||||
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx) && distVal < maxDistance)
|
||||
{
|
||||
unsigned int ind = atomicInc(nMatches + queryIdx, (unsigned int) -1);
|
||||
if (ind < maxCount)
|
||||
{
|
||||
bestTrainIdx.ptr(queryIdx)[ind] = trainIdx;
|
||||
if (SAVE_IMG_IDX) bestImgIdx.ptr(queryIdx)[ind] = imgIdx;
|
||||
bestDistance.ptr(queryIdx)[ind] = distVal;
|
||||
}
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j = 0; j < BLOCK_SIZE; ++j)
|
||||
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
|
||||
|
||||
#endif
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
|
||||
void match(const DevMem2D_<T>& query, const DevMem2D_<T>& train, float maxDistance, const Mask& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
cudaStream_t stream)
|
||||
float distVal = (typename Dist::result_type)dist;
|
||||
|
||||
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx) && distVal < maxDistance)
|
||||
{
|
||||
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
||||
unsigned int ind = atomicInc(nMatches + queryIdx, (unsigned int) -1);
|
||||
if (ind < maxCount)
|
||||
{
|
||||
bestTrainIdx.ptr(queryIdx)[ind] = trainIdx;
|
||||
if (SAVE_IMG_IDX) bestImgIdx.ptr(queryIdx)[ind] = imgIdx;
|
||||
bestDistance.ptr(queryIdx)[ind] = distVal;
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
|
||||
void match(const DevMem2D_<T>& query, const DevMem2D_<T>& train, float maxDistance, const Mask& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
||||
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
|
||||
|
||||
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
||||
|
||||
match<BLOCK_SIZE, false, Dist><<<grid, block, smemSize, stream>>>(query, 0, train, maxDistance, mask,
|
||||
trainIdx, PtrStepi(), distance, nMatches.data, trainIdx.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <int BLOCK_SIZE, typename Dist, typename T>
|
||||
void match(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
||||
|
||||
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
||||
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
const DevMem2D_<T> train = trains[i];
|
||||
|
||||
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
|
||||
|
||||
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
||||
|
||||
match<BLOCK_SIZE, false, Dist><<<grid, block, smemSize, stream>>>(query, 0, train, maxDistance, mask,
|
||||
trainIdx, PtrStepi(), distance, nMatches.data, trainIdx.cols);
|
||||
if (masks != 0 && masks[i].data)
|
||||
{
|
||||
match<BLOCK_SIZE, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, SingleMask(masks[i]),
|
||||
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
|
||||
}
|
||||
else
|
||||
{
|
||||
match<BLOCK_SIZE, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, WithOutMask(),
|
||||
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
|
||||
}
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <int BLOCK_SIZE, typename Dist, typename T>
|
||||
void match(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
cudaStream_t stream)
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Match dispatcher
|
||||
|
||||
template <typename Dist, typename T, typename Mask>
|
||||
void matchDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, float maxDistance, const Mask& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
{
|
||||
if (query.cols <= 64)
|
||||
{
|
||||
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
|
||||
|
||||
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
|
||||
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
const DevMem2D_<T> train = trains[i];
|
||||
|
||||
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
|
||||
|
||||
if (masks != 0 && masks[i].data)
|
||||
{
|
||||
match<BLOCK_SIZE, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, SingleMask(masks[i]),
|
||||
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
|
||||
}
|
||||
else
|
||||
{
|
||||
match<BLOCK_SIZE, true, Dist><<<grid, block, smemSize, stream>>>(query, i, train, maxDistance, WithOutMask(),
|
||||
trainIdx, imgIdx, distance, nMatches.data, trainIdx.cols);
|
||||
}
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
matchUnrolled<16, 64, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Match dispatcher
|
||||
|
||||
template <typename Dist, typename T, typename Mask>
|
||||
void matchDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>& train, float maxDistance, const Mask& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
else if (query.cols <= 128)
|
||||
{
|
||||
if (query.cols <= 64)
|
||||
{
|
||||
matchUnrolled<16, 64, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}
|
||||
else if (query.cols <= 128)
|
||||
{
|
||||
matchUnrolled<16, 128, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}
|
||||
/*else if (query.cols <= 256)
|
||||
{
|
||||
matchUnrolled<16, 256, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}
|
||||
else if (query.cols <= 512)
|
||||
{
|
||||
matchUnrolled<16, 512, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}
|
||||
else if (query.cols <= 1024)
|
||||
{
|
||||
matchUnrolled<16, 1024, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}*/
|
||||
else
|
||||
{
|
||||
match<16, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}
|
||||
matchUnrolled<16, 128, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}
|
||||
|
||||
template <typename Dist, typename T>
|
||||
void matchDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
/*else if (query.cols <= 256)
|
||||
{
|
||||
if (query.cols <= 64)
|
||||
{
|
||||
matchUnrolled<16, 64, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}
|
||||
else if (query.cols <= 128)
|
||||
{
|
||||
matchUnrolled<16, 128, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}
|
||||
/*else if (query.cols <= 256)
|
||||
{
|
||||
matchUnrolled<16, 256, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}
|
||||
else if (query.cols <= 512)
|
||||
{
|
||||
matchUnrolled<16, 512, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}
|
||||
else if (query.cols <= 1024)
|
||||
{
|
||||
matchUnrolled<16, 1024, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}*/
|
||||
else
|
||||
{
|
||||
match<16, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Radius Match caller
|
||||
|
||||
template <typename T> void matchL1_gpu(const DevMem2Db& query, const DevMem2Db& train, float maxDistance, const DevMem2Db& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
{
|
||||
if (mask.data)
|
||||
{
|
||||
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, SingleMask(mask),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
else
|
||||
{
|
||||
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, WithOutMask(),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
matchUnrolled<16, 256, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}
|
||||
|
||||
template void matchL1_gpu<uchar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL1_gpu<schar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<ushort>(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<short >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<int >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<float >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
|
||||
template <typename T> void matchL2_gpu(const DevMem2Db& query, const DevMem2Db& train, float maxDistance, const DevMem2Db& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
{
|
||||
if (mask.data)
|
||||
{
|
||||
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, SingleMask(mask),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
else
|
||||
{
|
||||
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, WithOutMask(),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
else if (query.cols <= 512)
|
||||
{
|
||||
matchUnrolled<16, 512, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}
|
||||
|
||||
//template void matchL2_gpu<uchar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<schar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<ushort>(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<short >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<int >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL2_gpu<float >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
|
||||
template <typename T> void matchHamming_gpu(const DevMem2Db& query, const DevMem2Db& train, float maxDistance, const DevMem2Db& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
else if (query.cols <= 1024)
|
||||
{
|
||||
matchUnrolled<16, 1024, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}*/
|
||||
else
|
||||
{
|
||||
if (mask.data)
|
||||
{
|
||||
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, SingleMask(mask),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
else
|
||||
{
|
||||
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, WithOutMask(),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
match<16, Dist>(query, train, maxDistance, mask, trainIdx, distance, nMatches, stream);
|
||||
}
|
||||
}
|
||||
|
||||
template void matchHamming_gpu<uchar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchHamming_gpu<schar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchHamming_gpu<ushort>(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchHamming_gpu<short >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchHamming_gpu<int >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
|
||||
template <typename T> void matchL1_gpu(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
template <typename Dist, typename T>
|
||||
void matchDispatcher(const DevMem2D_<T>& query, const DevMem2D_<T>* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
{
|
||||
if (query.cols <= 64)
|
||||
{
|
||||
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains, n, maxDistance, masks,
|
||||
trainIdx, imgIdx, distance, nMatches,
|
||||
matchUnrolled<16, 64, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}
|
||||
else if (query.cols <= 128)
|
||||
{
|
||||
matchUnrolled<16, 128, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}
|
||||
/*else if (query.cols <= 256)
|
||||
{
|
||||
matchUnrolled<16, 256, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}
|
||||
else if (query.cols <= 512)
|
||||
{
|
||||
matchUnrolled<16, 512, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}
|
||||
else if (query.cols <= 1024)
|
||||
{
|
||||
matchUnrolled<16, 1024, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}*/
|
||||
else
|
||||
{
|
||||
match<16, Dist>(query, trains, n, maxDistance, masks, trainIdx, imgIdx, distance, nMatches, stream);
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Radius Match caller
|
||||
|
||||
template <typename T> void matchL1_gpu(const DevMem2Db& query, const DevMem2Db& train, float maxDistance, const DevMem2Db& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
{
|
||||
if (mask.data)
|
||||
{
|
||||
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, SingleMask(mask),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
|
||||
template void matchL1_gpu<uchar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL1_gpu<schar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<ushort>(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<short >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<int >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<float >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
|
||||
template <typename T> void matchL2_gpu(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
else
|
||||
{
|
||||
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains, n, maxDistance, masks,
|
||||
trainIdx, imgIdx, distance, nMatches,
|
||||
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, WithOutMask(),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
}
|
||||
|
||||
//template void matchL2_gpu<uchar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<schar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<ushort>(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<short >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<int >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL2_gpu<float >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<uchar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL1_gpu<schar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<ushort>(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<short >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<int >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<float >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
|
||||
template <typename T> void matchHamming_gpu(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
template <typename T> void matchL2_gpu(const DevMem2Db& query, const DevMem2Db& train, float maxDistance, const DevMem2Db& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
{
|
||||
if (mask.data)
|
||||
{
|
||||
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains, n, maxDistance, masks,
|
||||
trainIdx, imgIdx, distance, nMatches,
|
||||
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, SingleMask(mask),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
else
|
||||
{
|
||||
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, WithOutMask(),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
}
|
||||
|
||||
template void matchHamming_gpu<uchar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchHamming_gpu<schar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchHamming_gpu<ushort>(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchHamming_gpu<short >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchHamming_gpu<int >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
}}}
|
||||
//template void matchL2_gpu<uchar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<schar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<ushort>(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<short >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<int >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL2_gpu<float >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
|
||||
template <typename T> void matchHamming_gpu(const DevMem2Db& query, const DevMem2Db& train, float maxDistance, const DevMem2Db& mask,
|
||||
const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
{
|
||||
if (mask.data)
|
||||
{
|
||||
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, SingleMask(mask),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
else
|
||||
{
|
||||
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), static_cast< DevMem2D_<T> >(train), maxDistance, WithOutMask(),
|
||||
trainIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
}
|
||||
|
||||
template void matchHamming_gpu<uchar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchHamming_gpu<schar >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchHamming_gpu<ushort>(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchHamming_gpu<short >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchHamming_gpu<int >(const DevMem2Db& queryDescs, const DevMem2Db& trainDescs, float maxDistance, const DevMem2Db& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
|
||||
template <typename T> void matchL1_gpu(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
{
|
||||
matchDispatcher< L1Dist<T> >(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains, n, maxDistance, masks,
|
||||
trainIdx, imgIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
|
||||
template void matchL1_gpu<uchar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL1_gpu<schar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<ushort>(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<short >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<int >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL1_gpu<float >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
|
||||
template <typename T> void matchL2_gpu(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
{
|
||||
matchDispatcher<L2Dist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains, n, maxDistance, masks,
|
||||
trainIdx, imgIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
|
||||
//template void matchL2_gpu<uchar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<schar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<ushort>(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<short >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchL2_gpu<int >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchL2_gpu<float >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
|
||||
template <typename T> void matchHamming_gpu(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks,
|
||||
const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches,
|
||||
int cc, cudaStream_t stream)
|
||||
{
|
||||
matchDispatcher<HammingDist>(static_cast< DevMem2D_<T> >(query), (const DevMem2D_<T>*)trains, n, maxDistance, masks,
|
||||
trainIdx, imgIdx, distance, nMatches,
|
||||
cc, stream);
|
||||
}
|
||||
|
||||
template void matchHamming_gpu<uchar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchHamming_gpu<schar >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchHamming_gpu<ushort>(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
//template void matchHamming_gpu<short >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
template void matchHamming_gpu<int >(const DevMem2Db& query, const DevMem2Db* trains, int n, float maxDistance, const DevMem2Db* masks, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance, const DevMem2D_<unsigned int>& nMatches, int cc, cudaStream_t stream);
|
||||
|
||||
} // namespace bf_radius_match
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -43,191 +43,186 @@
|
||||
#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/device/limits.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace bf_krnls
|
||||
namespace bilateral_filter {
|
||||
|
||||
__constant__ float* ctable_color;
|
||||
__constant__ float* ctable_space;
|
||||
__constant__ size_t ctable_space_step;
|
||||
|
||||
__constant__ int cndisp;
|
||||
__constant__ int cradius;
|
||||
|
||||
__constant__ short cedge_disc;
|
||||
__constant__ short cmax_disc;
|
||||
|
||||
void load_constants(float* table_color, DevMem2Df table_space, int ndisp, int radius, short edge_disc, short max_disc)
|
||||
{
|
||||
__constant__ float* ctable_color;
|
||||
__constant__ float* ctable_space;
|
||||
__constant__ size_t ctable_space_step;
|
||||
cudaSafeCall( cudaMemcpyToSymbol(ctable_color, &table_color, sizeof(table_color)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(ctable_space, &table_space.data, sizeof(table_space.data)) );
|
||||
size_t table_space_step = table_space.step / sizeof(float);
|
||||
cudaSafeCall( cudaMemcpyToSymbol(ctable_space_step, &table_space_step, sizeof(size_t)) );
|
||||
|
||||
__constant__ int cndisp;
|
||||
__constant__ int cradius;
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cndisp, &ndisp, sizeof(int)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cradius, &radius, sizeof(int)) );
|
||||
|
||||
__constant__ short cedge_disc;
|
||||
__constant__ short cmax_disc;
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cedge_disc, &edge_disc, sizeof(short)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cmax_disc, &max_disc, sizeof(short)) );
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace bf
|
||||
template <int channels>
|
||||
struct DistRgbMax
|
||||
{
|
||||
void load_constants(float* table_color, const DevMem2Df& table_space, int ndisp, int radius, short edge_disc, short max_disc)
|
||||
static __device__ __forceinline__ uchar calc(const uchar* a, const uchar* b)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::ctable_color, &table_color, sizeof(table_color)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::ctable_space, &table_space.data, sizeof(table_space.data)) );
|
||||
size_t table_space_step = table_space.step / sizeof(float);
|
||||
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::ctable_space_step, &table_space_step, sizeof(size_t)) );
|
||||
|
||||
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::cndisp, &ndisp, sizeof(int)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::cradius, &radius, sizeof(int)) );
|
||||
|
||||
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::cedge_disc, &edge_disc, sizeof(short)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(bf_krnls::cmax_disc, &max_disc, sizeof(short)) );
|
||||
uchar x = ::abs(a[0] - b[0]);
|
||||
uchar y = ::abs(a[1] - b[1]);
|
||||
uchar z = ::abs(a[2] - b[2]);
|
||||
return (::max(::max(x, y), z));
|
||||
}
|
||||
}}}
|
||||
};
|
||||
|
||||
namespace bf_krnls
|
||||
template <>
|
||||
struct DistRgbMax<1>
|
||||
{
|
||||
template <int channels>
|
||||
struct DistRgbMax
|
||||
static __device__ __forceinline__ uchar calc(const uchar* a, const uchar* b)
|
||||
{
|
||||
static __device__ __forceinline__ uchar calc(const uchar* a, const uchar* b)
|
||||
{
|
||||
uchar x = abs(a[0] - b[0]);
|
||||
uchar y = abs(a[1] - b[1]);
|
||||
uchar z = abs(a[2] - b[2]);
|
||||
return (max(max(x, y), z));
|
||||
}
|
||||
};
|
||||
return ::abs(a[0] - b[0]);
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct DistRgbMax<1>
|
||||
template <int channels, typename T>
|
||||
__global__ void bilateral_filter(int t, T* disp, size_t disp_step, const uchar* img, size_t img_step, int h, int w)
|
||||
{
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + t) & 1);
|
||||
|
||||
T dp[5];
|
||||
|
||||
if (y > 0 && y < h - 1 && x > 0 && x < w - 1)
|
||||
{
|
||||
static __device__ __forceinline__ uchar calc(const uchar* a, const uchar* b)
|
||||
dp[0] = *(disp + (y ) * disp_step + x + 0);
|
||||
dp[1] = *(disp + (y-1) * disp_step + x + 0);
|
||||
dp[2] = *(disp + (y ) * disp_step + x - 1);
|
||||
dp[3] = *(disp + (y+1) * disp_step + x + 0);
|
||||
dp[4] = *(disp + (y ) * disp_step + x + 1);
|
||||
|
||||
if(::abs(dp[1] - dp[0]) >= cedge_disc || ::abs(dp[2] - dp[0]) >= cedge_disc || ::abs(dp[3] - dp[0]) >= cedge_disc || ::abs(dp[4] - dp[0]) >= cedge_disc)
|
||||
{
|
||||
return abs(a[0] - b[0]);
|
||||
}
|
||||
};
|
||||
const int ymin = ::max(0, y - cradius);
|
||||
const int xmin = ::max(0, x - cradius);
|
||||
const int ymax = ::min(h - 1, y + cradius);
|
||||
const int xmax = ::min(w - 1, x + cradius);
|
||||
|
||||
template <int channels, typename T>
|
||||
__global__ void bilateral_filter(int t, T* disp, size_t disp_step, const uchar* img, size_t img_step, int h, int w)
|
||||
{
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + t) & 1);
|
||||
float cost[] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
|
||||
|
||||
T dp[5];
|
||||
const uchar* ic = img + y * img_step + channels * x;
|
||||
|
||||
if (y > 0 && y < h - 1 && x > 0 && x < w - 1)
|
||||
{
|
||||
dp[0] = *(disp + (y ) * disp_step + x + 0);
|
||||
dp[1] = *(disp + (y-1) * disp_step + x + 0);
|
||||
dp[2] = *(disp + (y ) * disp_step + x - 1);
|
||||
dp[3] = *(disp + (y+1) * disp_step + x + 0);
|
||||
dp[4] = *(disp + (y ) * disp_step + x + 1);
|
||||
|
||||
if(abs(dp[1] - dp[0]) >= cedge_disc || abs(dp[2] - dp[0]) >= cedge_disc || abs(dp[3] - dp[0]) >= cedge_disc || abs(dp[4] - dp[0]) >= cedge_disc)
|
||||
for(int yi = ymin; yi <= ymax; yi++)
|
||||
{
|
||||
const int ymin = max(0, y - cradius);
|
||||
const int xmin = max(0, x - cradius);
|
||||
const int ymax = min(h - 1, y + cradius);
|
||||
const int xmax = min(w - 1, x + cradius);
|
||||
const T* disp_y = disp + yi * disp_step;
|
||||
|
||||
float cost[] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
|
||||
|
||||
const uchar* ic = img + y * img_step + channels * x;
|
||||
|
||||
for(int yi = ymin; yi <= ymax; yi++)
|
||||
for(int xi = xmin; xi <= xmax; xi++)
|
||||
{
|
||||
const T* disp_y = disp + yi * disp_step;
|
||||
const uchar* in = img + yi * img_step + channels * xi;
|
||||
|
||||
for(int xi = xmin; xi <= xmax; xi++)
|
||||
{
|
||||
const uchar* in = img + yi * img_step + channels * xi;
|
||||
uchar dist_rgb = DistRgbMax<channels>::calc(in, ic);
|
||||
|
||||
uchar dist_rgb = DistRgbMax<channels>::calc(in, ic);
|
||||
const float weight = ctable_color[dist_rgb] * (ctable_space + ::abs(y-yi)* ctable_space_step)[::abs(x-xi)];
|
||||
|
||||
const float weight = ctable_color[dist_rgb] * (ctable_space + abs(y-yi)* ctable_space_step)[abs(x-xi)];
|
||||
const T disp_reg = disp_y[xi];
|
||||
|
||||
const T disp_reg = disp_y[xi];
|
||||
|
||||
cost[0] += min(cmax_disc, abs(disp_reg - dp[0])) * weight;
|
||||
cost[1] += min(cmax_disc, abs(disp_reg - dp[1])) * weight;
|
||||
cost[2] += min(cmax_disc, abs(disp_reg - dp[2])) * weight;
|
||||
cost[3] += min(cmax_disc, abs(disp_reg - dp[3])) * weight;
|
||||
cost[4] += min(cmax_disc, abs(disp_reg - dp[4])) * weight;
|
||||
}
|
||||
cost[0] += ::min(cmax_disc, ::abs(disp_reg - dp[0])) * weight;
|
||||
cost[1] += ::min(cmax_disc, ::abs(disp_reg - dp[1])) * weight;
|
||||
cost[2] += ::min(cmax_disc, ::abs(disp_reg - dp[2])) * weight;
|
||||
cost[3] += ::min(cmax_disc, ::abs(disp_reg - dp[3])) * weight;
|
||||
cost[4] += ::min(cmax_disc, ::abs(disp_reg - dp[4])) * weight;
|
||||
}
|
||||
|
||||
float minimum = numeric_limits<float>::max();
|
||||
int id = 0;
|
||||
|
||||
if (cost[0] < minimum)
|
||||
{
|
||||
minimum = cost[0];
|
||||
id = 0;
|
||||
}
|
||||
if (cost[1] < minimum)
|
||||
{
|
||||
minimum = cost[1];
|
||||
id = 1;
|
||||
}
|
||||
if (cost[2] < minimum)
|
||||
{
|
||||
minimum = cost[2];
|
||||
id = 2;
|
||||
}
|
||||
if (cost[3] < minimum)
|
||||
{
|
||||
minimum = cost[3];
|
||||
id = 3;
|
||||
}
|
||||
if (cost[4] < minimum)
|
||||
{
|
||||
minimum = cost[4];
|
||||
id = 4;
|
||||
}
|
||||
|
||||
*(disp + y * disp_step + x) = dp[id];
|
||||
}
|
||||
|
||||
float minimum = numeric_limits<float>::max();
|
||||
int id = 0;
|
||||
|
||||
if (cost[0] < minimum)
|
||||
{
|
||||
minimum = cost[0];
|
||||
id = 0;
|
||||
}
|
||||
if (cost[1] < minimum)
|
||||
{
|
||||
minimum = cost[1];
|
||||
id = 1;
|
||||
}
|
||||
if (cost[2] < minimum)
|
||||
{
|
||||
minimum = cost[2];
|
||||
id = 2;
|
||||
}
|
||||
if (cost[3] < minimum)
|
||||
{
|
||||
minimum = cost[3];
|
||||
id = 3;
|
||||
}
|
||||
if (cost[4] < minimum)
|
||||
{
|
||||
minimum = cost[4];
|
||||
id = 4;
|
||||
}
|
||||
|
||||
*(disp + y * disp_step + x) = dp[id];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace bf
|
||||
template <typename T>
|
||||
void bilateral_filter_caller(DevMem2D_<T> disp, DevMem2Db img, int channels, int iters, cudaStream_t stream)
|
||||
{
|
||||
template <typename T>
|
||||
void bilateral_filter_caller(const DevMem2D_<T>& disp, const DevMem2Db& img, int channels, int iters, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
grid.x = divUp(disp.cols, threads.x << 1);
|
||||
grid.y = divUp(disp.rows, threads.y);
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
grid.x = divUp(disp.cols, threads.x << 1);
|
||||
grid.y = divUp(disp.rows, threads.y);
|
||||
|
||||
switch (channels)
|
||||
switch (channels)
|
||||
{
|
||||
case 1:
|
||||
for (int i = 0; i < iters; ++i)
|
||||
{
|
||||
case 1:
|
||||
for (int i = 0; i < iters; ++i)
|
||||
{
|
||||
bf_krnls::bilateral_filter<1><<<grid, threads, 0, stream>>>(0, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
bf_krnls::bilateral_filter<1><<<grid, threads, 0, stream>>>(1, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
for (int i = 0; i < iters; ++i)
|
||||
{
|
||||
bf_krnls::bilateral_filter<3><<<grid, threads, 0, stream>>>(0, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
bf_krnls::bilateral_filter<3><<<grid, threads, 0, stream>>>(1, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
break;
|
||||
default:
|
||||
cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
|
||||
bilateral_filter<1><<<grid, threads, 0, stream>>>(0, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
bilateral_filter<1><<<grid, threads, 0, stream>>>(1, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
for (int i = 0; i < iters; ++i)
|
||||
{
|
||||
bilateral_filter<3><<<grid, threads, 0, stream>>>(0, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream != 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
bilateral_filter<3><<<grid, threads, 0, stream>>>(1, disp.data, disp.step/sizeof(T), img.data, img.step, disp.rows, disp.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
break;
|
||||
default:
|
||||
cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
|
||||
}
|
||||
|
||||
void bilateral_filter_gpu(const DevMem2Db& disp, const DevMem2Db& img, int channels, int iters, cudaStream_t stream)
|
||||
{
|
||||
bilateral_filter_caller(disp, img, channels, iters, stream);
|
||||
}
|
||||
if (stream != 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
void bilateral_filter_gpu(const DevMem2D_<short>& disp, const DevMem2Db& img, int channels, int iters, cudaStream_t stream)
|
||||
{
|
||||
bilateral_filter_caller(disp, img, channels, iters, stream);
|
||||
}
|
||||
}}}
|
||||
void bilateral_filter_gpu(DevMem2Db disp, DevMem2Db img, int channels, int iters, cudaStream_t stream)
|
||||
{
|
||||
bilateral_filter_caller(disp, img, channels, iters, stream);
|
||||
}
|
||||
|
||||
void bilateral_filter_gpu(DevMem2D_<short> disp, DevMem2Db img, int channels, int iters, cudaStream_t stream)
|
||||
{
|
||||
bilateral_filter_caller(disp, img, channels, iters, stream);
|
||||
}
|
||||
|
||||
} // namespace bilateral_filter
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -42,81 +42,77 @@
|
||||
|
||||
#include "internal_shared.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace cv { namespace gpu
|
||||
namespace blend {
|
||||
|
||||
template <typename T>
|
||||
__global__ void blendLinearKernel(int rows, int cols, int cn, const PtrStep<T> img1, const PtrStep<T> img2,
|
||||
const PtrStepf weights1, const PtrStepf weights2, PtrStep<T> result)
|
||||
{
|
||||
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
template <typename T>
|
||||
__global__ void blendLinearKernel(int rows, int cols, int cn, const PtrStep<T> img1, const PtrStep<T> img2,
|
||||
const PtrStepf weights1, const PtrStepf weights2, PtrStep<T> result)
|
||||
if (y < rows && x < cols)
|
||||
{
|
||||
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (y < rows && x < cols)
|
||||
{
|
||||
int x_ = x / cn;
|
||||
float w1 = weights1.ptr(y)[x_];
|
||||
float w2 = weights2.ptr(y)[x_];
|
||||
T p1 = img1.ptr(y)[x];
|
||||
T p2 = img2.ptr(y)[x];
|
||||
result.ptr(y)[x] = (p1 * w1 + p2 * w2) / (w1 + w2 + 1e-5f);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void blendLinearCaller(int rows, int cols, int cn, const PtrStep<T>& img1, const PtrStep<T>& img2,
|
||||
const PtrStepf& weights1, const PtrStepf& weights2, PtrStep<T> result, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(16, 16);
|
||||
dim3 grid(divUp(cols * cn, threads.x), divUp(rows, threads.y));
|
||||
|
||||
blendLinearKernel<<<grid, threads, 0, stream>>>(rows, cols * cn, cn, img1, img2, weights1, weights2, result);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
int x_ = x / cn;
|
||||
float w1 = weights1.ptr(y)[x_];
|
||||
float w2 = weights2.ptr(y)[x_];
|
||||
T p1 = img1.ptr(y)[x];
|
||||
T p2 = img2.ptr(y)[x];
|
||||
result.ptr(y)[x] = (p1 * w1 + p2 * w2) / (w1 + w2 + 1e-5f);
|
||||
}
|
||||
}
|
||||
|
||||
template void blendLinearCaller<uchar>(int, int, int, const PtrStep<uchar>&, const PtrStep<uchar>&,
|
||||
const PtrStepf&, const PtrStepf&, PtrStep<uchar>, cudaStream_t stream);
|
||||
template void blendLinearCaller<float>(int, int, int, const PtrStep<float>&, const PtrStep<float>&,
|
||||
const PtrStepf&, const PtrStepf&, PtrStep<float>, cudaStream_t stream);
|
||||
template <typename T>
|
||||
void blendLinearCaller(int rows, int cols, int cn, PtrStep<T> img1, PtrStep<T> img2, PtrStepf weights1, PtrStepf weights2, PtrStep<T> result, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(16, 16);
|
||||
dim3 grid(divUp(cols * cn, threads.x), divUp(rows, threads.y));
|
||||
|
||||
blendLinearKernel<<<grid, threads, 0, stream>>>(rows, cols * cn, cn, img1, img2, weights1, weights2, result);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
template void blendLinearCaller<uchar>(int, int, int, PtrStep<uchar>, PtrStep<uchar>, PtrStepf, PtrStepf, PtrStep<uchar>, cudaStream_t stream);
|
||||
template void blendLinearCaller<float>(int, int, int, PtrStep<float>, PtrStep<float>, PtrStepf, PtrStepf, PtrStep<float>, cudaStream_t stream);
|
||||
|
||||
|
||||
__global__ void blendLinearKernel8UC4(int rows, int cols, const PtrStepb img1, const PtrStepb img2,
|
||||
const PtrStepf weights1, const PtrStepf weights2, PtrStepb result)
|
||||
__global__ void blendLinearKernel8UC4(int rows, int cols, const PtrStepb img1, const PtrStepb img2,
|
||||
const PtrStepf weights1, const PtrStepf weights2, PtrStepb result)
|
||||
{
|
||||
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (y < rows && x < cols)
|
||||
{
|
||||
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (y < rows && x < cols)
|
||||
{
|
||||
float w1 = weights1.ptr(y)[x];
|
||||
float w2 = weights2.ptr(y)[x];
|
||||
float sum_inv = 1.f / (w1 + w2 + 1e-5f);
|
||||
w1 *= sum_inv;
|
||||
w2 *= sum_inv;
|
||||
uchar4 p1 = ((const uchar4*)img1.ptr(y))[x];
|
||||
uchar4 p2 = ((const uchar4*)img2.ptr(y))[x];
|
||||
((uchar4*)result.ptr(y))[x] = make_uchar4(p1.x * w1 + p2.x * w2, p1.y * w1 + p2.y * w2,
|
||||
p1.z * w1 + p2.z * w2, p1.w * w1 + p2.w * w2);
|
||||
}
|
||||
float w1 = weights1.ptr(y)[x];
|
||||
float w2 = weights2.ptr(y)[x];
|
||||
float sum_inv = 1.f / (w1 + w2 + 1e-5f);
|
||||
w1 *= sum_inv;
|
||||
w2 *= sum_inv;
|
||||
uchar4 p1 = ((const uchar4*)img1.ptr(y))[x];
|
||||
uchar4 p2 = ((const uchar4*)img2.ptr(y))[x];
|
||||
((uchar4*)result.ptr(y))[x] = make_uchar4(p1.x * w1 + p2.x * w2, p1.y * w1 + p2.y * w2,
|
||||
p1.z * w1 + p2.z * w2, p1.w * w1 + p2.w * w2);
|
||||
}
|
||||
}
|
||||
|
||||
void blendLinearCaller8UC4(int rows, int cols, PtrStepb img1, PtrStepb img2, PtrStepf weights1, PtrStepf weights2, PtrStepb result, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(16, 16);
|
||||
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
|
||||
|
||||
blendLinearKernel8UC4<<<grid, threads, 0, stream>>>(rows, cols, img1, img2, weights1, weights2, result);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
void blendLinearCaller8UC4(int rows, int cols, const PtrStepb& img1, const PtrStepb& img2,
|
||||
const PtrStepf& weights1, const PtrStepf& weights2, PtrStepb result, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(16, 16);
|
||||
dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y));
|
||||
|
||||
blendLinearKernel8UC4<<<grid, threads, 0, stream>>>(rows, cols, img1, img2, weights1, weights2, result);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
} // namespace blend
|
||||
|
||||
}}
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -44,153 +44,149 @@
|
||||
#include "opencv2/gpu/device/transform.hpp"
|
||||
#include "opencv2/gpu/device/functional.hpp"
|
||||
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
#define SOLVE_PNP_RANSAC_MAX_NUM_ITERS 200
|
||||
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
namespace cv { namespace gpu
|
||||
namespace transform_points
|
||||
{
|
||||
namespace transform_points
|
||||
__constant__ float3 crot0;
|
||||
__constant__ float3 crot1;
|
||||
__constant__ float3 crot2;
|
||||
__constant__ float3 ctransl;
|
||||
|
||||
struct TransformOp : unary_function<float3, float3>
|
||||
{
|
||||
__constant__ float3 crot0;
|
||||
__constant__ float3 crot1;
|
||||
__constant__ float3 crot2;
|
||||
__constant__ float3 ctransl;
|
||||
|
||||
struct TransformOp : unary_function<float3, float3>
|
||||
__device__ __forceinline__ float3 operator()(const float3& p) const
|
||||
{
|
||||
__device__ __forceinline__ float3 operator()(const float3& p) const
|
||||
{
|
||||
return make_float3(
|
||||
crot0.x * p.x + crot0.y * p.y + crot0.z * p.z + ctransl.x,
|
||||
crot1.x * p.x + crot1.y * p.y + crot1.z * p.z + ctransl.y,
|
||||
crot2.x * p.x + crot2.y * p.y + crot2.z * p.z + ctransl.z);
|
||||
}
|
||||
};
|
||||
|
||||
void call(const DevMem2D_<float3> src, const float* rot,
|
||||
const float* transl, DevMem2D_<float3> dst,
|
||||
cudaStream_t stream)
|
||||
{
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot0, rot, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot1, rot + 3, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot2, rot + 6, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(ctransl, transl, sizeof(float) * 3));
|
||||
transform(src, dst, TransformOp(), stream);
|
||||
return make_float3(
|
||||
crot0.x * p.x + crot0.y * p.y + crot0.z * p.z + ctransl.x,
|
||||
crot1.x * p.x + crot1.y * p.y + crot1.z * p.z + ctransl.y,
|
||||
crot2.x * p.x + crot2.y * p.y + crot2.z * p.z + ctransl.z);
|
||||
}
|
||||
} // namespace transform_points
|
||||
};
|
||||
|
||||
|
||||
namespace project_points
|
||||
void call(const DevMem2D_<float3> src, const float* rot,
|
||||
const float* transl, DevMem2D_<float3> dst,
|
||||
cudaStream_t stream)
|
||||
{
|
||||
__constant__ float3 crot0;
|
||||
__constant__ float3 crot1;
|
||||
__constant__ float3 crot2;
|
||||
__constant__ float3 ctransl;
|
||||
__constant__ float3 cproj0;
|
||||
__constant__ float3 cproj1;
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot0, rot, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot1, rot + 3, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot2, rot + 6, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(ctransl, transl, sizeof(float) * 3));
|
||||
OPENCV_DEVICE_NAMESPACE_ transform(src, dst, TransformOp(), stream);
|
||||
}
|
||||
} // namespace transform_points
|
||||
|
||||
struct ProjectOp : unary_function<float3, float3>
|
||||
{
|
||||
__device__ __forceinline__ float2 operator()(const float3& p) const
|
||||
{
|
||||
// Rotate and translate in 3D
|
||||
float3 t = make_float3(
|
||||
crot0.x * p.x + crot0.y * p.y + crot0.z * p.z + ctransl.x,
|
||||
crot1.x * p.x + crot1.y * p.y + crot1.z * p.z + ctransl.y,
|
||||
crot2.x * p.x + crot2.y * p.y + crot2.z * p.z + ctransl.z);
|
||||
// Project on 2D plane
|
||||
return make_float2(
|
||||
(cproj0.x * t.x + cproj0.y * t.y) / t.z + cproj0.z,
|
||||
(cproj1.x * t.x + cproj1.y * t.y) / t.z + cproj1.z);
|
||||
}
|
||||
};
|
||||
namespace project_points
|
||||
{
|
||||
__constant__ float3 crot0;
|
||||
__constant__ float3 crot1;
|
||||
__constant__ float3 crot2;
|
||||
__constant__ float3 ctransl;
|
||||
__constant__ float3 cproj0;
|
||||
__constant__ float3 cproj1;
|
||||
|
||||
void call(const DevMem2D_<float3> src, const float* rot,
|
||||
const float* transl, const float* proj, DevMem2D_<float2> dst,
|
||||
cudaStream_t stream)
|
||||
{
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot0, rot, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot1, rot + 3, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot2, rot + 6, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(ctransl, transl, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(cproj0, proj, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(cproj1, proj + 3, sizeof(float) * 3));
|
||||
transform(src, dst, ProjectOp(), stream);
|
||||
}
|
||||
} // namespace project_points
|
||||
|
||||
|
||||
namespace solve_pnp_ransac
|
||||
struct ProjectOp : unary_function<float3, float3>
|
||||
{
|
||||
__constant__ float3 crot_matrices[SOLVE_PNP_RANSAC_MAX_NUM_ITERS * 3];
|
||||
__constant__ float3 ctransl_vectors[SOLVE_PNP_RANSAC_MAX_NUM_ITERS];
|
||||
|
||||
int maxNumIters()
|
||||
__device__ __forceinline__ float2 operator()(const float3& p) const
|
||||
{
|
||||
return SOLVE_PNP_RANSAC_MAX_NUM_ITERS;
|
||||
// Rotate and translate in 3D
|
||||
float3 t = make_float3(
|
||||
crot0.x * p.x + crot0.y * p.y + crot0.z * p.z + ctransl.x,
|
||||
crot1.x * p.x + crot1.y * p.y + crot1.z * p.z + ctransl.y,
|
||||
crot2.x * p.x + crot2.y * p.y + crot2.z * p.z + ctransl.z);
|
||||
// Project on 2D plane
|
||||
return make_float2(
|
||||
(cproj0.x * t.x + cproj0.y * t.y) / t.z + cproj0.z,
|
||||
(cproj1.x * t.x + cproj1.y * t.y) / t.z + cproj1.z);
|
||||
}
|
||||
};
|
||||
|
||||
void call(const DevMem2D_<float3> src, const float* rot,
|
||||
const float* transl, const float* proj, DevMem2D_<float2> dst,
|
||||
cudaStream_t stream)
|
||||
{
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot0, rot, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot1, rot + 3, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot2, rot + 6, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(ctransl, transl, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(cproj0, proj, sizeof(float) * 3));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(cproj1, proj + 3, sizeof(float) * 3));
|
||||
OPENCV_DEVICE_NAMESPACE_ transform(src, dst, ProjectOp(), stream);
|
||||
}
|
||||
} // namespace project_points
|
||||
|
||||
namespace solve_pnp_ransac
|
||||
{
|
||||
__constant__ float3 crot_matrices[SOLVE_PNP_RANSAC_MAX_NUM_ITERS * 3];
|
||||
__constant__ float3 ctransl_vectors[SOLVE_PNP_RANSAC_MAX_NUM_ITERS];
|
||||
|
||||
int maxNumIters()
|
||||
{
|
||||
return SOLVE_PNP_RANSAC_MAX_NUM_ITERS;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ float sqr(float x)
|
||||
{
|
||||
return x * x;
|
||||
}
|
||||
|
||||
__global__ void computeHypothesisScoresKernel(
|
||||
const int num_points, const float3* object, const float2* image,
|
||||
const float dist_threshold, int* g_num_inliers)
|
||||
{
|
||||
const float3* const &rot_mat = crot_matrices + blockIdx.x * 3;
|
||||
const float3 &transl_vec = ctransl_vectors[blockIdx.x];
|
||||
int num_inliers = 0;
|
||||
|
||||
for (int i = threadIdx.x; i < num_points; i += blockDim.x)
|
||||
{
|
||||
float3 p = object[i];
|
||||
p = make_float3(
|
||||
rot_mat[0].x * p.x + rot_mat[0].y * p.y + rot_mat[0].z * p.z + transl_vec.x,
|
||||
rot_mat[1].x * p.x + rot_mat[1].y * p.y + rot_mat[1].z * p.z + transl_vec.y,
|
||||
rot_mat[2].x * p.x + rot_mat[2].y * p.y + rot_mat[2].z * p.z + transl_vec.z);
|
||||
p.x /= p.z;
|
||||
p.y /= p.z;
|
||||
float2 image_p = image[i];
|
||||
if (sqr(p.x - image_p.x) + sqr(p.y - image_p.y) < dist_threshold)
|
||||
++num_inliers;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ float sqr(float x)
|
||||
extern __shared__ float s_num_inliers[];
|
||||
s_num_inliers[threadIdx.x] = num_inliers;
|
||||
__syncthreads();
|
||||
|
||||
for (int step = blockDim.x / 2; step > 0; step >>= 1)
|
||||
{
|
||||
return x * x;
|
||||
}
|
||||
|
||||
__global__ void computeHypothesisScoresKernel(
|
||||
const int num_points, const float3* object, const float2* image,
|
||||
const float dist_threshold, int* g_num_inliers)
|
||||
{
|
||||
const float3* const &rot_mat = crot_matrices + blockIdx.x * 3;
|
||||
const float3 &transl_vec = ctransl_vectors[blockIdx.x];
|
||||
int num_inliers = 0;
|
||||
|
||||
for (int i = threadIdx.x; i < num_points; i += blockDim.x)
|
||||
{
|
||||
float3 p = object[i];
|
||||
p = make_float3(
|
||||
rot_mat[0].x * p.x + rot_mat[0].y * p.y + rot_mat[0].z * p.z + transl_vec.x,
|
||||
rot_mat[1].x * p.x + rot_mat[1].y * p.y + rot_mat[1].z * p.z + transl_vec.y,
|
||||
rot_mat[2].x * p.x + rot_mat[2].y * p.y + rot_mat[2].z * p.z + transl_vec.z);
|
||||
p.x /= p.z;
|
||||
p.y /= p.z;
|
||||
float2 image_p = image[i];
|
||||
if (sqr(p.x - image_p.x) + sqr(p.y - image_p.y) < dist_threshold)
|
||||
++num_inliers;
|
||||
}
|
||||
|
||||
extern __shared__ float s_num_inliers[];
|
||||
s_num_inliers[threadIdx.x] = num_inliers;
|
||||
if (threadIdx.x < step)
|
||||
s_num_inliers[threadIdx.x] += s_num_inliers[threadIdx.x + step];
|
||||
__syncthreads();
|
||||
|
||||
for (int step = blockDim.x / 2; step > 0; step >>= 1)
|
||||
{
|
||||
if (threadIdx.x < step)
|
||||
s_num_inliers[threadIdx.x] += s_num_inliers[threadIdx.x + step];
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
g_num_inliers[blockIdx.x] = s_num_inliers[0];
|
||||
}
|
||||
|
||||
void computeHypothesisScores(
|
||||
const int num_hypotheses, const int num_points, const float* rot_matrices,
|
||||
const float3* transl_vectors, const float3* object, const float2* image,
|
||||
const float dist_threshold, int* hypothesis_scores)
|
||||
{
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot_matrices, rot_matrices, num_hypotheses * 3 * sizeof(float3)));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(ctransl_vectors, transl_vectors, num_hypotheses * sizeof(float3)));
|
||||
if (threadIdx.x == 0)
|
||||
g_num_inliers[blockIdx.x] = s_num_inliers[0];
|
||||
}
|
||||
|
||||
dim3 threads(256);
|
||||
dim3 grid(num_hypotheses);
|
||||
int smem_size = threads.x * sizeof(float);
|
||||
void computeHypothesisScores(
|
||||
const int num_hypotheses, const int num_points, const float* rot_matrices,
|
||||
const float3* transl_vectors, const float3* object, const float2* image,
|
||||
const float dist_threshold, int* hypothesis_scores)
|
||||
{
|
||||
cudaSafeCall(cudaMemcpyToSymbol(crot_matrices, rot_matrices, num_hypotheses * 3 * sizeof(float3)));
|
||||
cudaSafeCall(cudaMemcpyToSymbol(ctransl_vectors, transl_vectors, num_hypotheses * sizeof(float3)));
|
||||
|
||||
computeHypothesisScoresKernel<<<grid, threads, smem_size>>>(
|
||||
num_points, object, image, dist_threshold, hypothesis_scores);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
dim3 threads(256);
|
||||
dim3 grid(num_hypotheses);
|
||||
int smem_size = threads.x * sizeof(float);
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
} // namespace solvepnp_ransac
|
||||
computeHypothesisScoresKernel<<<grid, threads, smem_size>>>(
|
||||
num_points, object, image, dist_threshold, hypothesis_scores);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
}} // namespace cv { namespace gpu
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
} // namespace solvepnp_ransac
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -44,339 +44,370 @@
|
||||
#include <algorithm>
|
||||
#include "internal_shared.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace cv { namespace gpu { namespace canny
|
||||
namespace canny {
|
||||
|
||||
__global__ void calcSobelRowPass(const PtrStepb src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
|
||||
{
|
||||
__global__ void calcSobelRowPass(const PtrStepb src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
|
||||
__shared__ int smem[16][18];
|
||||
|
||||
const int j = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int i = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < rows)
|
||||
{
|
||||
__shared__ int smem[16][18];
|
||||
|
||||
const int j = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int i = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < rows)
|
||||
smem[threadIdx.y][threadIdx.x + 1] = src.ptr(i)[j];
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
smem[threadIdx.y][threadIdx.x + 1] = src.ptr(i)[j];
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
smem[threadIdx.y][0] = src.ptr(i)[max(j - 1, 0)];
|
||||
smem[threadIdx.y][17] = src.ptr(i)[min(j + 16, cols - 1)];
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (j < cols)
|
||||
{
|
||||
dx_buf.ptr(i)[j] = -smem[threadIdx.y][threadIdx.x] + smem[threadIdx.y][threadIdx.x + 2];
|
||||
dy_buf.ptr(i)[j] = smem[threadIdx.y][threadIdx.x] + 2 * smem[threadIdx.y][threadIdx.x + 1] + smem[threadIdx.y][threadIdx.x + 2];
|
||||
}
|
||||
smem[threadIdx.y][0] = src.ptr(i)[::max(j - 1, 0)];
|
||||
smem[threadIdx.y][17] = src.ptr(i)[::min(j + 16, cols - 1)];
|
||||
}
|
||||
}
|
||||
|
||||
void calcSobelRowPass_gpu(PtrStepb src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
calcSobelRowPass<<<grid, block>>>(src, dx_buf, dy_buf, rows, cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
struct L1
|
||||
{
|
||||
static __device__ __forceinline__ float calc(int x, int y)
|
||||
{
|
||||
return abs(x) + abs(y);
|
||||
}
|
||||
};
|
||||
struct L2
|
||||
{
|
||||
static __device__ __forceinline__ float calc(int x, int y)
|
||||
{
|
||||
return sqrtf(x * x + y * y);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Norm> __global__ void calcMagnitude(const PtrStepi dx_buf, const PtrStepi dy_buf,
|
||||
PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
|
||||
{
|
||||
__shared__ int sdx[18][16];
|
||||
__shared__ int sdy[18][16];
|
||||
|
||||
const int j = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int i = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
__syncthreads();
|
||||
|
||||
if (j < cols)
|
||||
{
|
||||
sdx[threadIdx.y + 1][threadIdx.x] = dx_buf.ptr(i)[j];
|
||||
sdy[threadIdx.y + 1][threadIdx.x] = dy_buf.ptr(i)[j];
|
||||
if (threadIdx.y == 0)
|
||||
{
|
||||
sdx[0][threadIdx.x] = dx_buf.ptr(max(i - 1, 0))[j];
|
||||
sdx[17][threadIdx.x] = dx_buf.ptr(min(i + 16, rows - 1))[j];
|
||||
|
||||
sdy[0][threadIdx.x] = dy_buf.ptr(max(i - 1, 0))[j];
|
||||
sdy[17][threadIdx.x] = dy_buf.ptr(min(i + 16, rows - 1))[j];
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (i < rows)
|
||||
{
|
||||
int x = sdx[threadIdx.y][threadIdx.x] + 2 * sdx[threadIdx.y + 1][threadIdx.x] + sdx[threadIdx.y + 2][threadIdx.x];
|
||||
int y = -sdy[threadIdx.y][threadIdx.x] + sdy[threadIdx.y + 2][threadIdx.x];
|
||||
|
||||
dx.ptr(i)[j] = x;
|
||||
dy.ptr(i)[j] = y;
|
||||
|
||||
mag.ptr(i + 1)[j + 1] = Norm::calc(x, y);
|
||||
}
|
||||
dx_buf.ptr(i)[j] = -smem[threadIdx.y][threadIdx.x] + smem[threadIdx.y][threadIdx.x + 2];
|
||||
dy_buf.ptr(i)[j] = smem[threadIdx.y][threadIdx.x] + 2 * smem[threadIdx.y][threadIdx.x + 1] + smem[threadIdx.y][threadIdx.x + 2];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void calcMagnitude_gpu(PtrStepi dx_buf, PtrStepi dy_buf, PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad)
|
||||
void calcSobelRowPass_gpu(PtrStepb src, PtrStepi dx_buf, PtrStepi dy_buf, int rows, int cols)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
calcSobelRowPass<<<grid, block>>>(src, dx_buf, dy_buf, rows, cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
struct L1
|
||||
{
|
||||
static __device__ __forceinline__ float calc(int x, int y)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
if (L2Grad)
|
||||
calcMagnitude<L2><<<grid, block>>>(dx_buf, dy_buf, dx, dy, mag, rows, cols);
|
||||
else
|
||||
calcMagnitude<L1><<<grid, block>>>(dx_buf, dy_buf, dx, dy, mag, rows, cols);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
return ::abs(x) + ::abs(y);
|
||||
}
|
||||
|
||||
template <typename Norm> __global__ void calcMagnitude(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
|
||||
};
|
||||
struct L2
|
||||
{
|
||||
static __device__ __forceinline__ float calc(int x, int y)
|
||||
{
|
||||
const int j = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int i = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < rows && j < cols)
|
||||
mag.ptr(i + 1)[j + 1] = Norm::calc(dx.ptr(i)[j], dy.ptr(i)[j]);
|
||||
return ::sqrtf(x * x + y * y);
|
||||
}
|
||||
};
|
||||
|
||||
void calcMagnitude_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad)
|
||||
template <typename Norm> __global__ void calcMagnitude(const PtrStepi dx_buf, const PtrStepi dy_buf,
|
||||
PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
|
||||
{
|
||||
__shared__ int sdx[18][16];
|
||||
__shared__ int sdy[18][16];
|
||||
|
||||
const int j = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int i = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (j < cols)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
sdx[threadIdx.y + 1][threadIdx.x] = dx_buf.ptr(i)[j];
|
||||
sdy[threadIdx.y + 1][threadIdx.x] = dy_buf.ptr(i)[j];
|
||||
if (threadIdx.y == 0)
|
||||
{
|
||||
sdx[0][threadIdx.x] = dx_buf.ptr(::max(i - 1, 0))[j];
|
||||
sdx[17][threadIdx.x] = dx_buf.ptr(::min(i + 16, rows - 1))[j];
|
||||
|
||||
if (L2Grad)
|
||||
calcMagnitude<L2><<<grid, block>>>(dx, dy, mag, rows, cols);
|
||||
else
|
||||
calcMagnitude<L1><<<grid, block>>>(dx, dy, mag, rows, cols);
|
||||
sdy[0][threadIdx.x] = dy_buf.ptr(::max(i - 1, 0))[j];
|
||||
sdy[17][threadIdx.x] = dy_buf.ptr(::min(i + 16, rows - 1))[j];
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
if (i < rows)
|
||||
{
|
||||
int x = sdx[threadIdx.y][threadIdx.x] + 2 * sdx[threadIdx.y + 1][threadIdx.x] + sdx[threadIdx.y + 2][threadIdx.x];
|
||||
int y = -sdy[threadIdx.y][threadIdx.x] + sdy[threadIdx.y + 2][threadIdx.x];
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
dx.ptr(i)[j] = x;
|
||||
dy.ptr(i)[j] = y;
|
||||
|
||||
mag.ptr(i + 1)[j + 1] = Norm::calc(x, y);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void calcMagnitude_gpu(PtrStepi dx_buf, PtrStepi dy_buf, PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
if (L2Grad)
|
||||
calcMagnitude<L2><<<grid, block>>>(dx_buf, dy_buf, dx, dy, mag, rows, cols);
|
||||
else
|
||||
calcMagnitude<L1><<<grid, block>>>(dx_buf, dy_buf, dx, dy, mag, rows, cols);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
template <typename Norm> __global__ void calcMagnitude(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols)
|
||||
{
|
||||
const int j = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int i = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < rows && j < cols)
|
||||
mag.ptr(i + 1)[j + 1] = Norm::calc(dx.ptr(i)[j], dy.ptr(i)[j]);
|
||||
}
|
||||
|
||||
void calcMagnitude_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, int rows, int cols, bool L2Grad)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
if (L2Grad)
|
||||
calcMagnitude<L2><<<grid, block>>>(dx, dy, mag, rows, cols);
|
||||
else
|
||||
calcMagnitude<L1><<<grid, block>>>(dx, dy, mag, rows, cols);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
#define CANNY_SHIFT 15
|
||||
#define TG22 (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5)
|
||||
|
||||
__global__ void calcMap(const PtrStepi dx, const PtrStepi dy, const PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
|
||||
__global__ void calcMap(const PtrStepi dx, const PtrStepi dy, const PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
|
||||
{
|
||||
__shared__ float smem[18][18];
|
||||
|
||||
const int j = blockIdx.x * 16 + threadIdx.x;
|
||||
const int i = blockIdx.y * 16 + threadIdx.y;
|
||||
|
||||
const int tid = threadIdx.y * 16 + threadIdx.x;
|
||||
const int lx = tid % 18;
|
||||
const int ly = tid / 18;
|
||||
|
||||
if (ly < 14)
|
||||
smem[ly][lx] = mag.ptr(blockIdx.y * 16 + ly)[blockIdx.x * 16 + lx];
|
||||
|
||||
if (ly < 4 && blockIdx.y * 16 + ly + 14 <= rows && blockIdx.x * 16 + lx <= cols)
|
||||
smem[ly + 14][lx] = mag.ptr(blockIdx.y * 16 + ly + 14)[blockIdx.x * 16 + lx];
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (i < rows && j < cols)
|
||||
{
|
||||
__shared__ float smem[18][18];
|
||||
int x = dx.ptr(i)[j];
|
||||
int y = dy.ptr(i)[j];
|
||||
const int s = (x ^ y) < 0 ? -1 : 1;
|
||||
const float m = smem[threadIdx.y + 1][threadIdx.x + 1];
|
||||
|
||||
const int j = blockIdx.x * 16 + threadIdx.x;
|
||||
const int i = blockIdx.y * 16 + threadIdx.y;
|
||||
x = ::abs(x);
|
||||
y = ::abs(y);
|
||||
|
||||
const int tid = threadIdx.y * 16 + threadIdx.x;
|
||||
const int lx = tid % 18;
|
||||
const int ly = tid / 18;
|
||||
// 0 - the pixel can not belong to an edge
|
||||
// 1 - the pixel might belong to an edge
|
||||
// 2 - the pixel does belong to an edge
|
||||
int edge_type = 0;
|
||||
|
||||
if (ly < 14)
|
||||
smem[ly][lx] = mag.ptr(blockIdx.y * 16 + ly)[blockIdx.x * 16 + lx];
|
||||
|
||||
if (ly < 4 && blockIdx.y * 16 + ly + 14 <= rows && blockIdx.x * 16 + lx <= cols)
|
||||
smem[ly + 14][lx] = mag.ptr(blockIdx.y * 16 + ly + 14)[blockIdx.x * 16 + lx];
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (i < rows && j < cols)
|
||||
if (m > low_thresh)
|
||||
{
|
||||
int x = dx.ptr(i)[j];
|
||||
int y = dy.ptr(i)[j];
|
||||
const int s = (x ^ y) < 0 ? -1 : 1;
|
||||
const float m = smem[threadIdx.y + 1][threadIdx.x + 1];
|
||||
const int tg22x = x * TG22;
|
||||
const int tg67x = tg22x + ((x + x) << CANNY_SHIFT);
|
||||
|
||||
x = abs(x);
|
||||
y = abs(y);
|
||||
y <<= CANNY_SHIFT;
|
||||
|
||||
// 0 - the pixel can not belong to an edge
|
||||
// 1 - the pixel might belong to an edge
|
||||
// 2 - the pixel does belong to an edge
|
||||
int edge_type = 0;
|
||||
|
||||
if (m > low_thresh)
|
||||
if (y < tg22x)
|
||||
{
|
||||
const int tg22x = x * TG22;
|
||||
const int tg67x = tg22x + ((x + x) << CANNY_SHIFT);
|
||||
|
||||
y <<= CANNY_SHIFT;
|
||||
|
||||
if (y < tg22x)
|
||||
{
|
||||
if (m > smem[threadIdx.y + 1][threadIdx.x] && m >= smem[threadIdx.y + 1][threadIdx.x + 2])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
else if( y > tg67x )
|
||||
{
|
||||
if (m > smem[threadIdx.y][threadIdx.x + 1] && m >= smem[threadIdx.y + 2][threadIdx.x + 1])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m > smem[threadIdx.y][threadIdx.x + 1 - s] && m > smem[threadIdx.y + 2][threadIdx.x + 1 + s])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
if (m > smem[threadIdx.y + 1][threadIdx.x] && m >= smem[threadIdx.y + 1][threadIdx.x + 2])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
else if( y > tg67x )
|
||||
{
|
||||
if (m > smem[threadIdx.y][threadIdx.x + 1] && m >= smem[threadIdx.y + 2][threadIdx.x + 1])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (m > smem[threadIdx.y][threadIdx.x + 1 - s] && m > smem[threadIdx.y + 2][threadIdx.x + 1 + s])
|
||||
edge_type = 1 + (int)(m > high_thresh);
|
||||
}
|
||||
|
||||
map.ptr(i + 1)[j + 1] = edge_type;
|
||||
}
|
||||
|
||||
map.ptr(i + 1)[j + 1] = edge_type;
|
||||
}
|
||||
}
|
||||
|
||||
#undef CANNY_SHIFT
|
||||
#undef TG22
|
||||
|
||||
void calcMap_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
void calcMap_gpu(PtrStepi dx, PtrStepi dy, PtrStepf mag, PtrStepi map, int rows, int cols, float low_thresh, float high_thresh)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
calcMap<<<grid, block>>>(dx, dy, mag, map, rows, cols, low_thresh, high_thresh);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
calcMap<<<grid, block>>>(dx, dy, mag, map, rows, cols, low_thresh, high_thresh);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
__device__ unsigned int counter = 0;
|
||||
__device__ unsigned int counter = 0;
|
||||
|
||||
__global__ void edgesHysteresisLocal(PtrStepi map, ushort2* st, int rows, int cols)
|
||||
__global__ void edgesHysteresisLocal(PtrStepi map, ushort2* st, int rows, int cols)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 120
|
||||
|
||||
__shared__ int smem[18][18];
|
||||
|
||||
const int j = blockIdx.x * 16 + threadIdx.x;
|
||||
const int i = blockIdx.y * 16 + threadIdx.y;
|
||||
|
||||
const int tid = threadIdx.y * 16 + threadIdx.x;
|
||||
const int lx = tid % 18;
|
||||
const int ly = tid / 18;
|
||||
|
||||
if (ly < 14)
|
||||
smem[ly][lx] = map.ptr(blockIdx.y * 16 + ly)[blockIdx.x * 16 + lx];
|
||||
|
||||
if (ly < 4 && blockIdx.y * 16 + ly + 14 <= rows && blockIdx.x * 16 + lx <= cols)
|
||||
smem[ly + 14][lx] = map.ptr(blockIdx.y * 16 + ly + 14)[blockIdx.x * 16 + lx];
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (i < rows && j < cols)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 120
|
||||
int n;
|
||||
|
||||
__shared__ int smem[18][18];
|
||||
|
||||
const int j = blockIdx.x * 16 + threadIdx.x;
|
||||
const int i = blockIdx.y * 16 + threadIdx.y;
|
||||
|
||||
const int tid = threadIdx.y * 16 + threadIdx.x;
|
||||
const int lx = tid % 18;
|
||||
const int ly = tid / 18;
|
||||
|
||||
if (ly < 14)
|
||||
smem[ly][lx] = map.ptr(blockIdx.y * 16 + ly)[blockIdx.x * 16 + lx];
|
||||
|
||||
if (ly < 4 && blockIdx.y * 16 + ly + 14 <= rows && blockIdx.x * 16 + lx <= cols)
|
||||
smem[ly + 14][lx] = map.ptr(blockIdx.y * 16 + ly + 14)[blockIdx.x * 16 + lx];
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (i < rows && j < cols)
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 16; ++k)
|
||||
{
|
||||
int n;
|
||||
|
||||
#pragma unroll
|
||||
for (int k = 0; k < 16; ++k)
|
||||
{
|
||||
n = 0;
|
||||
|
||||
if (smem[threadIdx.y + 1][threadIdx.x + 1] == 1)
|
||||
{
|
||||
n += smem[threadIdx.y ][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 1] == 2;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 2] == 2;
|
||||
|
||||
n += smem[threadIdx.y + 1][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 2;
|
||||
|
||||
n += smem[threadIdx.y + 2][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 2;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 2;
|
||||
}
|
||||
|
||||
if (n > 0)
|
||||
smem[threadIdx.y + 1][threadIdx.x + 1] = 2;
|
||||
}
|
||||
|
||||
const int e = smem[threadIdx.y + 1][threadIdx.x + 1];
|
||||
|
||||
map.ptr(i + 1)[j + 1] = e;
|
||||
|
||||
n = 0;
|
||||
|
||||
if (e == 2)
|
||||
if (smem[threadIdx.y + 1][threadIdx.x + 1] == 1)
|
||||
{
|
||||
n += smem[threadIdx.y ][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 1] == 1;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 2] == 1;
|
||||
n += smem[threadIdx.y ][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 1] == 2;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 2] == 2;
|
||||
|
||||
n += smem[threadIdx.y + 1][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 1;
|
||||
n += smem[threadIdx.y + 1][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 2;
|
||||
|
||||
n += smem[threadIdx.y + 2][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 1;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 1;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x ] == 2;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 2;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 2;
|
||||
}
|
||||
|
||||
if (n > 0)
|
||||
{
|
||||
const unsigned int ind = atomicInc(&counter, (unsigned int)(-1));
|
||||
st[ind] = make_ushort2(j + 1, i + 1);
|
||||
}
|
||||
smem[threadIdx.y + 1][threadIdx.x + 1] = 2;
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
const int e = smem[threadIdx.y + 1][threadIdx.x + 1];
|
||||
|
||||
void edgesHysteresisLocal_gpu(PtrStepi map, ushort2* st1, int rows, int cols)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
map.ptr(i + 1)[j + 1] = e;
|
||||
|
||||
edgesHysteresisLocal<<<grid, block>>>(map, st1, rows, cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
n = 0;
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
__constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
|
||||
__constant__ int c_dy[8] = {-1, -1, -1, 0, 0, 1, 1, 1};
|
||||
|
||||
__global__ void edgesHysteresisGlobal(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols, int count)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 120
|
||||
|
||||
const int stack_size = 512;
|
||||
|
||||
__shared__ unsigned int s_counter;
|
||||
__shared__ unsigned int s_ind;
|
||||
__shared__ ushort2 s_st[stack_size];
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
s_counter = 0;
|
||||
__syncthreads();
|
||||
|
||||
int ind = blockIdx.y * gridDim.x + blockIdx.x;
|
||||
|
||||
if (ind < count)
|
||||
if (e == 2)
|
||||
{
|
||||
ushort2 pos = st1[ind];
|
||||
n += smem[threadIdx.y ][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 1] == 1;
|
||||
n += smem[threadIdx.y ][threadIdx.x + 2] == 1;
|
||||
|
||||
n += smem[threadIdx.y + 1][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y + 1][threadIdx.x + 2] == 1;
|
||||
|
||||
n += smem[threadIdx.y + 2][threadIdx.x ] == 1;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 1] == 1;
|
||||
n += smem[threadIdx.y + 2][threadIdx.x + 2] == 1;
|
||||
}
|
||||
|
||||
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
|
||||
if (n > 0)
|
||||
{
|
||||
const unsigned int ind = atomicInc(&counter, (unsigned int)(-1));
|
||||
st[ind] = make_ushort2(j + 1, i + 1);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
void edgesHysteresisLocal_gpu(PtrStepi map, ushort2* st1, int rows, int cols)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
edgesHysteresisLocal<<<grid, block>>>(map, st1, rows, cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
__constant__ int c_dx[8] = {-1, 0, 1, -1, 1, -1, 0, 1};
|
||||
__constant__ int c_dy[8] = {-1, -1, -1, 0, 0, 1, 1, 1};
|
||||
|
||||
__global__ void edgesHysteresisGlobal(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols, int count)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 120
|
||||
|
||||
const int stack_size = 512;
|
||||
|
||||
__shared__ unsigned int s_counter;
|
||||
__shared__ unsigned int s_ind;
|
||||
__shared__ ushort2 s_st[stack_size];
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
s_counter = 0;
|
||||
__syncthreads();
|
||||
|
||||
int ind = blockIdx.y * gridDim.x + blockIdx.x;
|
||||
|
||||
if (ind < count)
|
||||
{
|
||||
ushort2 pos = st1[ind];
|
||||
|
||||
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
|
||||
{
|
||||
if (threadIdx.x < 8)
|
||||
{
|
||||
if (threadIdx.x < 8)
|
||||
pos.x += c_dx[threadIdx.x];
|
||||
pos.y += c_dy[threadIdx.x];
|
||||
|
||||
if (map.ptr(pos.y)[pos.x] == 1)
|
||||
{
|
||||
pos.x += c_dx[threadIdx.x];
|
||||
pos.y += c_dy[threadIdx.x];
|
||||
map.ptr(pos.y)[pos.x] = 2;
|
||||
|
||||
ind = atomicInc(&s_counter, (unsigned int)(-1));
|
||||
|
||||
s_st[ind] = pos;
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
while (s_counter > 0 && s_counter <= stack_size - blockDim.x)
|
||||
{
|
||||
const int subTaskIdx = threadIdx.x >> 3;
|
||||
const int portion = ::min(s_counter, blockDim.x >> 3);
|
||||
|
||||
pos.x = pos.y = 0;
|
||||
|
||||
if (subTaskIdx < portion)
|
||||
pos = s_st[s_counter - 1 - subTaskIdx];
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
s_counter -= portion;
|
||||
__syncthreads();
|
||||
|
||||
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
|
||||
{
|
||||
pos.x += c_dx[threadIdx.x & 7];
|
||||
pos.y += c_dy[threadIdx.x & 7];
|
||||
|
||||
if (map.ptr(pos.y)[pos.x] == 1)
|
||||
{
|
||||
@@ -388,103 +419,75 @@ namespace cv { namespace gpu { namespace canny
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
while (s_counter > 0 && s_counter <= stack_size - blockDim.x)
|
||||
if (s_counter > 0)
|
||||
{
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
const int subTaskIdx = threadIdx.x >> 3;
|
||||
const int portion = min(s_counter, blockDim.x >> 3);
|
||||
|
||||
pos.x = pos.y = 0;
|
||||
|
||||
if (subTaskIdx < portion)
|
||||
pos = s_st[s_counter - 1 - subTaskIdx];
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
s_counter -= portion;
|
||||
__syncthreads();
|
||||
|
||||
if (pos.x > 0 && pos.x <= cols && pos.y > 0 && pos.y <= rows)
|
||||
{
|
||||
pos.x += c_dx[threadIdx.x & 7];
|
||||
pos.y += c_dy[threadIdx.x & 7];
|
||||
|
||||
if (map.ptr(pos.y)[pos.x] == 1)
|
||||
{
|
||||
map.ptr(pos.y)[pos.x] = 2;
|
||||
|
||||
ind = atomicInc(&s_counter, (unsigned int)(-1));
|
||||
|
||||
s_st[ind] = pos;
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
ind = atomicAdd(&counter, s_counter);
|
||||
s_ind = ind - s_counter;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (s_counter > 0)
|
||||
ind = s_ind;
|
||||
|
||||
for (int i = threadIdx.x; i < s_counter; i += blockDim.x)
|
||||
{
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
ind = atomicAdd(&counter, s_counter);
|
||||
s_ind = ind - s_counter;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
ind = s_ind;
|
||||
|
||||
for (int i = threadIdx.x; i < s_counter; i += blockDim.x)
|
||||
{
|
||||
st2[ind + i] = s_st[i];
|
||||
}
|
||||
st2[ind + i] = s_st[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
void edgesHysteresisGlobal_gpu(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols)
|
||||
#endif
|
||||
}
|
||||
|
||||
void edgesHysteresisGlobal_gpu(PtrStepi map, ushort2* st1, ushort2* st2, int rows, int cols)
|
||||
{
|
||||
void* counter_ptr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, counter) );
|
||||
|
||||
unsigned int count;
|
||||
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
while (count > 0)
|
||||
{
|
||||
void* counter_ptr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counter_ptr, "cv::gpu::canny::counter") );
|
||||
|
||||
unsigned int count;
|
||||
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(unsigned int)) );
|
||||
|
||||
while (count > 0)
|
||||
{
|
||||
cudaSafeCall( cudaMemset(counter_ptr, 0, sizeof(unsigned int)) );
|
||||
|
||||
dim3 block(128, 1, 1);
|
||||
dim3 grid(min(count, 65535u), divUp(count, 65535), 1);
|
||||
edgesHysteresisGlobal<<<grid, block>>>(map, st1, st2, rows, cols, count);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
|
||||
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
std::swap(st1, st2);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void getEdges(PtrStepi map, PtrStepb dst, int rows, int cols)
|
||||
{
|
||||
const int j = blockIdx.x * 16 + threadIdx.x;
|
||||
const int i = blockIdx.y * 16 + threadIdx.y;
|
||||
|
||||
if (i < rows && j < cols)
|
||||
dst.ptr(i)[j] = (uchar)(-(map.ptr(i + 1)[j + 1] >> 1));
|
||||
}
|
||||
|
||||
void getEdges_gpu(PtrStepi map, PtrStepb dst, int rows, int cols)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
getEdges<<<grid, block>>>(map, dst, rows, cols);
|
||||
dim3 block(128, 1, 1);
|
||||
dim3 grid(min(count, 65535u), divUp(count, 65535), 1);
|
||||
edgesHysteresisGlobal<<<grid, block>>>(map, st1, st2, rows, cols, count);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
|
||||
cudaSafeCall( cudaMemcpy(&count, counter_ptr, sizeof(unsigned int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
std::swap(st1, st2);
|
||||
}
|
||||
}}}
|
||||
}
|
||||
|
||||
__global__ void getEdges(PtrStepi map, PtrStepb dst, int rows, int cols)
|
||||
{
|
||||
const int j = blockIdx.x * 16 + threadIdx.x;
|
||||
const int i = blockIdx.y * 16 + threadIdx.y;
|
||||
|
||||
if (i < rows && j < cols)
|
||||
dst.ptr(i)[j] = (uchar)(-(map.ptr(i + 1)[j + 1] >> 1));
|
||||
}
|
||||
|
||||
void getEdges_gpu(PtrStepi map, PtrStepb dst, int rows, int cols)
|
||||
{
|
||||
dim3 block(16, 16, 1);
|
||||
dim3 grid(divUp(cols, block.x), divUp(rows, block.y), 1);
|
||||
|
||||
getEdges<<<grid, block>>>(map, dst, rows, cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
} // namespace canny
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -44,336 +44,337 @@
|
||||
#include "opencv2/gpu/device/transform.hpp"
|
||||
#include "opencv2/gpu/device/color.hpp"
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgra_to_rgba_traits<uchar>::functor_type)
|
||||
{
|
||||
template <> struct TransformFunctorTraits<bgra_to_rgba_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<bgra_to_rgba_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_x = 8 };
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
enum { smart_block_dim_x = 8 };
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<bgra_to_bgr555_traits::functor_type> : DefaultTransformFunctorTraits<bgra_to_bgr555_traits::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<rgba_to_bgr555_traits::functor_type> : DefaultTransformFunctorTraits<rgba_to_bgr555_traits::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<bgra_to_bgr565_traits::functor_type> : DefaultTransformFunctorTraits<bgra_to_bgr565_traits::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<rgba_to_bgr565_traits::functor_type> : DefaultTransformFunctorTraits<rgba_to_bgr565_traits::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgra_to_bgr555_traits::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(rgba_to_bgr555_traits::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgra_to_bgr565_traits::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(rgba_to_bgr565_traits::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<bgr555_to_bgra_traits::functor_type> : DefaultTransformFunctorTraits<bgr555_to_bgra_traits::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<bgr555_to_rgba_traits::functor_type> : DefaultTransformFunctorTraits<bgr555_to_rgba_traits::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<bgr565_to_bgra_traits::functor_type> : DefaultTransformFunctorTraits<bgr565_to_bgra_traits::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<bgr565_to_rgba_traits::functor_type> : DefaultTransformFunctorTraits<bgr565_to_rgba_traits::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgr555_to_bgra_traits::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgr555_to_rgba_traits::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgr565_to_bgra_traits::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgr565_to_rgba_traits::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<gray_to_bgra_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<gray_to_bgra_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(gray_to_bgra_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<gray_to_bgr555_traits::functor_type> : DefaultTransformFunctorTraits<gray_to_bgr555_traits::functor_type>
|
||||
{
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<gray_to_bgr565_traits::functor_type> : DefaultTransformFunctorTraits<gray_to_bgr565_traits::functor_type>
|
||||
{
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(gray_to_bgr555_traits::functor_type)
|
||||
{
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(gray_to_bgr565_traits::functor_type)
|
||||
{
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<bgra_to_yuv4_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<bgra_to_yuv4_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<rgba_to_yuv4_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<rgba_to_yuv4_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgra_to_yuv4_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(rgba_to_yuv4_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<yuv4_to_bgra_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<yuv4_to_bgra_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<yuv4_to_rgba_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<yuv4_to_rgba_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(yuv4_to_bgra_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(yuv4_to_rgba_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<bgra_to_YCrCb4_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<bgra_to_YCrCb4_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<rgba_to_YCrCb4_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<rgba_to_YCrCb4_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgra_to_YCrCb4_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(rgba_to_YCrCb4_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<YCrCb4_to_bgra_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<YCrCb4_to_bgra_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<YCrCb4_to_rgba_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<YCrCb4_to_rgba_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(YCrCb4_to_bgra_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(YCrCb4_to_rgba_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<bgra_to_xyz4_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<bgra_to_xyz4_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<rgba_to_xyz4_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<rgba_to_xyz4_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgra_to_xyz4_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(rgba_to_xyz4_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<xyz4_to_bgra_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<xyz4_to_bgra_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<xyz4_to_rgba_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<xyz4_to_rgba_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(xyz4_to_bgra_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(xyz4_to_rgba_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<bgra_to_hsv4_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<bgra_to_hsv4_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<rgba_to_hsv4_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<rgba_to_hsv4_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgra_to_hsv4_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(rgba_to_hsv4_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<hsv4_to_bgra_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<hsv4_to_bgra_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<hsv4_to_rgba_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<hsv4_to_rgba_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(hsv4_to_bgra_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(hsv4_to_rgba_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<bgra_to_hls4_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<bgra_to_hls4_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<rgba_to_hls4_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<rgba_to_hls4_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(bgra_to_hls4_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(rgba_to_hls4_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <> struct TransformFunctorTraits<hls4_to_bgra_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<hls4_to_bgra_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <> struct TransformFunctorTraits<hls4_to_rgba_traits<uchar>::functor_type> : DefaultTransformFunctorTraits<hls4_to_rgba_traits<uchar>::functor_type>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(hls4_to_bgra_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
DEFINE_TRANSFORM_FUNCTOR_TRAITS(hls4_to_rgba_traits<uchar>::functor_type)
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
#define OPENCV_GPU_IMPLEMENT_CVTCOLOR(name, traits) \
|
||||
void name(const DevMem2Db& src, const DevMem2Db& dst, cudaStream_t stream) \
|
||||
{ \
|
||||
traits::functor_type functor = traits::create_functor(); \
|
||||
typedef typename traits::functor_type::argument_type src_t; \
|
||||
typedef typename traits::functor_type::result_type dst_t; \
|
||||
transform((DevMem2D_<src_t>)src, (DevMem2D_<dst_t>)dst, functor, stream); \
|
||||
}
|
||||
#define OPENCV_GPU_IMPLEMENT_CVTCOLOR(name, traits) \
|
||||
void name(const DevMem2Db& src, const DevMem2Db& dst, cudaStream_t stream) \
|
||||
{ \
|
||||
traits::functor_type functor = traits::create_functor(); \
|
||||
typedef typename traits::functor_type::argument_type src_t; \
|
||||
typedef typename traits::functor_type::result_type dst_t; \
|
||||
OPENCV_DEVICE_NAMESPACE_ transform((DevMem2D_<src_t>)src, (DevMem2D_<dst_t>)dst, functor, stream); \
|
||||
}
|
||||
|
||||
#define OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(name) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name, name ## _traits)
|
||||
#define OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(name) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name, name ## _traits)
|
||||
|
||||
#define OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(name) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _8u, name ## _traits<uchar>) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _16u, name ## _traits<ushort>) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _32f, name ## _traits<float>)
|
||||
#define OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(name) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _8u, name ## _traits<uchar>) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _16u, name ## _traits<ushort>) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _32f, name ## _traits<float>)
|
||||
|
||||
#define OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(name) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _8u, name ## _traits<uchar>) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _32f, name ## _traits<float>) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _full_8u, name ## _full_traits<uchar>) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _full_32f, name ## _full_traits<float>)
|
||||
#define OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(name) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _8u, name ## _traits<uchar>) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _32f, name ## _traits<float>) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _full_8u, name ## _full_traits<uchar>) \
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR(name ## _full_32f, name ## _full_traits<float>)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_rgba)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr_to_bgr555)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr_to_bgr565)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(rgb_to_bgr555)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(rgb_to_bgr565)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgra_to_bgr555)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgra_to_bgr565)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(rgba_to_bgr555)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(rgba_to_bgr565)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr_to_bgr555)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr_to_bgr565)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(rgb_to_bgr555)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(rgb_to_bgr565)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgra_to_bgr555)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgra_to_bgr565)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(rgba_to_bgr555)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(rgba_to_bgr565)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr555_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr565_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr555_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr565_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr555_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr565_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr555_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr565_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr555_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr565_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr555_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr565_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr555_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr565_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr555_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr565_to_bgra)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(gray_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(gray_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(gray_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(gray_to_bgra)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(gray_to_bgr555)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(gray_to_bgr565)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(gray_to_bgr555)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(gray_to_bgr565)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr555_to_gray)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr565_to_gray)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr555_to_gray)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE(bgr565_to_gray)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_gray)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_gray)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_gray)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_gray)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_gray)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_gray)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_gray)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_gray)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_yuv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_yuv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_yuv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_yuv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_yuv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_yuv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_yuv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_yuv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_yuv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_yuv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_yuv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_yuv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_yuv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_yuv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_yuv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_yuv4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv4_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv4_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv4_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv4_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv4_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv4_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv4_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(yuv4_to_bgra)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_YCrCb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_YCrCb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_YCrCb4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_YCrCb4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_YCrCb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_YCrCb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_YCrCb4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_YCrCb4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_YCrCb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_YCrCb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_YCrCb4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_YCrCb4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_YCrCb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_YCrCb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_YCrCb4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_YCrCb4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb4_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb4_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb4_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb4_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb4_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb4_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb4_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(YCrCb4_to_bgra)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_xyz)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_xyz)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_xyz4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_xyz4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_xyz)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_xyz)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_xyz4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_xyz4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_xyz)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_xyz)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgb_to_xyz4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(rgba_to_xyz4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_xyz)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_xyz)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgr_to_xyz4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(bgra_to_xyz4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz4_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz4_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz4_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz4_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz4_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz4_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz4_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL(xyz4_to_bgra)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgb_to_hsv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgba_to_hsv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgb_to_hsv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgba_to_hsv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgr_to_hsv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgra_to_hsv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgr_to_hsv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgra_to_hsv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgb_to_hsv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgba_to_hsv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgb_to_hsv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgba_to_hsv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgr_to_hsv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgra_to_hsv)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgr_to_hsv4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgra_to_hsv4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv4_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv4_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv4_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv4_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv4_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv4_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv4_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hsv4_to_bgra)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgb_to_hls)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgba_to_hls)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgb_to_hls4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgba_to_hls4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgr_to_hls)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgra_to_hls)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgr_to_hls4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgra_to_hls4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgb_to_hls)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgba_to_hls)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgb_to_hls4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(rgba_to_hls4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgr_to_hls)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgra_to_hls)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgr_to_hls4)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(bgra_to_hls4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls4_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls4_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls4_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls4_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls4_to_rgb)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls4_to_rgba)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls_to_bgra)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls4_to_bgr)
|
||||
OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F(hls4_to_bgra)
|
||||
|
||||
#undef OPENCV_GPU_IMPLEMENT_CVTCOLOR
|
||||
#undef OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE
|
||||
#undef OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL
|
||||
#undef OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F
|
||||
}}}
|
||||
#undef OPENCV_GPU_IMPLEMENT_CVTCOLOR
|
||||
#undef OPENCV_GPU_IMPLEMENT_CVTCOLOR_ONE
|
||||
#undef OPENCV_GPU_IMPLEMENT_CVTCOLOR_ALL
|
||||
#undef OPENCV_GPU_IMPLEMENT_CVTCOLOR_8U32F
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -47,8 +47,7 @@
|
||||
#include "opencv2/gpu/device/limits.hpp"
|
||||
#include "opencv2/gpu/device/border_interpolate.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
#define MAX_KERNEL_SIZE 16
|
||||
#define BLOCK_DIM_X 16
|
||||
@@ -56,195 +55,195 @@ using namespace cv::gpu::device;
|
||||
#define RESULT_STEPS 8
|
||||
#define HALO_STEPS 1
|
||||
|
||||
namespace filter_column
|
||||
namespace column_filter {
|
||||
|
||||
__constant__ float c_kernel[MAX_KERNEL_SIZE];
|
||||
|
||||
void loadKernel(const float kernel[], int ksize)
|
||||
{
|
||||
__constant__ float c_kernel[MAX_KERNEL_SIZE];
|
||||
cudaSafeCall( cudaMemcpyToSymbol(c_kernel, kernel, ksize * sizeof(float)) );
|
||||
}
|
||||
|
||||
void loadKernel(const float kernel[], int ksize)
|
||||
template <int KERNEL_SIZE, typename T, typename D, typename B>
|
||||
__global__ void linearColumnFilter(const DevMem2D_<T> src, PtrStep<D> dst, int anchor, const B b)
|
||||
{
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_t;
|
||||
|
||||
__shared__ T smem[BLOCK_DIM_X][(RESULT_STEPS + 2 * HALO_STEPS) * BLOCK_DIM_Y + 1];
|
||||
|
||||
//Offset to the upper halo edge
|
||||
const int x = blockIdx.x * BLOCK_DIM_X + threadIdx.x;
|
||||
const int y = (blockIdx.y * RESULT_STEPS - HALO_STEPS) * BLOCK_DIM_Y + threadIdx.y;
|
||||
|
||||
if (x < src.cols)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(c_kernel, kernel, ksize * sizeof(float)) );
|
||||
}
|
||||
const T* src_col = src.ptr() + x;
|
||||
|
||||
template <int KERNEL_SIZE, typename T, typename D, typename B>
|
||||
__global__ void linearColumnFilter(const DevMem2D_<T> src, PtrStep<D> dst, int anchor, const B b)
|
||||
{
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_t;
|
||||
//Main data
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; ++i)
|
||||
smem[threadIdx.x][threadIdx.y + i * BLOCK_DIM_Y] = b.at_high(y + i * BLOCK_DIM_Y, src_col, src.step);
|
||||
|
||||
__shared__ T smem[BLOCK_DIM_X][(RESULT_STEPS + 2 * HALO_STEPS) * BLOCK_DIM_Y + 1];
|
||||
//Upper halo
|
||||
#pragma unroll
|
||||
for(int i = 0; i < HALO_STEPS; ++i)
|
||||
smem[threadIdx.x][threadIdx.y + i * BLOCK_DIM_Y] = b.at_low(y + i * BLOCK_DIM_Y, src_col, src.step);
|
||||
|
||||
//Offset to the upper halo edge
|
||||
const int x = blockIdx.x * BLOCK_DIM_X + threadIdx.x;
|
||||
const int y = (blockIdx.y * RESULT_STEPS - HALO_STEPS) * BLOCK_DIM_Y + threadIdx.y;
|
||||
//Lower halo
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS + RESULT_STEPS; i < HALO_STEPS + RESULT_STEPS + HALO_STEPS; ++i)
|
||||
smem[threadIdx.x][threadIdx.y + i * BLOCK_DIM_Y]= b.at_high(y + i * BLOCK_DIM_Y, src_col, src.step);
|
||||
|
||||
if (x < src.cols)
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; ++i)
|
||||
{
|
||||
const T* src_col = src.ptr() + x;
|
||||
|
||||
//Main data
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; ++i)
|
||||
smem[threadIdx.x][threadIdx.y + i * BLOCK_DIM_Y] = b.at_high(y + i * BLOCK_DIM_Y, src_col, src.step);
|
||||
|
||||
//Upper halo
|
||||
#pragma unroll
|
||||
for(int i = 0; i < HALO_STEPS; ++i)
|
||||
smem[threadIdx.x][threadIdx.y + i * BLOCK_DIM_Y] = b.at_low(y + i * BLOCK_DIM_Y, src_col, src.step);
|
||||
|
||||
//Lower halo
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS + RESULT_STEPS; i < HALO_STEPS + RESULT_STEPS + HALO_STEPS; ++i)
|
||||
smem[threadIdx.x][threadIdx.y + i * BLOCK_DIM_Y]= b.at_high(y + i * BLOCK_DIM_Y, src_col, src.step);
|
||||
|
||||
__syncthreads();
|
||||
sum_t sum = VecTraits<sum_t>::all(0);
|
||||
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; ++i)
|
||||
{
|
||||
sum_t sum = VecTraits<sum_t>::all(0);
|
||||
for(int j = 0; j < KERNEL_SIZE; ++j)
|
||||
sum = sum + smem[threadIdx.x][threadIdx.y + i * BLOCK_DIM_Y + j - anchor] * c_kernel[j];
|
||||
|
||||
#pragma unroll
|
||||
for(int j = 0; j < KERNEL_SIZE; ++j)
|
||||
sum = sum + smem[threadIdx.x][threadIdx.y + i * BLOCK_DIM_Y + j - anchor] * c_kernel[j];
|
||||
int dstY = y + i * BLOCK_DIM_Y;
|
||||
|
||||
int dstY = y + i * BLOCK_DIM_Y;
|
||||
|
||||
if (dstY < src.rows)
|
||||
dst.ptr(dstY)[x] = saturate_cast<D>(sum);
|
||||
}
|
||||
if (dstY < src.rows)
|
||||
dst.ptr(dstY)[x] = saturate_cast<D>(sum);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace filters
|
||||
template <int ksize, typename T, typename D, template<typename> class B>
|
||||
void linearColumnFilter_caller(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, int anchor, cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(BLOCK_DIM_X, BLOCK_DIM_Y);
|
||||
const dim3 grid(divUp(src.cols, BLOCK_DIM_X), divUp(src.rows, RESULT_STEPS * BLOCK_DIM_Y));
|
||||
|
||||
B<T> b(src.rows);
|
||||
|
||||
linearColumnFilter<ksize, T, D><<<grid, block, 0, stream>>>(src, dst, anchor, b);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <typename T, typename D>
|
||||
void linearColumnFilter_gpu(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream)
|
||||
{
|
||||
template <int ksize, typename T, typename D, template<typename> class B>
|
||||
void linearColumnFilter_caller(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, int anchor, cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(BLOCK_DIM_X, BLOCK_DIM_Y);
|
||||
const dim3 grid(divUp(src.cols, BLOCK_DIM_X), divUp(src.rows, RESULT_STEPS * BLOCK_DIM_Y));
|
||||
|
||||
B<T> b(src.rows);
|
||||
|
||||
filter_column::linearColumnFilter<ksize, T, D><<<grid, block, 0, stream>>>(src, dst, anchor, b);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <typename T, typename D>
|
||||
void linearColumnFilter_gpu(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream)
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, int anchor, cudaStream_t stream);
|
||||
static const caller_t callers[5][17] =
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, int anchor, cudaStream_t stream);
|
||||
static const caller_t callers[5][17] =
|
||||
{
|
||||
{
|
||||
0,
|
||||
linearColumnFilter_caller<1 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<2 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<3 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<4 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<5 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<6 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<7 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<8 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<9 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<10, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<11, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<12, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<13, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<14, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<15, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<16, T, D, BrdColReflect101>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearColumnFilter_caller<1 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<2 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<3 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<4 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<5 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<6 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<7 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<8 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<9 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<10, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<11, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<12, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<13, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<14, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<15, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<16, T, D, BrdColReplicate>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearColumnFilter_caller<1 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<2 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<3 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<4 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<5 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<6 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<7 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<8 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<9 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<10, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<11, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<12, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<13, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<14, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<15, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<16, T, D, BrdColConstant>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearColumnFilter_caller<1 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<2 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<3 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<4 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<5 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<6 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<7 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<8 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<9 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<10, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<11, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<12, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<13, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<14, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<15, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<16, T, D, BrdColReflect>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearColumnFilter_caller<1 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<2 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<3 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<4 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<5 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<6 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<7 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<8 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<9 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<10, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<11, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<12, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<13, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<14, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<15, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<16, T, D, BrdColWrap>,
|
||||
}
|
||||
};
|
||||
|
||||
filter_column::loadKernel(kernel, ksize);
|
||||
0,
|
||||
linearColumnFilter_caller<1 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<2 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<3 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<4 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<5 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<6 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<7 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<8 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<9 , T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<10, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<11, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<12, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<13, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<14, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<15, T, D, BrdColReflect101>,
|
||||
linearColumnFilter_caller<16, T, D, BrdColReflect101>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearColumnFilter_caller<1 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<2 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<3 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<4 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<5 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<6 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<7 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<8 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<9 , T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<10, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<11, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<12, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<13, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<14, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<15, T, D, BrdColReplicate>,
|
||||
linearColumnFilter_caller<16, T, D, BrdColReplicate>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearColumnFilter_caller<1 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<2 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<3 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<4 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<5 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<6 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<7 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<8 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<9 , T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<10, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<11, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<12, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<13, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<14, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<15, T, D, BrdColConstant>,
|
||||
linearColumnFilter_caller<16, T, D, BrdColConstant>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearColumnFilter_caller<1 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<2 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<3 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<4 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<5 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<6 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<7 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<8 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<9 , T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<10, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<11, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<12, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<13, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<14, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<15, T, D, BrdColReflect>,
|
||||
linearColumnFilter_caller<16, T, D, BrdColReflect>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearColumnFilter_caller<1 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<2 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<3 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<4 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<5 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<6 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<7 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<8 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<9 , T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<10, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<11, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<12, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<13, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<14, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<15, T, D, BrdColWrap>,
|
||||
linearColumnFilter_caller<16, T, D, BrdColWrap>,
|
||||
}
|
||||
};
|
||||
|
||||
loadKernel(kernel, ksize);
|
||||
|
||||
callers[brd_type][ksize]((DevMem2D_<T>)src, (DevMem2D_<D>)dst, anchor, stream);
|
||||
}
|
||||
callers[brd_type][ksize]((DevMem2D_<T>)src, (DevMem2D_<D>)dst, anchor, stream);
|
||||
}
|
||||
|
||||
template void linearColumnFilter_gpu<float , uchar >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float4, uchar4>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
//template void linearColumnFilter_gpu<float , short >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
//template void linearColumnFilter_gpu<float2, short2>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float3, short3>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float , int >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float , float >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
}}}
|
||||
template void linearColumnFilter_gpu<float , uchar >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float4, uchar4>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
//template void linearColumnFilter_gpu<float , short >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
//template void linearColumnFilter_gpu<float2, short2>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float3, short3>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float , int >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearColumnFilter_gpu<float , float >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
|
||||
} // namespace column_filter
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -43,85 +43,87 @@
|
||||
#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/device/border_interpolate.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace cv { namespace gpu { namespace imgproc
|
||||
namespace copy_make_border {
|
||||
|
||||
template <typename Ptr2D, typename T> __global__ void copyMakeBorder(const Ptr2D src, DevMem2D_<T> dst, int top, int left)
|
||||
{
|
||||
template <typename Ptr2D, typename T> __global__ void copyMakeBorder(const Ptr2D src, DevMem2D_<T> dst, int top, int left)
|
||||
{
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
|
||||
if (x < dst.cols && y < dst.rows)
|
||||
dst.ptr(y)[x] = src(y - top, x - left);
|
||||
if (x < dst.cols && y < dst.rows)
|
||||
dst.ptr(y)[x] = src(y - top, x - left);
|
||||
}
|
||||
|
||||
template <template <typename> class B, typename T> struct CopyMakeBorderDispatcher
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2D_<T>& dst, int top, int left,
|
||||
const typename VecTraits<T>::elem_type* borderValue, cudaStream_t stream)
|
||||
{
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
|
||||
B<T> brd(src.rows, src.cols, VecTraits<T>::make(borderValue));
|
||||
BorderReader< PtrStep<T>, B<T> > brdSrc(src, brd);
|
||||
|
||||
copyMakeBorder<<<grid, block, 0, stream>>>(brdSrc, dst, top, left);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
|
||||
template <template <typename> class B, typename T> struct CopyMakeBorderDispatcher
|
||||
template <typename T, int cn> void copyMakeBorder_gpu(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode,
|
||||
const T* borderValue, cudaStream_t stream)
|
||||
{
|
||||
typedef typename TypeVec<T, cn>::vec_type vec_type;
|
||||
|
||||
typedef void (*caller_t)(const DevMem2D_<vec_type>& src, const DevMem2D_<vec_type>& dst, int top, int left, const T* borderValue, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[5] =
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2D_<T>& dst, int top, int left,
|
||||
const typename VecTraits<T>::elem_type* borderValue, cudaStream_t stream)
|
||||
{
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
|
||||
B<T> brd(src.rows, src.cols, VecTraits<T>::make(borderValue));
|
||||
BorderReader< PtrStep<T>, B<T> > brdSrc(src, brd);
|
||||
|
||||
copyMakeBorder<<<grid, block, 0, stream>>>(brdSrc, dst, top, left);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
CopyMakeBorderDispatcher<BrdReflect101, vec_type>::call,
|
||||
CopyMakeBorderDispatcher<BrdReplicate, vec_type>::call,
|
||||
CopyMakeBorderDispatcher<BrdConstant, vec_type>::call,
|
||||
CopyMakeBorderDispatcher<BrdReflect, vec_type>::call,
|
||||
CopyMakeBorderDispatcher<BrdWrap, vec_type>::call
|
||||
};
|
||||
|
||||
template <typename T, int cn> void copyMakeBorder_gpu(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode,
|
||||
const T* borderValue, cudaStream_t stream)
|
||||
{
|
||||
typedef typename TypeVec<T, cn>::vec_type vec_type;
|
||||
callers[borderMode](DevMem2D_<vec_type>(src), DevMem2D_<vec_type>(dst), top, left, borderValue, stream);
|
||||
}
|
||||
|
||||
typedef void (*caller_t)(const DevMem2D_<vec_type>& src, const DevMem2D_<vec_type>& dst, int top, int left, const T* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<uchar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const uchar* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<uchar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const uchar* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<uchar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const uchar* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<uchar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const uchar* borderValue, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[5] =
|
||||
{
|
||||
CopyMakeBorderDispatcher<BrdReflect101, vec_type>::call,
|
||||
CopyMakeBorderDispatcher<BrdReplicate, vec_type>::call,
|
||||
CopyMakeBorderDispatcher<BrdConstant, vec_type>::call,
|
||||
CopyMakeBorderDispatcher<BrdReflect, vec_type>::call,
|
||||
CopyMakeBorderDispatcher<BrdWrap, vec_type>::call
|
||||
};
|
||||
//template void copyMakeBorder_gpu<schar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const schar* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<schar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const schar* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<schar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const schar* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<schar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const schar* borderValue, cudaStream_t stream);
|
||||
|
||||
callers[borderMode](DevMem2D_<vec_type>(src), DevMem2D_<vec_type>(dst), top, left, borderValue, stream);
|
||||
}
|
||||
template void copyMakeBorder_gpu<ushort, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const ushort* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<ushort, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const ushort* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<ushort, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const ushort* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<ushort, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const ushort* borderValue, cudaStream_t stream);
|
||||
|
||||
template void copyMakeBorder_gpu<uchar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const uchar* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<uchar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const uchar* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<uchar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const uchar* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<uchar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const uchar* borderValue, cudaStream_t stream);
|
||||
|
||||
//template void copyMakeBorder_gpu<schar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const schar* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<schar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const schar* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<schar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const schar* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<schar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const schar* borderValue, cudaStream_t stream);
|
||||
|
||||
template void copyMakeBorder_gpu<ushort, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const ushort* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<ushort, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const ushort* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<ushort, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const ushort* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<ushort, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const ushort* borderValue, cudaStream_t stream);
|
||||
|
||||
template void copyMakeBorder_gpu<short, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const short* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<short, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const short* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<short, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const short* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<short, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const short* borderValue, cudaStream_t stream);
|
||||
|
||||
//template void copyMakeBorder_gpu<int, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const int* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<int, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const int* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<int, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const int* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<int, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const int* borderValue, cudaStream_t stream);
|
||||
|
||||
template void copyMakeBorder_gpu<float, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const float* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<float, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const float* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<float, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const float* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<float, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const float* borderValue, cudaStream_t stream);
|
||||
}}}
|
||||
template void copyMakeBorder_gpu<short, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const short* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<short, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const short* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<short, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const short* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<short, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const short* borderValue, cudaStream_t stream);
|
||||
|
||||
//template void copyMakeBorder_gpu<int, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const int* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<int, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const int* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<int, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const int* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<int, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const int* borderValue, cudaStream_t stream);
|
||||
|
||||
template void copyMakeBorder_gpu<float, 1>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const float* borderValue, cudaStream_t stream);
|
||||
//template void copyMakeBorder_gpu<float, 2>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const float* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<float, 3>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const float* borderValue, cudaStream_t stream);
|
||||
template void copyMakeBorder_gpu<float, 4>(const DevMem2Db& src, const DevMem2Db& dst, int top, int left, int borderMode, const float* borderValue, cudaStream_t stream);
|
||||
|
||||
} // namespace copy_make_border
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -45,9 +45,7 @@
|
||||
#include "opencv2/gpu/device/utility.hpp"
|
||||
#include "opencv2/gpu/device/saturate_cast.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
#define UINT_BITS 32U
|
||||
|
||||
@@ -67,154 +65,157 @@ using namespace cv::gpu::device;
|
||||
|
||||
#define USE_SMEM_ATOMICS (__CUDA_ARCH__ >= 120)
|
||||
|
||||
namespace cv { namespace gpu { namespace histograms
|
||||
namespace hist {
|
||||
|
||||
#if (!USE_SMEM_ATOMICS)
|
||||
|
||||
#define TAG_MASK ( (1U << (UINT_BITS - OPENCV_GPU_LOG_WARP_SIZE)) - 1U )
|
||||
|
||||
__forceinline__ __device__ void addByte(volatile uint* s_WarpHist, uint data, uint threadTag)
|
||||
{
|
||||
uint count;
|
||||
do
|
||||
{
|
||||
count = s_WarpHist[data] & TAG_MASK;
|
||||
count = threadTag | (count + 1);
|
||||
s_WarpHist[data] = count;
|
||||
} while (s_WarpHist[data] != count);
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define TAG_MASK 0xFFFFFFFFU
|
||||
|
||||
__forceinline__ __device__ void addByte(uint* s_WarpHist, uint data, uint threadTag)
|
||||
{
|
||||
atomicAdd(s_WarpHist + data, 1);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
__forceinline__ __device__ void addWord(uint* s_WarpHist, uint data, uint tag, uint pos_x, uint cols)
|
||||
{
|
||||
#if (!USE_SMEM_ATOMICS)
|
||||
uint x = pos_x << 2;
|
||||
|
||||
#define TAG_MASK ( (1U << (UINT_BITS - OPENCV_GPU_LOG_WARP_SIZE)) - 1U )
|
||||
if (x + 0 < cols) addByte(s_WarpHist, (data >> 0) & 0xFFU, tag);
|
||||
if (x + 1 < cols) addByte(s_WarpHist, (data >> 8) & 0xFFU, tag);
|
||||
if (x + 2 < cols) addByte(s_WarpHist, (data >> 16) & 0xFFU, tag);
|
||||
if (x + 3 < cols) addByte(s_WarpHist, (data >> 24) & 0xFFU, tag);
|
||||
}
|
||||
|
||||
__forceinline__ __device__ void addByte(volatile uint* s_WarpHist, uint data, uint threadTag)
|
||||
{
|
||||
uint count;
|
||||
do
|
||||
{
|
||||
count = s_WarpHist[data] & TAG_MASK;
|
||||
count = threadTag | (count + 1);
|
||||
s_WarpHist[data] = count;
|
||||
} while (s_WarpHist[data] != count);
|
||||
}
|
||||
__global__ void histogram256(const PtrStep<uint> d_Data, uint* d_PartialHistograms, uint dataCount, uint cols)
|
||||
{
|
||||
//Per-warp subhistogram storage
|
||||
__shared__ uint s_Hist[HISTOGRAM256_THREADBLOCK_MEMORY];
|
||||
uint* s_WarpHist= s_Hist + (threadIdx.x >> OPENCV_GPU_LOG_WARP_SIZE) * HISTOGRAM256_BIN_COUNT;
|
||||
|
||||
#else
|
||||
//Clear shared memory storage for current threadblock before processing
|
||||
#pragma unroll
|
||||
for (uint i = 0; i < (HISTOGRAM256_THREADBLOCK_MEMORY / HISTOGRAM256_THREADBLOCK_SIZE); i++)
|
||||
s_Hist[threadIdx.x + i * HISTOGRAM256_THREADBLOCK_SIZE] = 0;
|
||||
|
||||
#define TAG_MASK 0xFFFFFFFFU
|
||||
//Cycle through the entire data set, update subhistograms for each warp
|
||||
const uint tag = threadIdx.x << (UINT_BITS - OPENCV_GPU_LOG_WARP_SIZE);
|
||||
|
||||
__forceinline__ __device__ void addByte(uint* s_WarpHist, uint data, uint threadTag)
|
||||
{
|
||||
atomicAdd(s_WarpHist + data, 1);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
__forceinline__ __device__ void addWord(uint* s_WarpHist, uint data, uint tag, uint pos_x, uint cols)
|
||||
__syncthreads();
|
||||
const uint colsui = d_Data.step / sizeof(uint);
|
||||
for(uint pos = blockIdx.x * blockDim.x + threadIdx.x; pos < dataCount; pos += blockDim.x * gridDim.x)
|
||||
{
|
||||
uint x = pos_x << 2;
|
||||
|
||||
if (x + 0 < cols) addByte(s_WarpHist, (data >> 0) & 0xFFU, tag);
|
||||
if (x + 1 < cols) addByte(s_WarpHist, (data >> 8) & 0xFFU, tag);
|
||||
if (x + 2 < cols) addByte(s_WarpHist, (data >> 16) & 0xFFU, tag);
|
||||
if (x + 3 < cols) addByte(s_WarpHist, (data >> 24) & 0xFFU, tag);
|
||||
uint pos_y = pos / colsui;
|
||||
uint pos_x = pos % colsui;
|
||||
uint data = d_Data.ptr(pos_y)[pos_x];
|
||||
addWord(s_WarpHist, data, tag, pos_x, cols);
|
||||
}
|
||||
|
||||
__global__ void histogram256(const PtrStep<uint> d_Data, uint* d_PartialHistograms, uint dataCount, uint cols)
|
||||
{
|
||||
//Per-warp subhistogram storage
|
||||
__shared__ uint s_Hist[HISTOGRAM256_THREADBLOCK_MEMORY];
|
||||
uint* s_WarpHist= s_Hist + (threadIdx.x >> OPENCV_GPU_LOG_WARP_SIZE) * HISTOGRAM256_BIN_COUNT;
|
||||
|
||||
//Clear shared memory storage for current threadblock before processing
|
||||
#pragma unroll
|
||||
for (uint i = 0; i < (HISTOGRAM256_THREADBLOCK_MEMORY / HISTOGRAM256_THREADBLOCK_SIZE); i++)
|
||||
s_Hist[threadIdx.x + i * HISTOGRAM256_THREADBLOCK_SIZE] = 0;
|
||||
|
||||
//Cycle through the entire data set, update subhistograms for each warp
|
||||
const uint tag = threadIdx.x << (UINT_BITS - OPENCV_GPU_LOG_WARP_SIZE);
|
||||
|
||||
__syncthreads();
|
||||
const uint colsui = d_Data.step / sizeof(uint);
|
||||
for(uint pos = blockIdx.x * blockDim.x + threadIdx.x; pos < dataCount; pos += blockDim.x * gridDim.x)
|
||||
{
|
||||
uint pos_y = pos / colsui;
|
||||
uint pos_x = pos % colsui;
|
||||
uint data = d_Data.ptr(pos_y)[pos_x];
|
||||
addWord(s_WarpHist, data, tag, pos_x, cols);
|
||||
}
|
||||
|
||||
//Merge per-warp histograms into per-block and write to global memory
|
||||
__syncthreads();
|
||||
for(uint bin = threadIdx.x; bin < HISTOGRAM256_BIN_COUNT; bin += HISTOGRAM256_THREADBLOCK_SIZE)
|
||||
{
|
||||
uint sum = 0;
|
||||
|
||||
for (uint i = 0; i < WARP_COUNT; i++)
|
||||
sum += s_Hist[bin + i * HISTOGRAM256_BIN_COUNT] & TAG_MASK;
|
||||
|
||||
d_PartialHistograms[blockIdx.x * HISTOGRAM256_BIN_COUNT + bin] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Merge histogram256() output
|
||||
// Run one threadblock per bin; each threadblock adds up the same bin counter
|
||||
// from every partial histogram. Reads are uncoalesced, but mergeHistogram256
|
||||
// takes only a fraction of total processing time
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
__global__ void mergeHistogram256(const uint* d_PartialHistograms, int* d_Histogram)
|
||||
//Merge per-warp histograms into per-block and write to global memory
|
||||
__syncthreads();
|
||||
for(uint bin = threadIdx.x; bin < HISTOGRAM256_BIN_COUNT; bin += HISTOGRAM256_THREADBLOCK_SIZE)
|
||||
{
|
||||
uint sum = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (uint i = threadIdx.x; i < PARTIAL_HISTOGRAM256_COUNT; i += MERGE_THREADBLOCK_SIZE)
|
||||
sum += d_PartialHistograms[blockIdx.x + i * HISTOGRAM256_BIN_COUNT];
|
||||
for (uint i = 0; i < WARP_COUNT; i++)
|
||||
sum += s_Hist[bin + i * HISTOGRAM256_BIN_COUNT] & TAG_MASK;
|
||||
|
||||
__shared__ uint data[MERGE_THREADBLOCK_SIZE];
|
||||
data[threadIdx.x] = sum;
|
||||
|
||||
for (uint stride = MERGE_THREADBLOCK_SIZE / 2; stride > 0; stride >>= 1)
|
||||
{
|
||||
__syncthreads();
|
||||
if(threadIdx.x < stride)
|
||||
data[threadIdx.x] += data[threadIdx.x + stride];
|
||||
}
|
||||
|
||||
if(threadIdx.x == 0)
|
||||
d_Histogram[blockIdx.x] = saturate_cast<int>(data[0]);
|
||||
d_PartialHistograms[blockIdx.x * HISTOGRAM256_BIN_COUNT + bin] = sum;
|
||||
}
|
||||
}
|
||||
|
||||
void histogram256_gpu(DevMem2Db src, int* hist, uint* buf, cudaStream_t stream)
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
// Merge histogram256() output
|
||||
// Run one threadblock per bin; each threadblock adds up the same bin counter
|
||||
// from every partial histogram. Reads are uncoalesced, but mergeHistogram256
|
||||
// takes only a fraction of total processing time
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
__global__ void mergeHistogram256(const uint* d_PartialHistograms, int* d_Histogram)
|
||||
{
|
||||
uint sum = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (uint i = threadIdx.x; i < PARTIAL_HISTOGRAM256_COUNT; i += MERGE_THREADBLOCK_SIZE)
|
||||
sum += d_PartialHistograms[blockIdx.x + i * HISTOGRAM256_BIN_COUNT];
|
||||
|
||||
__shared__ uint data[MERGE_THREADBLOCK_SIZE];
|
||||
data[threadIdx.x] = sum;
|
||||
|
||||
for (uint stride = MERGE_THREADBLOCK_SIZE / 2; stride > 0; stride >>= 1)
|
||||
{
|
||||
histogram256<<<PARTIAL_HISTOGRAM256_COUNT, HISTOGRAM256_THREADBLOCK_SIZE, 0, stream>>>(
|
||||
DevMem2D_<uint>(src),
|
||||
buf,
|
||||
static_cast<uint>(src.rows * src.step / sizeof(uint)),
|
||||
src.cols);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
mergeHistogram256<<<HISTOGRAM256_BIN_COUNT, MERGE_THREADBLOCK_SIZE, 0, stream>>>(buf, hist);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
__syncthreads();
|
||||
if(threadIdx.x < stride)
|
||||
data[threadIdx.x] += data[threadIdx.x + stride];
|
||||
}
|
||||
|
||||
__constant__ int c_lut[256];
|
||||
if(threadIdx.x == 0)
|
||||
d_Histogram[blockIdx.x] = saturate_cast<int>(data[0]);
|
||||
}
|
||||
|
||||
__global__ void equalizeHist(const DevMem2Db src, PtrStepb dst)
|
||||
void histogram256_gpu(DevMem2Db src, int* hist, uint* buf, cudaStream_t stream)
|
||||
{
|
||||
histogram256<<<PARTIAL_HISTOGRAM256_COUNT, HISTOGRAM256_THREADBLOCK_SIZE, 0, stream>>>(
|
||||
DevMem2D_<uint>(src),
|
||||
buf,
|
||||
static_cast<uint>(src.rows * src.step / sizeof(uint)),
|
||||
src.cols);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
mergeHistogram256<<<HISTOGRAM256_BIN_COUNT, MERGE_THREADBLOCK_SIZE, 0, stream>>>(buf, hist);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
__constant__ int c_lut[256];
|
||||
|
||||
__global__ void equalizeHist(const DevMem2Db src, PtrStepb dst)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x < src.cols && y < src.rows)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x < src.cols && y < src.rows)
|
||||
{
|
||||
const uchar val = src.ptr(y)[x];
|
||||
const int lut = c_lut[val];
|
||||
dst.ptr(y)[x] = __float2int_rn(255.0f / (src.cols * src.rows) * lut);
|
||||
}
|
||||
const uchar val = src.ptr(y)[x];
|
||||
const int lut = c_lut[val];
|
||||
dst.ptr(y)[x] = __float2int_rn(255.0f / (src.cols * src.rows) * lut);
|
||||
}
|
||||
}
|
||||
|
||||
void equalizeHist_gpu(DevMem2Db src, DevMem2Db dst, const int* lut, cudaStream_t stream)
|
||||
{
|
||||
dim3 block(16, 16);
|
||||
dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));
|
||||
void equalizeHist_gpu(DevMem2Db src, DevMem2Db dst, const int* lut, cudaStream_t stream)
|
||||
{
|
||||
dim3 block(16, 16);
|
||||
dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));
|
||||
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cv::gpu::histograms::c_lut, lut, 256 * sizeof(int), 0, cudaMemcpyDeviceToDevice) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(c_lut, lut, 256 * sizeof(int), 0, cudaMemcpyDeviceToDevice) );
|
||||
|
||||
equalizeHist<<<grid, block, 0, stream>>>(src, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
equalizeHist<<<grid, block, 0, stream>>>(src, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}}}
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
} // namespace hist
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -42,13 +42,15 @@
|
||||
|
||||
#include "internal_shared.hpp"
|
||||
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
// Other values are not supported
|
||||
#define CELL_WIDTH 8
|
||||
#define CELL_HEIGHT 8
|
||||
#define CELLS_PER_BLOCK_X 2
|
||||
#define CELLS_PER_BLOCK_Y 2
|
||||
|
||||
namespace cv { namespace gpu { namespace hog {
|
||||
namespace hog {
|
||||
|
||||
__constant__ int cnbins;
|
||||
__constant__ int cblock_stride_x;
|
||||
@@ -83,23 +85,23 @@ int power_2up(unsigned int n)
|
||||
void set_up_constants(int nbins, int block_stride_x, int block_stride_y,
|
||||
int nblocks_win_x, int nblocks_win_y)
|
||||
{
|
||||
uploadConstant("cv::gpu::hog::cnbins", nbins);
|
||||
uploadConstant("cv::gpu::hog::cblock_stride_x", block_stride_x);
|
||||
uploadConstant("cv::gpu::hog::cblock_stride_y", block_stride_y);
|
||||
uploadConstant("cv::gpu::hog::cnblocks_win_x", nblocks_win_x);
|
||||
uploadConstant("cv::gpu::hog::cnblocks_win_y", nblocks_win_y);
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cnbins, &nbins, sizeof(nbins)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cblock_stride_x, &block_stride_x, sizeof(block_stride_x)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cblock_stride_y, &block_stride_y, sizeof(block_stride_y)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cnblocks_win_x, &nblocks_win_x, sizeof(nblocks_win_x)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cnblocks_win_y, &nblocks_win_y, sizeof(nblocks_win_y)) );
|
||||
|
||||
int block_hist_size = nbins * CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y;
|
||||
uploadConstant("cv::gpu::hog::cblock_hist_size", block_hist_size);
|
||||
int block_hist_size = nbins * CELLS_PER_BLOCK_X * CELLS_PER_BLOCK_Y;
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cblock_hist_size, &block_hist_size, sizeof(block_hist_size)) );
|
||||
|
||||
int block_hist_size_2up = power_2up(block_hist_size);
|
||||
uploadConstant("cv::gpu::hog::cblock_hist_size_2up", block_hist_size_2up);
|
||||
int block_hist_size_2up = power_2up(block_hist_size);
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cblock_hist_size_2up, &block_hist_size_2up, sizeof(block_hist_size_2up)) );
|
||||
|
||||
int descr_width = nblocks_win_x * block_hist_size;
|
||||
uploadConstant("cv::gpu::hog::cdescr_width", descr_width);
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cdescr_width, &descr_width, sizeof(descr_width)) );
|
||||
|
||||
int descr_size = descr_width * nblocks_win_y;
|
||||
uploadConstant("cv::gpu::hog::cdescr_size", descr_size);
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cdescr_size, &descr_size, sizeof(descr_size)) );
|
||||
}
|
||||
|
||||
|
||||
@@ -153,10 +155,10 @@ __global__ void compute_hists_kernel_many_blocks(const int img_block_width, cons
|
||||
int dist_center_y = dist_y - 4 * (1 - 2 * cell_y);
|
||||
int dist_center_x = dist_x - 4 * (1 - 2 * cell_x);
|
||||
|
||||
float gaussian = expf(-(dist_center_y * dist_center_y +
|
||||
dist_center_x * dist_center_x) * scale);
|
||||
float interp_weight = (8.f - fabs(dist_y + 0.5f)) *
|
||||
(8.f - fabs(dist_x + 0.5f)) / 64.f;
|
||||
float gaussian = ::expf(-(dist_center_y * dist_center_y +
|
||||
dist_center_x * dist_center_x) * scale);
|
||||
float interp_weight = (8.f - ::fabs(dist_y + 0.5f)) *
|
||||
(8.f - ::fabs(dist_x + 0.5f)) / 64.f;
|
||||
|
||||
hist[bin.x * 48 * nblocks] += gaussian * interp_weight * vote.x;
|
||||
hist[bin.y * 48 * nblocks] += gaussian * interp_weight * vote.y;
|
||||
@@ -273,15 +275,15 @@ __global__ void normalize_hists_kernel_many_blocks(const int block_hist_size,
|
||||
__syncthreads();
|
||||
float sum = reduce_smem<nthreads>(squares);
|
||||
|
||||
float scale = 1.0f / (sqrtf(sum) + 0.1f * block_hist_size);
|
||||
elem = min(elem * scale, threshold);
|
||||
float scale = 1.0f / (::sqrtf(sum) + 0.1f * block_hist_size);
|
||||
elem = ::min(elem * scale, threshold);
|
||||
|
||||
__syncthreads();
|
||||
squares[threadIdx.x] = elem * elem;
|
||||
|
||||
__syncthreads();
|
||||
sum = reduce_smem<nthreads>(squares);
|
||||
scale = 1.0f / (sqrtf(sum) + 1e-3f);
|
||||
scale = 1.0f / (::sqrtf(sum) + 1e-3f);
|
||||
|
||||
if (threadIdx.x < block_hist_size)
|
||||
hist[0] = elem * scale;
|
||||
@@ -533,7 +535,7 @@ __global__ void compute_gradients_8UC4_kernel(int height, int width, const PtrEl
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
val = row[max(x - 1, 1)];
|
||||
val = row[::max(x - 1, 1)];
|
||||
sh_row[0] = val.x;
|
||||
sh_row[(nthreads + 2)] = val.y;
|
||||
sh_row[2 * (nthreads + 2)] = val.z;
|
||||
@@ -541,7 +543,7 @@ __global__ void compute_gradients_8UC4_kernel(int height, int width, const PtrEl
|
||||
|
||||
if (threadIdx.x == blockDim.x - 1)
|
||||
{
|
||||
val = row[min(x + 1, width - 2)];
|
||||
val = row[::min(x + 1, width - 2)];
|
||||
sh_row[blockDim.x + 1] = val.x;
|
||||
sh_row[blockDim.x + 1 + (nthreads + 2)] = val.y;
|
||||
sh_row[blockDim.x + 1 + 2 * (nthreads + 2)] = val.z;
|
||||
@@ -561,7 +563,7 @@ __global__ void compute_gradients_8UC4_kernel(int height, int width, const PtrEl
|
||||
|
||||
float3 dx;
|
||||
if (correct_gamma)
|
||||
dx = make_float3(sqrtf(b.x) - sqrtf(a.x), sqrtf(b.y) - sqrtf(a.y), sqrtf(b.z) - sqrtf(a.z));
|
||||
dx = make_float3(::sqrtf(b.x) - ::sqrtf(a.x), ::sqrtf(b.y) - ::sqrtf(a.y), ::sqrtf(b.z) - ::sqrtf(a.z));
|
||||
else
|
||||
dx = make_float3(b.x - a.x, b.y - a.y, b.z - a.z);
|
||||
|
||||
@@ -576,7 +578,7 @@ __global__ void compute_gradients_8UC4_kernel(int height, int width, const PtrEl
|
||||
b = make_float3(val.x, val.y, val.z);
|
||||
|
||||
if (correct_gamma)
|
||||
dy = make_float3(sqrtf(b.x) - sqrtf(a.x), sqrtf(b.y) - sqrtf(a.y), sqrtf(b.z) - sqrtf(a.z));
|
||||
dy = make_float3(::sqrtf(b.x) - ::sqrtf(a.x), ::sqrtf(b.y) - ::sqrtf(a.y), ::sqrtf(b.z) - ::sqrtf(a.z));
|
||||
else
|
||||
dy = make_float3(b.x - a.x, b.y - a.y, b.z - a.z);
|
||||
}
|
||||
@@ -601,10 +603,10 @@ __global__ void compute_gradients_8UC4_kernel(int height, int width, const PtrEl
|
||||
mag0 = mag1;
|
||||
}
|
||||
|
||||
mag0 = sqrtf(mag0);
|
||||
mag0 = ::sqrtf(mag0);
|
||||
|
||||
float ang = (atan2f(best_dy, best_dx) + CV_PI_F) * angle_scale - 0.5f;
|
||||
int hidx = (int)floorf(ang);
|
||||
float ang = (::atan2f(best_dy, best_dx) + CV_PI_F) * angle_scale - 0.5f;
|
||||
int hidx = (int)::floorf(ang);
|
||||
ang -= hidx;
|
||||
hidx = (hidx + cnbins) % cnbins;
|
||||
|
||||
@@ -648,10 +650,10 @@ __global__ void compute_gradients_8UC1_kernel(int height, int width, const PtrEl
|
||||
sh_row[threadIdx.x + 1] = row[width - 2];
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
sh_row[0] = row[max(x - 1, 1)];
|
||||
sh_row[0] = row[::max(x - 1, 1)];
|
||||
|
||||
if (threadIdx.x == blockDim.x - 1)
|
||||
sh_row[blockDim.x + 1] = row[min(x + 1, width - 2)];
|
||||
sh_row[blockDim.x + 1] = row[::min(x + 1, width - 2)];
|
||||
|
||||
__syncthreads();
|
||||
if (x < width)
|
||||
@@ -659,7 +661,7 @@ __global__ void compute_gradients_8UC1_kernel(int height, int width, const PtrEl
|
||||
float dx;
|
||||
|
||||
if (correct_gamma)
|
||||
dx = sqrtf(sh_row[threadIdx.x + 2]) - sqrtf(sh_row[threadIdx.x]);
|
||||
dx = ::sqrtf(sh_row[threadIdx.x + 2]) - ::sqrtf(sh_row[threadIdx.x]);
|
||||
else
|
||||
dx = sh_row[threadIdx.x + 2] - sh_row[threadIdx.x];
|
||||
|
||||
@@ -669,14 +671,14 @@ __global__ void compute_gradients_8UC1_kernel(int height, int width, const PtrEl
|
||||
float a = ((const unsigned char*)img.ptr(blockIdx.y + 1))[x];
|
||||
float b = ((const unsigned char*)img.ptr(blockIdx.y - 1))[x];
|
||||
if (correct_gamma)
|
||||
dy = sqrtf(a) - sqrtf(b);
|
||||
dy = ::sqrtf(a) - ::sqrtf(b);
|
||||
else
|
||||
dy = a - b;
|
||||
}
|
||||
float mag = sqrtf(dx * dx + dy * dy);
|
||||
float mag = ::sqrtf(dx * dx + dy * dy);
|
||||
|
||||
float ang = (atan2f(dy, dx) + CV_PI_F) * angle_scale - 0.5f;
|
||||
int hidx = (int)floorf(ang);
|
||||
float ang = (::atan2f(dy, dx) + CV_PI_F) * angle_scale - 0.5f;
|
||||
int hidx = (int)::floorf(ang);
|
||||
ang -= hidx;
|
||||
hidx = (hidx + cnbins) % cnbins;
|
||||
|
||||
@@ -768,4 +770,6 @@ static void resize_for_hog(const DevMem2Db& src, DevMem2Db dst, TEX& tex)
|
||||
void resize_8UC1(const DevMem2Db& src, DevMem2Db dst) { resize_for_hog<uchar> (src, dst, resize8UC1_tex); }
|
||||
void resize_8UC4(const DevMem2Db& src, DevMem2Db dst) { resize_for_hog<uchar4>(src, dst, resize8UC4_tex); }
|
||||
|
||||
}}}
|
||||
} // namespace hog
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -43,11 +43,15 @@
|
||||
#ifndef __OPENCV_internal_shared_HPP__
|
||||
#define __OPENCV_internal_shared_HPP__
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <npp.h>
|
||||
#include "NPP_staging.hpp"
|
||||
#include "opencv2/gpu/devmem2d.hpp"
|
||||
#include "safe_call.hpp"
|
||||
#include "cuda_runtime.h"
|
||||
#include "npp.h"
|
||||
#include "NPP_staging.hpp"
|
||||
|
||||
#ifndef CV_PI
|
||||
#define CV_PI 3.1415926535897932384626433832795f
|
||||
#endif
|
||||
|
||||
#ifndef CV_PI_F
|
||||
#ifndef CV_PI
|
||||
@@ -57,146 +61,158 @@
|
||||
#endif
|
||||
#endif
|
||||
|
||||
namespace cv
|
||||
#define BEGIN_OPENCV_DEVICE_NAMESPACE namespace cv { namespace gpu { namespace device {
|
||||
#define END_OPENCV_DEVICE_NAMESPACE }}}
|
||||
#define OPENCV_DEVICE_NAMESPACE ::cv::gpu::device
|
||||
#define OPENCV_DEVICE_NAMESPACE_ ::cv::gpu::device::
|
||||
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
typedef unsigned char uchar;
|
||||
typedef unsigned short ushort;
|
||||
typedef signed char schar;
|
||||
typedef unsigned int uint;
|
||||
|
||||
template<class T> static inline void bindTexture(const textureReference* tex, const DevMem2D_<T>& img)
|
||||
{
|
||||
namespace gpu
|
||||
{
|
||||
typedef unsigned char uchar;
|
||||
typedef signed char schar;
|
||||
typedef unsigned short ushort;
|
||||
typedef unsigned int uint;
|
||||
|
||||
enum
|
||||
{
|
||||
BORDER_REFLECT101_GPU = 0,
|
||||
BORDER_REPLICATE_GPU,
|
||||
BORDER_CONSTANT_GPU,
|
||||
BORDER_REFLECT_GPU,
|
||||
BORDER_WRAP_GPU
|
||||
};
|
||||
|
||||
// Converts CPU border extrapolation mode into GPU internal analogue.
|
||||
// Returns true if the GPU analogue exists, false otherwise.
|
||||
bool tryConvertToGpuBorderType(int cpuBorderType, int& gpuBorderType);
|
||||
|
||||
static inline int divUp(int total, int grain) { return (total + grain - 1) / grain; }
|
||||
|
||||
template<class T> static inline void uploadConstant(const char* name, const T& value)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(name, &value, sizeof(T)) );
|
||||
}
|
||||
|
||||
template<class T> static inline void uploadConstant(const char* name, const T& value, cudaStream_t stream)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbolAsync(name, &value, sizeof(T), 0, cudaMemcpyHostToDevice, stream) );
|
||||
}
|
||||
|
||||
template<class T> static inline void bindTexture(const char* name, const DevMem2D_<T>& img/*, bool normalized = false,
|
||||
enum cudaTextureFilterMode filterMode = cudaFilterModePoint, enum cudaTextureAddressMode addrMode = cudaAddressModeClamp*/)
|
||||
{
|
||||
//!!!! const_cast is disabled!
|
||||
//!!!! Please use constructor of 'class texture' instead.
|
||||
|
||||
//textureReference* tex;
|
||||
//cudaSafeCall( cudaGetTextureReference((const textureReference**)&tex, name) );
|
||||
//tex->normalized = normalized;
|
||||
//tex->filterMode = filterMode;
|
||||
//tex->addressMode[0] = addrMode;
|
||||
//tex->addressMode[1] = addrMode;
|
||||
|
||||
const textureReference* tex;
|
||||
cudaSafeCall( cudaGetTextureReference(&tex, name) );
|
||||
|
||||
cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
|
||||
cudaSafeCall( cudaBindTexture2D(0, tex, img.ptr(), &desc, img.cols, img.rows, img.step) );
|
||||
}
|
||||
|
||||
static inline void unbindTexture(const char *name)
|
||||
{
|
||||
const textureReference* tex;
|
||||
cudaSafeCall( cudaGetTextureReference(&tex, name) );
|
||||
cudaSafeCall( cudaUnbindTexture(tex) );
|
||||
}
|
||||
|
||||
class TextureBinder
|
||||
{
|
||||
public:
|
||||
TextureBinder() : tex_(0) {}
|
||||
template <typename T> TextureBinder(const textureReference* tex, const DevMem2D_<T>& img) : tex_(0)
|
||||
{
|
||||
bind(tex, img);
|
||||
}
|
||||
template <typename T> TextureBinder(const char* tex_name, const DevMem2D_<T>& img) : tex_(0)
|
||||
{
|
||||
bind(tex_name, img);
|
||||
}
|
||||
~TextureBinder() { unbind(); }
|
||||
|
||||
template <typename T> void bind(const textureReference* tex, const DevMem2D_<T>& img)
|
||||
{
|
||||
unbind();
|
||||
|
||||
cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
|
||||
cudaSafeCall( cudaBindTexture2D(0, tex, img.ptr(), &desc, img.cols, img.rows, img.step) );
|
||||
|
||||
tex_ = tex;
|
||||
}
|
||||
template <typename T> void bind(const char* tex_name, const DevMem2D_<T>& img)
|
||||
{
|
||||
const textureReference* tex;
|
||||
cudaSafeCall( cudaGetTextureReference(&tex, tex_name) );
|
||||
bind(tex, img);
|
||||
}
|
||||
|
||||
void unbind()
|
||||
{
|
||||
if (tex_)
|
||||
{
|
||||
cudaUnbindTexture(tex_);
|
||||
tex_ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
const textureReference* tex_;
|
||||
};
|
||||
|
||||
class NppStreamHandler
|
||||
{
|
||||
public:
|
||||
inline explicit NppStreamHandler(cudaStream_t newStream = 0)
|
||||
{
|
||||
oldStream = nppGetStream();
|
||||
nppSetStream(newStream);
|
||||
}
|
||||
|
||||
inline ~NppStreamHandler()
|
||||
{
|
||||
nppSetStream(oldStream);
|
||||
}
|
||||
|
||||
private:
|
||||
cudaStream_t oldStream;
|
||||
};
|
||||
|
||||
class NppStStreamHandler
|
||||
{
|
||||
public:
|
||||
inline explicit NppStStreamHandler(cudaStream_t newStream = 0)
|
||||
{
|
||||
oldStream = nppStSetActiveCUDAstream(newStream);
|
||||
}
|
||||
|
||||
inline ~NppStStreamHandler()
|
||||
{
|
||||
nppStSetActiveCUDAstream(oldStream);
|
||||
}
|
||||
|
||||
private:
|
||||
cudaStream_t oldStream;
|
||||
};
|
||||
}
|
||||
cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
|
||||
cudaSafeCall( cudaBindTexture2D(0, tex, img.ptr(), &desc, img.cols, img.rows, img.step) );
|
||||
}
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace cv { namespace gpu
|
||||
{
|
||||
enum
|
||||
{
|
||||
BORDER_REFLECT101_GPU = 0,
|
||||
BORDER_REPLICATE_GPU,
|
||||
BORDER_CONSTANT_GPU,
|
||||
BORDER_REFLECT_GPU,
|
||||
BORDER_WRAP_GPU
|
||||
};
|
||||
|
||||
// Converts CPU border extrapolation mode into GPU internal analogue.
|
||||
// Returns true if the GPU analogue exists, false otherwise.
|
||||
bool tryConvertToGpuBorderType(int cpuBorderType, int& gpuBorderType);
|
||||
|
||||
static inline int divUp(int total, int grain) { return (total + grain - 1) / grain; }
|
||||
|
||||
/*template<class T> static inline void uploadConstant(const char* name, const T& value)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(name, &value, sizeof(T)) );
|
||||
}
|
||||
|
||||
template<class T> static inline void uploadConstant(const char* name, const T& value, cudaStream_t stream)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbolAsync(name, &value, sizeof(T), 0, cudaMemcpyHostToDevice, stream) );
|
||||
} */
|
||||
|
||||
//template<class T> static inline void bindTexture(const char* name, const DevMem2D_<T>& img)
|
||||
//{
|
||||
// //!!!! const_cast is disabled!
|
||||
// //!!!! Please use constructor of 'class texture' instead.
|
||||
//
|
||||
// //textureReference* tex;
|
||||
// //cudaSafeCall( cudaGetTextureReference((const textureReference**)&tex, name) );
|
||||
// //tex->normalized = normalized;
|
||||
// //tex->filterMode = filterMode;
|
||||
// //tex->addressMode[0] = addrMode;
|
||||
// //tex->addressMode[1] = addrMode;
|
||||
//
|
||||
// const textureReference* tex;
|
||||
// cudaSafeCall( cudaGetTextureReference(&tex, name) );
|
||||
//
|
||||
// cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
|
||||
// cudaSafeCall( cudaBindTexture2D(0, tex, img.ptr(), &desc, img.cols, img.rows, img.step) );
|
||||
//}
|
||||
|
||||
//static inline void unbindTexture(const char *name)
|
||||
//{
|
||||
// const textureReference* tex;
|
||||
// cudaSafeCall( cudaGetTextureReference(&tex, name) );
|
||||
// cudaSafeCall( cudaUnbindTexture(tex) );
|
||||
//}
|
||||
|
||||
|
||||
|
||||
//class TextureBinder
|
||||
//{
|
||||
//public:
|
||||
// TextureBinder() : tex_(0) {}
|
||||
// template <typename T> TextureBinder(const textureReference* tex, const DevMem2D_<T>& img) : tex_(0)
|
||||
// {
|
||||
// bind(tex, img);
|
||||
// }
|
||||
// template <typename T> TextureBinder(const char* tex_name, const DevMem2D_<T>& img) : tex_(0)
|
||||
// {
|
||||
// bind(tex_name, img);
|
||||
// }
|
||||
// ~TextureBinder() { unbind(); }
|
||||
//
|
||||
// template <typename T> void bind(const textureReference* tex, const DevMem2D_<T>& img)
|
||||
// {
|
||||
// unbind();
|
||||
//
|
||||
// cudaChannelFormatDesc desc = cudaCreateChannelDesc<T>();
|
||||
// cudaSafeCall( cudaBindTexture2D(0, tex, img.ptr(), &desc, img.cols, img.rows, img.step) );
|
||||
//
|
||||
// tex_ = tex;
|
||||
// }
|
||||
// template <typename T> void bind(const char* tex_name, const DevMem2D_<T>& img)
|
||||
// {
|
||||
// const textureReference* tex;
|
||||
// cudaSafeCall( cudaGetTextureReference(&tex, tex_name) );
|
||||
// bind(tex, img);
|
||||
// }
|
||||
//
|
||||
// void unbind()
|
||||
// {
|
||||
// if (tex_)
|
||||
// {
|
||||
// cudaUnbindTexture(tex_);
|
||||
// tex_ = 0;
|
||||
// }
|
||||
// }
|
||||
//
|
||||
//private:
|
||||
// const textureReference* tex_;
|
||||
//};
|
||||
|
||||
class NppStreamHandler
|
||||
{
|
||||
public:
|
||||
inline explicit NppStreamHandler(cudaStream_t newStream = 0)
|
||||
{
|
||||
oldStream = nppGetStream();
|
||||
nppSetStream(newStream);
|
||||
}
|
||||
|
||||
inline ~NppStreamHandler()
|
||||
{
|
||||
nppSetStream(oldStream);
|
||||
}
|
||||
|
||||
private:
|
||||
cudaStream_t oldStream;
|
||||
};
|
||||
|
||||
class NppStStreamHandler
|
||||
{
|
||||
public:
|
||||
inline explicit NppStStreamHandler(cudaStream_t newStream = 0)
|
||||
{
|
||||
oldStream = nppStSetActiveCUDAstream(newStream);
|
||||
}
|
||||
|
||||
inline ~NppStStreamHandler()
|
||||
{
|
||||
nppStSetActiveCUDAstream(oldStream);
|
||||
}
|
||||
|
||||
private:
|
||||
cudaStream_t oldStream;
|
||||
};
|
||||
}}
|
||||
|
||||
#endif /* __OPENCV_internal_shared_HPP__ */
|
||||
|
@@ -43,10 +43,9 @@
|
||||
#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/device/vec_math.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace cv { namespace gpu { namespace imgproc {
|
||||
namespace match_template {
|
||||
|
||||
__device__ __forceinline__ float sum(float v) { return v; }
|
||||
__device__ __forceinline__ float sum(float2 v) { return v.x + v.y; }
|
||||
@@ -266,9 +265,9 @@ void matchTemplatePrepared_SQDIFF_8U(int w, int h, const DevMem2D_<unsigned long
|
||||
|
||||
__device__ float normAcc(float num, float denum)
|
||||
{
|
||||
if (fabs(num) < denum)
|
||||
if (::fabs(num) < denum)
|
||||
return num / denum;
|
||||
if (fabs(num) < denum * 1.125f)
|
||||
if (::fabs(num) < denum * 1.125f)
|
||||
return num > 0 ? 1 : -1;
|
||||
return 0;
|
||||
}
|
||||
@@ -276,9 +275,9 @@ __device__ float normAcc(float num, float denum)
|
||||
|
||||
__device__ float normAcc_SQDIFF(float num, float denum)
|
||||
{
|
||||
if (fabs(num) < denum)
|
||||
if (::fabs(num) < denum)
|
||||
return num / denum;
|
||||
if (fabs(num) < denum * 1.125f)
|
||||
if (::fabs(num) < denum * 1.125f)
|
||||
return num > 0 ? 1 : -1;
|
||||
return 1;
|
||||
}
|
||||
@@ -906,4 +905,7 @@ void extractFirstChannel_32F(const DevMem2Db image, DevMem2Df result, int cn, cu
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}}}
|
||||
|
||||
} //namespace match_template
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -42,178 +42,174 @@
|
||||
|
||||
#include "internal_shared.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
#ifndef CV_PI
|
||||
#define CV_PI 3.1415926535897932384626433832795f
|
||||
#endif
|
||||
namespace mathfunc {
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////
|
||||
// Cart <-> Polar
|
||||
|
||||
namespace cv { namespace gpu { namespace mathfunc
|
||||
struct Nothing
|
||||
{
|
||||
struct Nothing
|
||||
static __device__ __forceinline__ void calc(int, int, float, float, float*, size_t, float)
|
||||
{
|
||||
static __device__ __forceinline__ void calc(int, int, float, float, float*, size_t, float)
|
||||
{
|
||||
}
|
||||
};
|
||||
struct Magnitude
|
||||
{
|
||||
static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
|
||||
{
|
||||
dst[y * dst_step + x] = sqrtf(x_data * x_data + y_data * y_data);
|
||||
}
|
||||
};
|
||||
struct MagnitudeSqr
|
||||
{
|
||||
static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
|
||||
{
|
||||
dst[y * dst_step + x] = x_data * x_data + y_data * y_data;
|
||||
}
|
||||
};
|
||||
struct Atan2
|
||||
{
|
||||
static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float scale)
|
||||
{
|
||||
float angle = atan2f(y_data, x_data);
|
||||
angle += (angle < 0) * 2.0 * CV_PI;
|
||||
dst[y * dst_step + x] = scale * angle;
|
||||
}
|
||||
};
|
||||
template <typename Mag, typename Angle>
|
||||
__global__ void cartToPolar(const float* xptr, size_t x_step, const float* yptr, size_t y_step,
|
||||
float* mag, size_t mag_step, float* angle, size_t angle_step, float scale, int width, int height)
|
||||
{
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
|
||||
if (x < width && y < height)
|
||||
{
|
||||
float x_data = xptr[y * x_step + x];
|
||||
float y_data = yptr[y * y_step + x];
|
||||
|
||||
Mag::calc(x, y, x_data, y_data, mag, mag_step, scale);
|
||||
Angle::calc(x, y, x_data, y_data, angle, angle_step, scale);
|
||||
}
|
||||
}
|
||||
|
||||
struct NonEmptyMag
|
||||
};
|
||||
struct Magnitude
|
||||
{
|
||||
static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
|
||||
{
|
||||
static __device__ __forceinline__ float get(const float* mag, size_t mag_step, int x, int y)
|
||||
{
|
||||
return mag[y * mag_step + x];
|
||||
}
|
||||
};
|
||||
struct EmptyMag
|
||||
{
|
||||
static __device__ __forceinline__ float get(const float*, size_t, int, int)
|
||||
{
|
||||
return 1.0f;
|
||||
}
|
||||
};
|
||||
template <typename Mag>
|
||||
__global__ void polarToCart(const float* mag, size_t mag_step, const float* angle, size_t angle_step, float scale,
|
||||
float* xptr, size_t x_step, float* yptr, size_t y_step, int width, int height)
|
||||
{
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
|
||||
if (x < width && y < height)
|
||||
{
|
||||
float mag_data = Mag::get(mag, mag_step, x, y);
|
||||
float angle_data = angle[y * angle_step + x];
|
||||
float sin_a, cos_a;
|
||||
|
||||
sincosf(scale * angle_data, &sin_a, &cos_a);
|
||||
|
||||
xptr[y * x_step + x] = mag_data * cos_a;
|
||||
yptr[y * y_step + x] = mag_data * sin_a;
|
||||
}
|
||||
dst[y * dst_step + x] = ::sqrtf(x_data * x_data + y_data * y_data);
|
||||
}
|
||||
|
||||
template <typename Mag, typename Angle>
|
||||
void cartToPolar_caller(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream)
|
||||
};
|
||||
struct MagnitudeSqr
|
||||
{
|
||||
static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(x.cols, threads.x);
|
||||
grid.y = divUp(x.rows, threads.y);
|
||||
|
||||
const float scale = angleInDegrees ? (float)(180.0f / CV_PI) : 1.f;
|
||||
|
||||
cartToPolar<Mag, Angle><<<grid, threads, 0, stream>>>(
|
||||
x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(),
|
||||
mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.cols, x.rows);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
dst[y * dst_step + x] = x_data * x_data + y_data * y_data;
|
||||
}
|
||||
|
||||
void cartToPolar_gpu(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, bool magSqr, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream)
|
||||
};
|
||||
struct Atan2
|
||||
{
|
||||
static __device__ __forceinline__ void calc(int x, int y, float x_data, float y_data, float* dst, size_t dst_step, float scale)
|
||||
{
|
||||
float angle = ::atan2f(y_data, x_data);
|
||||
angle += (angle < 0) * 2.0 * CV_PI;
|
||||
dst[y * dst_step + x] = scale * angle;
|
||||
}
|
||||
};
|
||||
template <typename Mag, typename Angle>
|
||||
__global__ void cartToPolar(const float* xptr, size_t x_step, const float* yptr, size_t y_step,
|
||||
float* mag, size_t mag_step, float* angle, size_t angle_step, float scale, int width, int height)
|
||||
{
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
|
||||
if (x < width && y < height)
|
||||
{
|
||||
float x_data = xptr[y * x_step + x];
|
||||
float y_data = yptr[y * y_step + x];
|
||||
|
||||
Mag::calc(x, y, x_data, y_data, mag, mag_step, scale);
|
||||
Angle::calc(x, y, x_data, y_data, angle, angle_step, scale);
|
||||
}
|
||||
}
|
||||
|
||||
struct NonEmptyMag
|
||||
{
|
||||
static __device__ __forceinline__ float get(const float* mag, size_t mag_step, int x, int y)
|
||||
{
|
||||
return mag[y * mag_step + x];
|
||||
}
|
||||
};
|
||||
struct EmptyMag
|
||||
{
|
||||
static __device__ __forceinline__ float get(const float*, size_t, int, int)
|
||||
{
|
||||
return 1.0f;
|
||||
}
|
||||
};
|
||||
template <typename Mag>
|
||||
__global__ void polarToCart(const float* mag, size_t mag_step, const float* angle, size_t angle_step, float scale,
|
||||
float* xptr, size_t x_step, float* yptr, size_t y_step, int width, int height)
|
||||
{
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
|
||||
if (x < width && y < height)
|
||||
{
|
||||
float mag_data = Mag::get(mag, mag_step, x, y);
|
||||
float angle_data = angle[y * angle_step + x];
|
||||
float sin_a, cos_a;
|
||||
|
||||
::sincosf(scale * angle_data, &sin_a, &cos_a);
|
||||
|
||||
xptr[y * x_step + x] = mag_data * cos_a;
|
||||
yptr[y * y_step + x] = mag_data * sin_a;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Mag, typename Angle>
|
||||
void cartToPolar_caller(DevMem2Df x, DevMem2Df y, DevMem2Df mag, DevMem2Df angle, bool angleInDegrees, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(x.cols, threads.x);
|
||||
grid.y = divUp(x.rows, threads.y);
|
||||
|
||||
const float scale = angleInDegrees ? (float)(180.0f / CV_PI) : 1.f;
|
||||
|
||||
cartToPolar<Mag, Angle><<<grid, threads, 0, stream>>>(
|
||||
x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(),
|
||||
mag.data, mag.step/mag.elemSize(), angle.data, angle.step/angle.elemSize(), scale, x.cols, x.rows);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
void cartToPolar_gpu(DevMem2Df x, DevMem2Df y, DevMem2Df mag, bool magSqr, DevMem2Df angle, bool angleInDegrees, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(DevMem2Df x, DevMem2Df y, DevMem2Df mag, DevMem2Df angle, bool angleInDegrees, cudaStream_t stream);
|
||||
static const caller_t callers[2][2][2] =
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream);
|
||||
static const caller_t callers[2][2][2] =
|
||||
{
|
||||
{
|
||||
{
|
||||
cartToPolar_caller<Magnitude, Atan2>,
|
||||
cartToPolar_caller<Magnitude, Nothing>
|
||||
},
|
||||
{
|
||||
cartToPolar_caller<MagnitudeSqr, Atan2>,
|
||||
cartToPolar_caller<MagnitudeSqr, Nothing>,
|
||||
}
|
||||
cartToPolar_caller<Magnitude, Atan2>,
|
||||
cartToPolar_caller<Magnitude, Nothing>
|
||||
},
|
||||
{
|
||||
{
|
||||
cartToPolar_caller<Nothing, Atan2>,
|
||||
cartToPolar_caller<Nothing, Nothing>
|
||||
},
|
||||
{
|
||||
cartToPolar_caller<Nothing, Atan2>,
|
||||
cartToPolar_caller<Nothing, Nothing>,
|
||||
}
|
||||
cartToPolar_caller<MagnitudeSqr, Atan2>,
|
||||
cartToPolar_caller<MagnitudeSqr, Nothing>,
|
||||
}
|
||||
};
|
||||
|
||||
callers[mag.data == 0][magSqr][angle.data == 0](x, y, mag, angle, angleInDegrees, stream);
|
||||
}
|
||||
|
||||
template <typename Mag>
|
||||
void polarToCart_caller(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(mag.cols, threads.x);
|
||||
grid.y = divUp(mag.rows, threads.y);
|
||||
|
||||
const float scale = angleInDegrees ? (float)(CV_PI / 180.0f) : 1.0f;
|
||||
|
||||
polarToCart<Mag><<<grid, threads, 0, stream>>>(mag.data, mag.step/mag.elemSize(),
|
||||
angle.data, angle.step/angle.elemSize(), scale, x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.cols, mag.rows);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
void polarToCart_gpu(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream);
|
||||
static const caller_t callers[2] =
|
||||
},
|
||||
{
|
||||
polarToCart_caller<NonEmptyMag>,
|
||||
polarToCart_caller<EmptyMag>
|
||||
};
|
||||
{
|
||||
cartToPolar_caller<Nothing, Atan2>,
|
||||
cartToPolar_caller<Nothing, Nothing>
|
||||
},
|
||||
{
|
||||
cartToPolar_caller<Nothing, Atan2>,
|
||||
cartToPolar_caller<Nothing, Nothing>,
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
callers[mag.data == 0](mag, angle, x, y, angleInDegrees, stream);
|
||||
}
|
||||
}}}
|
||||
callers[mag.data == 0][magSqr][angle.data == 0](x, y, mag, angle, angleInDegrees, stream);
|
||||
}
|
||||
|
||||
template <typename Mag>
|
||||
void polarToCart_caller(DevMem2Df mag, DevMem2Df angle, DevMem2Df x, DevMem2Df y, bool angleInDegrees, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(mag.cols, threads.x);
|
||||
grid.y = divUp(mag.rows, threads.y);
|
||||
|
||||
const float scale = angleInDegrees ? (float)(CV_PI / 180.0f) : 1.0f;
|
||||
|
||||
polarToCart<Mag><<<grid, threads, 0, stream>>>(mag.data, mag.step/mag.elemSize(),
|
||||
angle.data, angle.step/angle.elemSize(), scale, x.data, x.step/x.elemSize(), y.data, y.step/y.elemSize(), mag.cols, mag.rows);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
void polarToCart_gpu(DevMem2Df mag, DevMem2Df angle, DevMem2Df x, DevMem2Df y, bool angleInDegrees, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(DevMem2Df mag, DevMem2Df angle, DevMem2Df x, DevMem2Df y, bool angleInDegrees, cudaStream_t stream);
|
||||
static const caller_t callers[2] =
|
||||
{
|
||||
polarToCart_caller<NonEmptyMag>,
|
||||
polarToCart_caller<EmptyMag>
|
||||
};
|
||||
|
||||
callers[mag.data == 0](mag, angle, x, y, angleInDegrees, stream);
|
||||
}
|
||||
|
||||
} // namespace mathfunc
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -45,302 +45,304 @@
|
||||
#include "opencv2/gpu/device/transform.hpp"
|
||||
#include "opencv2/gpu/device/functional.hpp"
|
||||
|
||||
namespace cv { namespace gpu { namespace device {
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
template <typename T> struct shift_and_sizeof;
|
||||
template <> struct shift_and_sizeof<signed char> { enum { shift = 0 }; };
|
||||
template <> struct shift_and_sizeof<unsigned char> { enum { shift = 0 }; };
|
||||
template <> struct shift_and_sizeof<short> { enum { shift = 1 }; };
|
||||
template <> struct shift_and_sizeof<unsigned short> { enum { shift = 1 }; };
|
||||
template <> struct shift_and_sizeof<int> { enum { shift = 2 }; };
|
||||
template <> struct shift_and_sizeof<float> { enum { shift = 2 }; };
|
||||
template <> struct shift_and_sizeof<double> { enum { shift = 3 }; };
|
||||
template <typename T> struct shift_and_sizeof;
|
||||
template <> struct shift_and_sizeof<signed char> { enum { shift = 0 }; };
|
||||
template <> struct shift_and_sizeof<unsigned char> { enum { shift = 0 }; };
|
||||
template <> struct shift_and_sizeof<short> { enum { shift = 1 }; };
|
||||
template <> struct shift_and_sizeof<unsigned short> { enum { shift = 1 }; };
|
||||
template <> struct shift_and_sizeof<int> { enum { shift = 2 }; };
|
||||
template <> struct shift_and_sizeof<float> { enum { shift = 2 }; };
|
||||
template <> struct shift_and_sizeof<double> { enum { shift = 3 }; };
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////// CopyTo /////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<typename T>
|
||||
__global__ void copy_to_with_mask(const T* mat_src, T* mat_dst, const uchar* mask, int cols, int rows, size_t step_mat, size_t step_mask, int channels)
|
||||
{
|
||||
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
template<typename T>
|
||||
__global__ void copy_to_with_mask(const T* mat_src, T* mat_dst, const uchar* mask, int cols, int rows, size_t step_mat, size_t step_mask, int channels)
|
||||
{
|
||||
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if ((x < cols * channels ) && (y < rows))
|
||||
if (mask[y * step_mask + x / channels] != 0)
|
||||
{
|
||||
size_t idx = y * ( step_mat >> shift_and_sizeof<T>::shift ) + x;
|
||||
mat_dst[idx] = mat_src[idx];
|
||||
}
|
||||
}
|
||||
if ((x < cols * channels ) && (y < rows))
|
||||
if (mask[y * step_mask + x / channels] != 0)
|
||||
{
|
||||
size_t idx = y * ( step_mat >> shift_and_sizeof<T>::shift ) + x;
|
||||
mat_dst[idx] = mat_src[idx];
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void copy_to_with_mask_run(const DevMem2Db& mat_src, const DevMem2Db& mat_dst, const DevMem2Db& mask, int channels, const cudaStream_t & stream)
|
||||
{
|
||||
dim3 threadsPerBlock(16,16, 1);
|
||||
dim3 numBlocks ( divUp(mat_src.cols * channels , threadsPerBlock.x) , divUp(mat_src.rows , threadsPerBlock.y), 1);
|
||||
|
||||
copy_to_with_mask<T><<<numBlocks,threadsPerBlock, 0, stream>>>
|
||||
((T*)mat_src.data, (T*)mat_dst.data, (unsigned char*)mask.data, mat_src.cols, mat_src.rows, mat_src.step, mask.step, channels);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall ( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
void copy_to_with_mask(const DevMem2Db& mat_src, DevMem2Db mat_dst, int depth, const DevMem2Db& mask, int channels, const cudaStream_t & stream)
|
||||
{
|
||||
typedef void (*CopyToFunc)(const DevMem2Db& mat_src, const DevMem2Db& mat_dst, const DevMem2Db& mask, int channels, const cudaStream_t & stream);
|
||||
|
||||
template<typename T>
|
||||
void copy_to_with_mask_run(const DevMem2Db& mat_src, const DevMem2Db& mat_dst, const DevMem2Db& mask, int channels, const cudaStream_t & stream)
|
||||
static CopyToFunc tab[8] =
|
||||
{
|
||||
dim3 threadsPerBlock(16,16, 1);
|
||||
dim3 numBlocks ( divUp(mat_src.cols * channels , threadsPerBlock.x) , divUp(mat_src.rows , threadsPerBlock.y), 1);
|
||||
copy_to_with_mask_run<unsigned char>,
|
||||
copy_to_with_mask_run<signed char>,
|
||||
copy_to_with_mask_run<unsigned short>,
|
||||
copy_to_with_mask_run<short>,
|
||||
copy_to_with_mask_run<int>,
|
||||
copy_to_with_mask_run<float>,
|
||||
copy_to_with_mask_run<double>,
|
||||
0
|
||||
};
|
||||
|
||||
copy_to_with_mask<T><<<numBlocks,threadsPerBlock, 0, stream>>>
|
||||
((T*)mat_src.data, (T*)mat_dst.data, (unsigned char*)mask.data, mat_src.cols, mat_src.rows, mat_src.step, mask.step, channels);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
CopyToFunc func = tab[depth];
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall ( cudaDeviceSynchronize() );
|
||||
}
|
||||
if (func == 0) cv::gpu::error("Unsupported copyTo operation", __FILE__, __LINE__);
|
||||
|
||||
void copy_to_with_mask(const DevMem2Db& mat_src, DevMem2Db mat_dst, int depth, const DevMem2Db& mask, int channels, const cudaStream_t & stream)
|
||||
{
|
||||
static CopyToFunc tab[8] =
|
||||
{
|
||||
copy_to_with_mask_run<unsigned char>,
|
||||
copy_to_with_mask_run<signed char>,
|
||||
copy_to_with_mask_run<unsigned short>,
|
||||
copy_to_with_mask_run<short>,
|
||||
copy_to_with_mask_run<int>,
|
||||
copy_to_with_mask_run<float>,
|
||||
copy_to_with_mask_run<double>,
|
||||
0
|
||||
};
|
||||
|
||||
CopyToFunc func = tab[depth];
|
||||
|
||||
if (func == 0) cv::gpu::error("Unsupported copyTo operation", __FILE__, __LINE__);
|
||||
|
||||
func(mat_src, mat_dst, mask, channels, stream);
|
||||
}
|
||||
func(mat_src, mat_dst, mask, channels, stream);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////////// SetTo //////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
__constant__ uchar scalar_8u[4];
|
||||
__constant__ schar scalar_8s[4];
|
||||
__constant__ ushort scalar_16u[4];
|
||||
__constant__ short scalar_16s[4];
|
||||
__constant__ int scalar_32s[4];
|
||||
__constant__ float scalar_32f[4];
|
||||
__constant__ double scalar_64f[4];
|
||||
__constant__ uchar scalar_8u[4];
|
||||
__constant__ schar scalar_8s[4];
|
||||
__constant__ ushort scalar_16u[4];
|
||||
__constant__ short scalar_16s[4];
|
||||
__constant__ int scalar_32s[4];
|
||||
__constant__ float scalar_32f[4];
|
||||
__constant__ double scalar_64f[4];
|
||||
|
||||
template <typename T> __device__ __forceinline__ T readScalar(int i);
|
||||
template <> __device__ __forceinline__ uchar readScalar<uchar>(int i) {return scalar_8u[i];}
|
||||
template <> __device__ __forceinline__ schar readScalar<schar>(int i) {return scalar_8s[i];}
|
||||
template <> __device__ __forceinline__ ushort readScalar<ushort>(int i) {return scalar_16u[i];}
|
||||
template <> __device__ __forceinline__ short readScalar<short>(int i) {return scalar_16s[i];}
|
||||
template <> __device__ __forceinline__ int readScalar<int>(int i) {return scalar_32s[i];}
|
||||
template <> __device__ __forceinline__ float readScalar<float>(int i) {return scalar_32f[i];}
|
||||
template <> __device__ __forceinline__ double readScalar<double>(int i) {return scalar_64f[i];}
|
||||
template <typename T> __device__ __forceinline__ T readScalar(int i);
|
||||
template <> __device__ __forceinline__ uchar readScalar<uchar>(int i) {return scalar_8u[i];}
|
||||
template <> __device__ __forceinline__ schar readScalar<schar>(int i) {return scalar_8s[i];}
|
||||
template <> __device__ __forceinline__ ushort readScalar<ushort>(int i) {return scalar_16u[i];}
|
||||
template <> __device__ __forceinline__ short readScalar<short>(int i) {return scalar_16s[i];}
|
||||
template <> __device__ __forceinline__ int readScalar<int>(int i) {return scalar_32s[i];}
|
||||
template <> __device__ __forceinline__ float readScalar<float>(int i) {return scalar_32f[i];}
|
||||
template <> __device__ __forceinline__ double readScalar<double>(int i) {return scalar_64f[i];}
|
||||
|
||||
void writeScalar(const uchar* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_8u, vals, sizeof(uchar) * 4) );
|
||||
}
|
||||
void writeScalar(const schar* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_8s, vals, sizeof(schar) * 4) );
|
||||
}
|
||||
void writeScalar(const ushort* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_16u, vals, sizeof(ushort) * 4) );
|
||||
}
|
||||
void writeScalar(const short* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_16s, vals, sizeof(short) * 4) );
|
||||
}
|
||||
void writeScalar(const int* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_32s, vals, sizeof(int) * 4) );
|
||||
}
|
||||
void writeScalar(const float* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_32f, vals, sizeof(float) * 4) );
|
||||
}
|
||||
void writeScalar(const double* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_64f, vals, sizeof(double) * 4) );
|
||||
}
|
||||
void writeScalar(const uchar* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_8u, vals, sizeof(uchar) * 4) );
|
||||
}
|
||||
void writeScalar(const schar* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_8s, vals, sizeof(schar) * 4) );
|
||||
}
|
||||
void writeScalar(const ushort* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_16u, vals, sizeof(ushort) * 4) );
|
||||
}
|
||||
void writeScalar(const short* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_16s, vals, sizeof(short) * 4) );
|
||||
}
|
||||
void writeScalar(const int* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_32s, vals, sizeof(int) * 4) );
|
||||
}
|
||||
void writeScalar(const float* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_32f, vals, sizeof(float) * 4) );
|
||||
}
|
||||
void writeScalar(const double* vals)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(scalar_64f, vals, sizeof(double) * 4) );
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__global__ void set_to_without_mask(T* mat, int cols, int rows, size_t step, int channels)
|
||||
{
|
||||
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
template<typename T>
|
||||
__global__ void set_to_without_mask(T* mat, int cols, int rows, size_t step, int channels)
|
||||
{
|
||||
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if ((x < cols * channels ) && (y < rows))
|
||||
if ((x < cols * channels ) && (y < rows))
|
||||
{
|
||||
size_t idx = y * ( step >> shift_and_sizeof<T>::shift ) + x;
|
||||
mat[idx] = readScalar<T>(x % channels);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__global__ void set_to_with_mask(T* mat, const uchar* mask, int cols, int rows, size_t step, int channels, size_t step_mask)
|
||||
{
|
||||
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if ((x < cols * channels ) && (y < rows))
|
||||
if (mask[y * step_mask + x / channels] != 0)
|
||||
{
|
||||
size_t idx = y * ( step >> shift_and_sizeof<T>::shift ) + x;
|
||||
mat[idx] = readScalar<T>(x % channels);
|
||||
}
|
||||
}
|
||||
}
|
||||
template <typename T>
|
||||
void set_to_gpu(const DevMem2Db& mat, const T* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream)
|
||||
{
|
||||
writeScalar(scalar);
|
||||
|
||||
template<typename T>
|
||||
__global__ void set_to_with_mask(T* mat, const uchar* mask, int cols, int rows, size_t step, int channels, size_t step_mask)
|
||||
{
|
||||
size_t x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
size_t y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
dim3 threadsPerBlock(32, 8, 1);
|
||||
dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
|
||||
|
||||
if ((x < cols * channels ) && (y < rows))
|
||||
if (mask[y * step_mask + x / channels] != 0)
|
||||
{
|
||||
size_t idx = y * ( step >> shift_and_sizeof<T>::shift ) + x;
|
||||
mat[idx] = readScalar<T>(x % channels);
|
||||
}
|
||||
}
|
||||
template <typename T>
|
||||
void set_to_gpu(const DevMem2Db& mat, const T* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream)
|
||||
{
|
||||
writeScalar(scalar);
|
||||
set_to_with_mask<T><<<numBlocks, threadsPerBlock, 0, stream>>>((T*)mat.data, (uchar*)mask.data, mat.cols, mat.rows, mat.step, channels, mask.step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
dim3 threadsPerBlock(32, 8, 1);
|
||||
dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
|
||||
if (stream == 0)
|
||||
cudaSafeCall ( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
set_to_with_mask<T><<<numBlocks, threadsPerBlock, 0, stream>>>((T*)mat.data, (uchar*)mask.data, mat.cols, mat.rows, mat.step, channels, mask.step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
template void set_to_gpu<uchar >(const DevMem2Db& mat, const uchar* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<schar >(const DevMem2Db& mat, const schar* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<ushort>(const DevMem2Db& mat, const ushort* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<short >(const DevMem2Db& mat, const short* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<int >(const DevMem2Db& mat, const int* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<float >(const DevMem2Db& mat, const float* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<double>(const DevMem2Db& mat, const double* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall ( cudaDeviceSynchronize() );
|
||||
}
|
||||
template <typename T>
|
||||
void set_to_gpu(const DevMem2Db& mat, const T* scalar, int channels, cudaStream_t stream)
|
||||
{
|
||||
writeScalar(scalar);
|
||||
|
||||
template void set_to_gpu<uchar >(const DevMem2Db& mat, const uchar* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<schar >(const DevMem2Db& mat, const schar* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<ushort>(const DevMem2Db& mat, const ushort* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<short >(const DevMem2Db& mat, const short* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<int >(const DevMem2Db& mat, const int* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<float >(const DevMem2Db& mat, const float* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<double>(const DevMem2Db& mat, const double* scalar, const DevMem2Db& mask, int channels, cudaStream_t stream);
|
||||
dim3 threadsPerBlock(32, 8, 1);
|
||||
dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
|
||||
|
||||
template <typename T>
|
||||
void set_to_gpu(const DevMem2Db& mat, const T* scalar, int channels, cudaStream_t stream)
|
||||
{
|
||||
writeScalar(scalar);
|
||||
set_to_without_mask<T><<<numBlocks, threadsPerBlock, 0, stream>>>((T*)mat.data, mat.cols, mat.rows, mat.step, channels);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
dim3 threadsPerBlock(32, 8, 1);
|
||||
dim3 numBlocks (mat.cols * channels / threadsPerBlock.x + 1, mat.rows / threadsPerBlock.y + 1, 1);
|
||||
if (stream == 0)
|
||||
cudaSafeCall ( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
set_to_without_mask<T><<<numBlocks, threadsPerBlock, 0, stream>>>((T*)mat.data, mat.cols, mat.rows, mat.step, channels);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall ( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template void set_to_gpu<uchar >(const DevMem2Db& mat, const uchar* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<schar >(const DevMem2Db& mat, const schar* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<ushort>(const DevMem2Db& mat, const ushort* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<short >(const DevMem2Db& mat, const short* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<int >(const DevMem2Db& mat, const int* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<float >(const DevMem2Db& mat, const float* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<double>(const DevMem2Db& mat, const double* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<uchar >(const DevMem2Db& mat, const uchar* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<schar >(const DevMem2Db& mat, const schar* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<ushort>(const DevMem2Db& mat, const ushort* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<short >(const DevMem2Db& mat, const short* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<int >(const DevMem2Db& mat, const int* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<float >(const DevMem2Db& mat, const float* scalar, int channels, cudaStream_t stream);
|
||||
template void set_to_gpu<double>(const DevMem2Db& mat, const double* scalar, int channels, cudaStream_t stream);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
//////////////////////////////// ConvertTo ////////////////////////////////
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename T, typename D> struct Convertor : unary_function<T, D>
|
||||
template <typename T, typename D> struct Convertor : unary_function<T, D>
|
||||
{
|
||||
Convertor(double alpha_, double beta_) : alpha(alpha_), beta(beta_) {}
|
||||
|
||||
__device__ __forceinline__ D operator()(const T& src) const
|
||||
{
|
||||
Convertor(double alpha_, double beta_) : alpha(alpha_), beta(beta_) {}
|
||||
|
||||
__device__ __forceinline__ D operator()(const T& src) const
|
||||
{
|
||||
return saturate_cast<D>(alpha * src + beta);
|
||||
}
|
||||
|
||||
const double alpha, beta;
|
||||
};
|
||||
|
||||
namespace detail
|
||||
{
|
||||
template <size_t src_size, size_t dst_size, typename F> struct ConvertTraitsDispatcher : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
};
|
||||
template <typename F> struct ConvertTraitsDispatcher<1, 1, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_shift = 8 };
|
||||
};
|
||||
template <typename F> struct ConvertTraitsDispatcher<1, 2, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <typename F> struct ConvertTraitsDispatcher<1, 4, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
template <typename F> struct ConvertTraitsDispatcher<2, 2, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <typename F> struct ConvertTraitsDispatcher<2, 4, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_shift = 2 };
|
||||
};
|
||||
|
||||
template <typename F> struct ConvertTraitsDispatcher<4, 2, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <typename F> struct ConvertTraitsDispatcher<4, 4, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 2 };
|
||||
};
|
||||
|
||||
template <typename F> struct ConvertTraits : ConvertTraitsDispatcher<sizeof(typename F::argument_type), sizeof(typename F::result_type), F>
|
||||
{
|
||||
};
|
||||
return saturate_cast<D>(alpha * src + beta);
|
||||
}
|
||||
|
||||
template <typename T, typename D> struct TransformFunctorTraits< Convertor<T, D> > : detail::ConvertTraits< Convertor<T, D> >
|
||||
const double alpha, beta;
|
||||
};
|
||||
|
||||
namespace detail
|
||||
{
|
||||
template <size_t src_size, size_t dst_size, typename F> struct ConvertTraitsDispatcher : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
};
|
||||
|
||||
template<typename T, typename D>
|
||||
void cvt_(const DevMem2Db& src, const DevMem2Db& dst, double alpha, double beta, cudaStream_t stream)
|
||||
template <typename F> struct ConvertTraitsDispatcher<1, 1, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
cudaSafeCall( cudaSetDoubleForDevice(&alpha) );
|
||||
cudaSafeCall( cudaSetDoubleForDevice(&beta) );
|
||||
Convertor<T, D> op(alpha, beta);
|
||||
transform((DevMem2D_<T>)src, (DevMem2D_<D>)dst, op, stream);
|
||||
}
|
||||
|
||||
void convert_gpu(const DevMem2Db& src, int sdepth, const DevMem2Db& dst, int ddepth, double alpha, double beta,
|
||||
cudaStream_t stream = 0)
|
||||
enum { smart_shift = 8 };
|
||||
};
|
||||
template <typename F> struct ConvertTraitsDispatcher<1, 2, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2Db& src, const DevMem2Db& dst, double alpha, double beta,
|
||||
cudaStream_t stream);
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <typename F> struct ConvertTraitsDispatcher<1, 4, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
|
||||
static const caller_t tab[8][8] =
|
||||
{
|
||||
{cvt_<uchar, uchar>, cvt_<uchar, schar>, cvt_<uchar, ushort>, cvt_<uchar, short>,
|
||||
cvt_<uchar, int>, cvt_<uchar, float>, cvt_<uchar, double>, 0},
|
||||
template <typename F> struct ConvertTraitsDispatcher<2, 2, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <typename F> struct ConvertTraitsDispatcher<2, 4, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_shift = 2 };
|
||||
};
|
||||
|
||||
{cvt_<schar, uchar>, cvt_<schar, schar>, cvt_<schar, ushort>, cvt_<schar, short>,
|
||||
cvt_<schar, int>, cvt_<schar, float>, cvt_<schar, double>, 0},
|
||||
template <typename F> struct ConvertTraitsDispatcher<4, 2, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 4 };
|
||||
};
|
||||
template <typename F> struct ConvertTraitsDispatcher<4, 4, F> : DefaultTransformFunctorTraits<F>
|
||||
{
|
||||
enum { smart_block_dim_y = 8 };
|
||||
enum { smart_shift = 2 };
|
||||
};
|
||||
|
||||
{cvt_<ushort, uchar>, cvt_<ushort, schar>, cvt_<ushort, ushort>, cvt_<ushort, short>,
|
||||
cvt_<ushort, int>, cvt_<ushort, float>, cvt_<ushort, double>, 0},
|
||||
template <typename F> struct ConvertTraits : ConvertTraitsDispatcher<sizeof(typename F::argument_type), sizeof(typename F::result_type), F>
|
||||
{
|
||||
};
|
||||
}
|
||||
|
||||
{cvt_<short, uchar>, cvt_<short, schar>, cvt_<short, ushort>, cvt_<short, short>,
|
||||
cvt_<short, int>, cvt_<short, float>, cvt_<short, double>, 0},
|
||||
template <typename T, typename D> struct TransformFunctorTraits< Convertor<T, D> > : detail::ConvertTraits< Convertor<T, D> >
|
||||
{
|
||||
};
|
||||
|
||||
template<typename T, typename D>
|
||||
void cvt_(const DevMem2Db& src, const DevMem2Db& dst, double alpha, double beta, cudaStream_t stream)
|
||||
{
|
||||
cudaSafeCall( cudaSetDoubleForDevice(&alpha) );
|
||||
cudaSafeCall( cudaSetDoubleForDevice(&beta) );
|
||||
Convertor<T, D> op(alpha, beta);
|
||||
OPENCV_DEVICE_NAMESPACE_ transform((DevMem2D_<T>)src, (DevMem2D_<D>)dst, op, stream);
|
||||
}
|
||||
|
||||
{cvt_<int, uchar>, cvt_<int, schar>, cvt_<int, ushort>,
|
||||
cvt_<int, short>, cvt_<int, int>, cvt_<int, float>, cvt_<int, double>, 0},
|
||||
void convert_gpu(const DevMem2Db& src, int sdepth, const DevMem2Db& dst, int ddepth, double alpha, double beta,
|
||||
cudaStream_t stream = 0)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2Db& src, const DevMem2Db& dst, double alpha, double beta,
|
||||
cudaStream_t stream);
|
||||
|
||||
{cvt_<float, uchar>, cvt_<float, schar>, cvt_<float, ushort>,
|
||||
cvt_<float, short>, cvt_<float, int>, cvt_<float, float>, cvt_<float, double>, 0},
|
||||
static const caller_t tab[8][8] =
|
||||
{
|
||||
{cvt_<uchar, uchar>, cvt_<uchar, schar>, cvt_<uchar, ushort>, cvt_<uchar, short>,
|
||||
cvt_<uchar, int>, cvt_<uchar, float>, cvt_<uchar, double>, 0},
|
||||
|
||||
{cvt_<double, uchar>, cvt_<double, schar>, cvt_<double, ushort>,
|
||||
cvt_<double, short>, cvt_<double, int>, cvt_<double, float>, cvt_<double, double>, 0},
|
||||
{cvt_<schar, uchar>, cvt_<schar, schar>, cvt_<schar, ushort>, cvt_<schar, short>,
|
||||
cvt_<schar, int>, cvt_<schar, float>, cvt_<schar, double>, 0},
|
||||
|
||||
{0,0,0,0,0,0,0,0}
|
||||
};
|
||||
{cvt_<ushort, uchar>, cvt_<ushort, schar>, cvt_<ushort, ushort>, cvt_<ushort, short>,
|
||||
cvt_<ushort, int>, cvt_<ushort, float>, cvt_<ushort, double>, 0},
|
||||
|
||||
caller_t func = tab[sdepth][ddepth];
|
||||
if (!func)
|
||||
cv::gpu::error("Unsupported convert operation", __FILE__, __LINE__);
|
||||
{cvt_<short, uchar>, cvt_<short, schar>, cvt_<short, ushort>, cvt_<short, short>,
|
||||
cvt_<short, int>, cvt_<short, float>, cvt_<short, double>, 0},
|
||||
|
||||
func(src, dst, alpha, beta, stream);
|
||||
}
|
||||
}}}
|
||||
{cvt_<int, uchar>, cvt_<int, schar>, cvt_<int, ushort>,
|
||||
cvt_<int, short>, cvt_<int, int>, cvt_<int, float>, cvt_<int, double>, 0},
|
||||
|
||||
{cvt_<float, uchar>, cvt_<float, schar>, cvt_<float, ushort>,
|
||||
cvt_<float, short>, cvt_<float, int>, cvt_<float, float>, cvt_<float, double>, 0},
|
||||
|
||||
{cvt_<double, uchar>, cvt_<double, schar>, cvt_<double, ushort>,
|
||||
cvt_<double, short>, cvt_<double, int>, cvt_<double, float>, cvt_<double, double>, 0},
|
||||
|
||||
{0,0,0,0,0,0,0,0}
|
||||
};
|
||||
|
||||
caller_t func = tab[sdepth][ddepth];
|
||||
if (!func)
|
||||
cv::gpu::error("Unsupported convert operation", __FILE__, __LINE__);
|
||||
|
||||
func(src, dst, alpha, beta, stream);
|
||||
}
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -40,79 +40,73 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/device/limits.hpp"
|
||||
#include "opencv2/gpu/device/saturate_cast.hpp"
|
||||
#include "opencv2/gpu/device/vec_math.hpp"
|
||||
#include "opencv2/gpu/device/transform.hpp"
|
||||
#include "internal_shared.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace cv { namespace gpu { namespace mathfunc
|
||||
namespace matrix_reductions {
|
||||
|
||||
// Performs reduction in shared memory
|
||||
template <int size, typename T>
|
||||
__device__ void sumInSmem(volatile T* data, const uint tid)
|
||||
{
|
||||
T sum = data[tid];
|
||||
|
||||
// Performs reduction in shared memory
|
||||
template <int size, typename T>
|
||||
__device__ void sumInSmem(volatile T* data, const uint tid)
|
||||
if (size >= 512) { if (tid < 256) { data[tid] = sum = sum + data[tid + 256]; } __syncthreads(); }
|
||||
if (size >= 256) { if (tid < 128) { data[tid] = sum = sum + data[tid + 128]; } __syncthreads(); }
|
||||
if (size >= 128) { if (tid < 64) { data[tid] = sum = sum + data[tid + 64]; } __syncthreads(); }
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
T sum = data[tid];
|
||||
if (size >= 64) data[tid] = sum = sum + data[tid + 32];
|
||||
if (size >= 32) data[tid] = sum = sum + data[tid + 16];
|
||||
if (size >= 16) data[tid] = sum = sum + data[tid + 8];
|
||||
if (size >= 8) data[tid] = sum = sum + data[tid + 4];
|
||||
if (size >= 4) data[tid] = sum = sum + data[tid + 2];
|
||||
if (size >= 2) data[tid] = sum = sum + data[tid + 1];
|
||||
}
|
||||
}
|
||||
|
||||
if (size >= 512) { if (tid < 256) { data[tid] = sum = sum + data[tid + 256]; } __syncthreads(); }
|
||||
if (size >= 256) { if (tid < 128) { data[tid] = sum = sum + data[tid + 128]; } __syncthreads(); }
|
||||
if (size >= 128) { if (tid < 64) { data[tid] = sum = sum + data[tid + 64]; } __syncthreads(); }
|
||||
struct Mask8U
|
||||
{
|
||||
explicit Mask8U(PtrStepb mask): mask(mask) {}
|
||||
|
||||
if (tid < 32)
|
||||
{
|
||||
if (size >= 64) data[tid] = sum = sum + data[tid + 32];
|
||||
if (size >= 32) data[tid] = sum = sum + data[tid + 16];
|
||||
if (size >= 16) data[tid] = sum = sum + data[tid + 8];
|
||||
if (size >= 8) data[tid] = sum = sum + data[tid + 4];
|
||||
if (size >= 4) data[tid] = sum = sum + data[tid + 2];
|
||||
if (size >= 2) data[tid] = sum = sum + data[tid + 1];
|
||||
}
|
||||
__device__ __forceinline__ bool operator()(int y, int x) const
|
||||
{
|
||||
return mask.ptr(y)[x];
|
||||
}
|
||||
|
||||
PtrStepb mask;
|
||||
};
|
||||
|
||||
struct Mask8U
|
||||
{
|
||||
explicit Mask8U(PtrStepb mask): mask(mask) {}
|
||||
|
||||
__device__ __forceinline__ bool operator()(int y, int x) const
|
||||
{
|
||||
return mask.ptr(y)[x];
|
||||
}
|
||||
|
||||
PtrStepb mask;
|
||||
};
|
||||
|
||||
|
||||
struct MaskTrue
|
||||
struct MaskTrue
|
||||
{
|
||||
__device__ __forceinline__ bool operator()(int y, int x) const
|
||||
{
|
||||
__device__ __forceinline__ bool operator()(int y, int x) const
|
||||
{
|
||||
return true;
|
||||
}
|
||||
};
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Min max
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Min max
|
||||
|
||||
// To avoid shared bank conflicts we convert each value into value of
|
||||
// appropriate type (32 bits minimum)
|
||||
template <typename T> struct MinMaxTypeTraits {};
|
||||
template <> struct MinMaxTypeTraits<uchar> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<char> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<ushort> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<short> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<int> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<float> { typedef float best_type; };
|
||||
template <> struct MinMaxTypeTraits<double> { typedef double best_type; };
|
||||
|
||||
|
||||
namespace minmax
|
||||
{
|
||||
// To avoid shared bank conflicts we convert each value into value of
|
||||
// appropriate type (32 bits minimum)
|
||||
template <typename T> struct MinMaxTypeTraits {};
|
||||
template <> struct MinMaxTypeTraits<uchar> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<char> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<ushort> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<short> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<int> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<float> { typedef float best_type; };
|
||||
template <> struct MinMaxTypeTraits<double> { typedef double best_type; };
|
||||
|
||||
namespace minmax
|
||||
{
|
||||
__constant__ int ctwidth;
|
||||
__constant__ int ctheight;
|
||||
|
||||
@@ -126,8 +120,8 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
{
|
||||
threads = dim3(32, 8);
|
||||
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
|
||||
grid.x = min(grid.x, threads.x);
|
||||
grid.y = min(grid.y, threads.y);
|
||||
grid.x = std::min(grid.x, threads.x);
|
||||
grid.y = std::min(grid.y, threads.y);
|
||||
}
|
||||
|
||||
|
||||
@@ -155,8 +149,8 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template <typename T>
|
||||
__device__ __forceinline__ void merge(uint tid, uint offset, volatile T* minval, volatile T* maxval)
|
||||
{
|
||||
minval[tid] = min(minval[tid], minval[tid + offset]);
|
||||
maxval[tid] = max(maxval[tid], maxval[tid + offset]);
|
||||
minval[tid] = ::min(minval[tid], minval[tid + offset]);
|
||||
maxval[tid] = ::max(maxval[tid], maxval[tid + offset]);
|
||||
}
|
||||
|
||||
|
||||
@@ -192,8 +186,8 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
|
||||
T mymin = numeric_limits<T>::max();
|
||||
T mymax = numeric_limits<T>::is_signed ? -numeric_limits<T>::max() : numeric_limits<T>::min();
|
||||
uint y_end = min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows);
|
||||
uint x_end = min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols);
|
||||
uint y_end = ::min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows);
|
||||
uint x_end = ::min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols);
|
||||
for (uint y = y0; y < y_end; y += blockDim.y)
|
||||
{
|
||||
const T* src_row = (const T*)src.ptr(y);
|
||||
@@ -202,8 +196,8 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
T val = src_row[x];
|
||||
if (mask(y, x))
|
||||
{
|
||||
mymin = min(mymin, val);
|
||||
mymax = max(mymax, val);
|
||||
mymin = ::min(mymin, val);
|
||||
mymax = ::max(mymax, val);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -220,7 +214,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
maxval[blockIdx.y * gridDim.x + blockIdx.x] = (T)smaxval[0];
|
||||
}
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
||||
#if __CUDA_ARCH__ >= 110
|
||||
__shared__ bool is_last;
|
||||
|
||||
if (tid == 0)
|
||||
@@ -237,7 +231,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
|
||||
if (is_last)
|
||||
{
|
||||
uint idx = min(tid, gridDim.x * gridDim.y - 1);
|
||||
uint idx = ::min(tid, gridDim.x * gridDim.y - 1);
|
||||
|
||||
sminval[tid] = minval[idx];
|
||||
smaxval[tid] = maxval[idx];
|
||||
@@ -332,7 +326,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
__shared__ best_type smaxval[nthreads];
|
||||
|
||||
uint tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
uint idx = min(tid, size - 1);
|
||||
uint idx = ::min(tid, size - 1);
|
||||
|
||||
sminval[tid] = minval[idx];
|
||||
smaxval[tid] = maxval[idx];
|
||||
@@ -410,14 +404,13 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template void minMaxMultipassCaller<short>(const DevMem2Db, double*, double*, PtrStepb);
|
||||
template void minMaxMultipassCaller<int>(const DevMem2Db, double*, double*, PtrStepb);
|
||||
template void minMaxMultipassCaller<float>(const DevMem2Db, double*, double*, PtrStepb);
|
||||
|
||||
} // namespace minmax
|
||||
} // namespace minmax
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// minMaxLoc
|
||||
|
||||
namespace minmaxloc {
|
||||
|
||||
namespace minmaxloc
|
||||
{
|
||||
__constant__ int ctwidth;
|
||||
__constant__ int ctheight;
|
||||
|
||||
@@ -431,8 +424,8 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
{
|
||||
threads = dim3(32, 8);
|
||||
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
|
||||
grid.x = min(grid.x, threads.x);
|
||||
grid.y = min(grid.y, threads.y);
|
||||
grid.x = std::min(grid.x, threads.x);
|
||||
grid.y = std::min(grid.y, threads.y);
|
||||
}
|
||||
|
||||
|
||||
@@ -513,12 +506,11 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
uint tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
T mymin = numeric_limits<T>::max();
|
||||
T mymax = numeric_limits<T>::is_signed ? -numeric_limits<T>::max() :
|
||||
numeric_limits<T>::min();
|
||||
T mymax = numeric_limits<T>::is_signed ? -numeric_limits<T>::max() : numeric_limits<T>::min();
|
||||
uint myminloc = 0;
|
||||
uint mymaxloc = 0;
|
||||
uint y_end = min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows);
|
||||
uint x_end = min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols);
|
||||
uint y_end = ::min(y0 + (ctheight - 1) * blockDim.y + 1, src.rows);
|
||||
uint x_end = ::min(x0 + (ctwidth - 1) * blockDim.x + 1, src.cols);
|
||||
|
||||
for (uint y = y0; y < y_end; y += blockDim.y)
|
||||
{
|
||||
@@ -542,7 +534,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
|
||||
findMinMaxLocInSmem<nthreads, best_type>(sminval, smaxval, sminloc, smaxloc, tid);
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
||||
#if __CUDA_ARCH__ >= 110
|
||||
__shared__ bool is_last;
|
||||
|
||||
if (tid == 0)
|
||||
@@ -561,7 +553,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
|
||||
if (is_last)
|
||||
{
|
||||
uint idx = min(tid, gridDim.x * gridDim.y - 1);
|
||||
uint idx = ::min(tid, gridDim.x * gridDim.y - 1);
|
||||
|
||||
sminval[tid] = minval[idx];
|
||||
smaxval[tid] = maxval[idx];
|
||||
@@ -685,7 +677,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
__shared__ uint smaxloc[nthreads];
|
||||
|
||||
uint tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
uint idx = min(tid, size - 1);
|
||||
uint idx = ::min(tid, size - 1);
|
||||
|
||||
sminval[tid] = minval[idx];
|
||||
smaxval[tid] = maxval[idx];
|
||||
@@ -787,15 +779,13 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template void minMaxLocMultipassCaller<short>(const DevMem2Db, double*, double*, int[2], int[2], PtrStepb, PtrStepb);
|
||||
template void minMaxLocMultipassCaller<int>(const DevMem2Db, double*, double*, int[2], int[2], PtrStepb, PtrStepb);
|
||||
template void minMaxLocMultipassCaller<float>(const DevMem2Db, double*, double*, int[2], int[2], PtrStepb, PtrStepb);
|
||||
|
||||
} // namespace minmaxloc
|
||||
} // namespace minmaxloc
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
// countNonZero
|
||||
|
||||
namespace countnonzero
|
||||
{
|
||||
|
||||
namespace countnonzero
|
||||
{
|
||||
__constant__ int ctwidth;
|
||||
__constant__ int ctheight;
|
||||
|
||||
@@ -805,8 +795,8 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
{
|
||||
threads = dim3(32, 8);
|
||||
grid = dim3(divUp(cols, threads.x * 8), divUp(rows, threads.y * 32));
|
||||
grid.x = min(grid.x, threads.x);
|
||||
grid.y = min(grid.y, threads.y);
|
||||
grid.x = std::min(grid.x, threads.x);
|
||||
grid.y = std::min(grid.y, threads.y);
|
||||
}
|
||||
|
||||
|
||||
@@ -850,7 +840,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
|
||||
sumInSmem<nthreads, uint>(scount, tid);
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
||||
#if __CUDA_ARCH__ >= 110
|
||||
__shared__ bool is_last;
|
||||
|
||||
if (tid == 0)
|
||||
@@ -957,15 +947,14 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template int countNonZeroMultipassCaller<int>(const DevMem2Db, PtrStepb);
|
||||
template int countNonZeroMultipassCaller<float>(const DevMem2Db, PtrStepb);
|
||||
|
||||
} // namespace countnonzero
|
||||
} // namespace countnonzero
|
||||
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Sum
|
||||
|
||||
namespace sums
|
||||
{
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
// Sum
|
||||
|
||||
namespace sum
|
||||
{
|
||||
template <typename T> struct SumType {};
|
||||
template <> struct SumType<uchar> { typedef uint R; };
|
||||
template <> struct SumType<char> { typedef int R; };
|
||||
@@ -979,7 +968,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
struct IdentityOp { static __device__ __forceinline__ R call(R x) { return x; } };
|
||||
|
||||
template <typename R>
|
||||
struct AbsOp { static __device__ __forceinline__ R call(R x) { return abs(x); } };
|
||||
struct AbsOp { static __device__ __forceinline__ R call(R x) { return ::abs(x); } };
|
||||
|
||||
template <>
|
||||
struct AbsOp<uint> { static __device__ __forceinline__ uint call(uint x) { return x; } };
|
||||
@@ -999,8 +988,8 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
threads = dim3(threads_x, threads_y);
|
||||
grid = dim3(divUp(cols, threads.x * threads.y),
|
||||
divUp(rows, threads.y * threads.x));
|
||||
grid.x = min(grid.x, threads.x);
|
||||
grid.y = min(grid.y, threads.y);
|
||||
grid.x = std::min(grid.x, threads.x);
|
||||
grid.y = std::min(grid.y, threads.y);
|
||||
}
|
||||
|
||||
|
||||
@@ -1044,7 +1033,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
|
||||
sumInSmem<nthreads, R>(smem, tid);
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
||||
#if __CUDA_ARCH__ >= 110
|
||||
__shared__ bool is_last;
|
||||
|
||||
if (tid == 0)
|
||||
@@ -1125,7 +1114,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
sumInSmem<nthreads, R>(smem, tid);
|
||||
sumInSmem<nthreads, R>(smem + nthreads, tid);
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
||||
#if __CUDA_ARCH__ >= 110
|
||||
__shared__ bool is_last;
|
||||
|
||||
if (tid == 0)
|
||||
@@ -1232,7 +1221,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
sumInSmem<nthreads, R>(smem + nthreads, tid);
|
||||
sumInSmem<nthreads, R>(smem + 2 * nthreads, tid);
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
||||
#if __CUDA_ARCH__ >= 110
|
||||
__shared__ bool is_last;
|
||||
|
||||
if (tid == 0)
|
||||
@@ -1349,7 +1338,7 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
sumInSmem<nthreads, R>(smem + 2 * nthreads, tid);
|
||||
sumInSmem<nthreads, R>(smem + 3 * nthreads, tid);
|
||||
|
||||
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
|
||||
#if __CUDA_ARCH__ >= 110
|
||||
__shared__ bool is_last;
|
||||
|
||||
if (tid == 0)
|
||||
@@ -1437,13 +1426,9 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sum
|
||||
|
||||
|
||||
template <typename T>
|
||||
void sumMultipassCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn)
|
||||
{
|
||||
using namespace sums;
|
||||
typedef typename SumType<T>::R R;
|
||||
|
||||
dim3 threads, grid;
|
||||
@@ -1515,7 +1500,6 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template <typename T>
|
||||
void sumCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn)
|
||||
{
|
||||
using namespace sums;
|
||||
typedef typename SumType<T>::R R;
|
||||
|
||||
dim3 threads, grid;
|
||||
@@ -1565,7 +1549,6 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template <typename T>
|
||||
void absSumMultipassCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn)
|
||||
{
|
||||
using namespace sums;
|
||||
typedef typename SumType<T>::R R;
|
||||
|
||||
dim3 threads, grid;
|
||||
@@ -1637,7 +1620,6 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template <typename T>
|
||||
void absSumCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn)
|
||||
{
|
||||
using namespace sums;
|
||||
typedef typename SumType<T>::R R;
|
||||
|
||||
dim3 threads, grid;
|
||||
@@ -1687,7 +1669,6 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template <typename T>
|
||||
void sqrSumMultipassCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn)
|
||||
{
|
||||
using namespace sums;
|
||||
typedef typename SumType<T>::R R;
|
||||
|
||||
dim3 threads, grid;
|
||||
@@ -1759,7 +1740,6 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template <typename T>
|
||||
void sqrSumCaller(const DevMem2Db src, PtrStepb buf, double* sum, int cn)
|
||||
{
|
||||
using namespace sums;
|
||||
typedef typename SumType<T>::R R;
|
||||
|
||||
dim3 threads, grid;
|
||||
@@ -1804,301 +1784,305 @@ namespace cv { namespace gpu { namespace mathfunc
|
||||
template void sqrSumCaller<short>(const DevMem2Db, PtrStepb, double*, int);
|
||||
template void sqrSumCaller<int>(const DevMem2Db, PtrStepb, double*, int);
|
||||
template void sqrSumCaller<float>(const DevMem2Db, PtrStepb, double*, int);
|
||||
} // namespace sum
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// reduce
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// reduce
|
||||
|
||||
template <typename S> struct SumReductor
|
||||
template <typename S> struct SumReductor
|
||||
{
|
||||
__device__ __forceinline__ S startValue() const
|
||||
{
|
||||
__device__ __forceinline__ S startValue() const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ S operator ()(volatile S a, volatile S b) const
|
||||
{
|
||||
return a + b;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ S result(S r, double) const
|
||||
{
|
||||
return r;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename S> struct AvgReductor
|
||||
{
|
||||
__device__ __forceinline__ S startValue() const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ S operator ()(volatile S a, volatile S b) const
|
||||
{
|
||||
return a + b;
|
||||
}
|
||||
|
||||
__device__ __forceinline__ double result(S r, double sz) const
|
||||
{
|
||||
return r / sz;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename S> struct MinReductor
|
||||
{
|
||||
__device__ __forceinline__ S startValue() const
|
||||
{
|
||||
return numeric_limits<S>::max();
|
||||
}
|
||||
|
||||
template <typename T> __device__ __forceinline__ T operator ()(volatile T a, volatile T b) const
|
||||
{
|
||||
return saturate_cast<T>(::min(a, b));
|
||||
}
|
||||
__device__ __forceinline__ float operator ()(volatile float a, volatile float b) const
|
||||
{
|
||||
return ::fmin(a, b);
|
||||
}
|
||||
|
||||
__device__ __forceinline__ S result(S r, double) const
|
||||
{
|
||||
return r;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename S> struct MaxReductor
|
||||
{
|
||||
__device__ __forceinline__ S startValue() const
|
||||
{
|
||||
return numeric_limits<S>::min();
|
||||
}
|
||||
|
||||
template <typename T> __device__ __forceinline__ int operator ()(volatile T a, volatile T b) const
|
||||
{
|
||||
return ::max(a, b);
|
||||
}
|
||||
__device__ __forceinline__ float operator ()(volatile float a, volatile float b) const
|
||||
{
|
||||
return ::fmax(a, b);
|
||||
}
|
||||
|
||||
__device__ __forceinline__ S result(S r, double) const
|
||||
{
|
||||
return r;
|
||||
}
|
||||
};
|
||||
|
||||
template <class Op, typename T, typename S, typename D> __global__ void reduceRows(const DevMem2D_<T> src, D* dst, const Op op)
|
||||
{
|
||||
__shared__ S smem[16 * 16];
|
||||
|
||||
const int x = blockIdx.x * 16 + threadIdx.x;
|
||||
|
||||
S myVal = op.startValue();
|
||||
|
||||
if (x < src.cols)
|
||||
{
|
||||
for (int y = threadIdx.y; y < src.rows; y += 16)
|
||||
myVal = op(myVal, src.ptr(y)[x]);
|
||||
}
|
||||
|
||||
smem[threadIdx.x * 16 + threadIdx.y] = myVal;
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x < 8)
|
||||
{
|
||||
volatile S* srow = smem + threadIdx.y * 16;
|
||||
srow[threadIdx.x] = op(srow[threadIdx.x], srow[threadIdx.x + 8]);
|
||||
srow[threadIdx.x] = op(srow[threadIdx.x], srow[threadIdx.x + 4]);
|
||||
srow[threadIdx.x] = op(srow[threadIdx.x], srow[threadIdx.x + 2]);
|
||||
srow[threadIdx.x] = op(srow[threadIdx.x], srow[threadIdx.x + 1]);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.y == 0 && x < src.cols)
|
||||
dst[x] = saturate_cast<D>(op.result(smem[threadIdx.x * 16], src.rows));
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <template <typename> class Op, typename T, typename S, typename D> void reduceRows_caller(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream)
|
||||
__device__ __forceinline__ S operator ()(volatile S a, volatile S b) const
|
||||
{
|
||||
const dim3 block(16, 16);
|
||||
const dim3 grid(divUp(src.cols, block.x));
|
||||
|
||||
Op<S> op;
|
||||
reduceRows<Op<S>, T, S, D><<<grid, block, 0, stream>>>(src, dst.data, op);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
return a + b;
|
||||
}
|
||||
|
||||
template <typename T, typename S, typename D> void reduceRows_gpu(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream)
|
||||
__device__ __forceinline__ S result(S r, double) const
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream);
|
||||
return r;
|
||||
}
|
||||
};
|
||||
|
||||
static const caller_t callers[] =
|
||||
{
|
||||
reduceRows_caller<SumReductor, T, S, D>,
|
||||
reduceRows_caller<AvgReductor, T, S, D>,
|
||||
reduceRows_caller<MaxReductor, T, S, D>,
|
||||
reduceRows_caller<MinReductor, T, S, D>
|
||||
};
|
||||
|
||||
callers[reduceOp](static_cast< DevMem2D_<T> >(src), static_cast< DevMem2D_<D> >(dst), stream);
|
||||
template <typename S> struct AvgReductor
|
||||
{
|
||||
__device__ __forceinline__ S startValue() const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
template void reduceRows_gpu<uchar, int, uchar>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<uchar, int, int>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<uchar, int, float>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceRows_gpu<ushort, int, ushort>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<ushort, int, int>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<ushort, int, float>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceRows_gpu<short, int, short>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<short, int, int>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<short, int, float>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceRows_gpu<int, int, int>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<int, int, float>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceRows_gpu<float, float, float>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
|
||||
|
||||
template <int cn, class Op, typename T, typename S, typename D> __global__ void reduceCols(const DevMem2D_<T> src, D* dst, const Op op)
|
||||
__device__ __forceinline__ S operator ()(volatile S a, volatile S b) const
|
||||
{
|
||||
__shared__ S smem[256 * cn];
|
||||
return a + b;
|
||||
}
|
||||
|
||||
const int y = blockIdx.x;
|
||||
__device__ __forceinline__ double result(S r, double sz) const
|
||||
{
|
||||
return r / sz;
|
||||
}
|
||||
};
|
||||
|
||||
const T* src_row = src.ptr(y);
|
||||
template <typename S> struct MinReductor
|
||||
{
|
||||
__device__ __forceinline__ S startValue() const
|
||||
{
|
||||
return numeric_limits<S>::max();
|
||||
}
|
||||
|
||||
S myVal[cn];
|
||||
template <typename T> __device__ __forceinline__ T operator ()(volatile T a, volatile T b) const
|
||||
{
|
||||
return saturate_cast<T>(::min(a, b));
|
||||
}
|
||||
__device__ __forceinline__ float operator ()(volatile float a, volatile float b) const
|
||||
{
|
||||
return ::fmin(a, b);
|
||||
}
|
||||
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
myVal[c] = op.startValue();
|
||||
__device__ __forceinline__ S result(S r, double) const
|
||||
{
|
||||
return r;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename S> struct MaxReductor
|
||||
{
|
||||
__device__ __forceinline__ S startValue() const
|
||||
{
|
||||
return numeric_limits<S>::min();
|
||||
}
|
||||
|
||||
template <typename T> __device__ __forceinline__ int operator ()(volatile T a, volatile T b) const
|
||||
{
|
||||
return ::max(a, b);
|
||||
}
|
||||
__device__ __forceinline__ float operator ()(volatile float a, volatile float b) const
|
||||
{
|
||||
return ::fmax(a, b);
|
||||
}
|
||||
|
||||
__device__ __forceinline__ S result(S r, double) const
|
||||
{
|
||||
return r;
|
||||
}
|
||||
};
|
||||
|
||||
template <class Op, typename T, typename S, typename D> __global__ void reduceRows(const DevMem2D_<T> src, D* dst, const Op op)
|
||||
{
|
||||
__shared__ S smem[16 * 16];
|
||||
|
||||
const int x = blockIdx.x * 16 + threadIdx.x;
|
||||
|
||||
S myVal = op.startValue();
|
||||
|
||||
if (x < src.cols)
|
||||
{
|
||||
for (int y = threadIdx.y; y < src.rows; y += 16)
|
||||
myVal = op(myVal, src.ptr(y)[x]);
|
||||
}
|
||||
|
||||
smem[threadIdx.x * 16 + threadIdx.y] = myVal;
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x < 8)
|
||||
{
|
||||
volatile S* srow = smem + threadIdx.y * 16;
|
||||
srow[threadIdx.x] = op(srow[threadIdx.x], srow[threadIdx.x + 8]);
|
||||
srow[threadIdx.x] = op(srow[threadIdx.x], srow[threadIdx.x + 4]);
|
||||
srow[threadIdx.x] = op(srow[threadIdx.x], srow[threadIdx.x + 2]);
|
||||
srow[threadIdx.x] = op(srow[threadIdx.x], srow[threadIdx.x + 1]);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.y == 0 && x < src.cols)
|
||||
dst[x] = saturate_cast<D>(op.result(smem[threadIdx.x * 16], src.rows));
|
||||
}
|
||||
|
||||
template <template <typename> class Op, typename T, typename S, typename D> void reduceRows_caller(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(16, 16);
|
||||
const dim3 grid(divUp(src.cols, block.x));
|
||||
|
||||
Op<S> op;
|
||||
reduceRows<Op<S>, T, S, D><<<grid, block, 0, stream>>>(src, dst.data, op);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
}
|
||||
|
||||
template <typename T, typename S, typename D> void reduceRows_gpu(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[] =
|
||||
{
|
||||
reduceRows_caller<SumReductor, T, S, D>,
|
||||
reduceRows_caller<AvgReductor, T, S, D>,
|
||||
reduceRows_caller<MaxReductor, T, S, D>,
|
||||
reduceRows_caller<MinReductor, T, S, D>
|
||||
};
|
||||
|
||||
callers[reduceOp](static_cast< DevMem2D_<T> >(src), static_cast< DevMem2D_<D> >(dst), stream);
|
||||
}
|
||||
|
||||
template void reduceRows_gpu<uchar, int, uchar>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<uchar, int, int>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<uchar, int, float>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceRows_gpu<ushort, int, ushort>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<ushort, int, int>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<ushort, int, float>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceRows_gpu<short, int, short>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<short, int, int>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<short, int, float>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceRows_gpu<int, int, int>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceRows_gpu<int, int, float>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceRows_gpu<float, float, float>(const DevMem2Db& src, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
|
||||
|
||||
template <int cn, class Op, typename T, typename S, typename D> __global__ void reduceCols(const DevMem2D_<T> src, D* dst, const Op op)
|
||||
{
|
||||
__shared__ S smem[256 * cn];
|
||||
|
||||
const int y = blockIdx.x;
|
||||
|
||||
const T* src_row = src.ptr(y);
|
||||
|
||||
S myVal[cn];
|
||||
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
myVal[c] = op.startValue();
|
||||
|
||||
#if __CUDA_ARCH__ >= 200
|
||||
|
||||
// For cc >= 2.0 prefer L1 cache
|
||||
for (int x = threadIdx.x; x < src.cols; x += 256)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
myVal[c] = op(myVal[c], src_row[x * cn + c]);
|
||||
}
|
||||
// For cc >= 2.0 prefer L1 cache
|
||||
for (int x = threadIdx.x; x < src.cols; x += 256)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
myVal[c] = op(myVal[c], src_row[x * cn + c]);
|
||||
}
|
||||
|
||||
#else // __CUDA_ARCH__ >= 200
|
||||
|
||||
// For older arch use shared memory for cache
|
||||
for (int x = 0; x < src.cols; x += 256)
|
||||
// For older arch use shared memory for cache
|
||||
for (int x = 0; x < src.cols; x += 256)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
{
|
||||
smem[c * 256 + threadIdx.x] = op.startValue();
|
||||
const int load_x = x * cn + c * 256 + threadIdx.x;
|
||||
if (load_x < src.cols * cn)
|
||||
smem[c * 256 + threadIdx.x] = src_row[load_x];
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
myVal[c] = op(myVal[c], smem[threadIdx.x * cn + c]);
|
||||
__syncthreads();
|
||||
smem[c * 256 + threadIdx.x] = op.startValue();
|
||||
const int load_x = x * cn + c * 256 + threadIdx.x;
|
||||
if (load_x < src.cols * cn)
|
||||
smem[c * 256 + threadIdx.x] = src_row[load_x];
|
||||
}
|
||||
|
||||
#endif // __CUDA_ARCH__ >= 200
|
||||
__syncthreads();
|
||||
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
smem[c * 256 + threadIdx.x] = myVal[c];
|
||||
myVal[c] = op(myVal[c], smem[threadIdx.x * cn + c]);
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x < 128)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
smem[c * 256 + threadIdx.x] = op(smem[c * 256 + threadIdx.x], smem[c * 256 + threadIdx.x + 128]);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x < 64)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
smem[c * 256 + threadIdx.x] = op(smem[c * 256 + threadIdx.x], smem[c * 256 + threadIdx.x + 64]);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
volatile S* sdata = smem;
|
||||
|
||||
if (threadIdx.x < 32)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
{
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 32]);
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 16]);
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 8]);
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 4]);
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 2]);
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 1]);
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x < cn)
|
||||
dst[y * cn + threadIdx.x] = saturate_cast<D>(op.result(smem[threadIdx.x * 256], src.cols));
|
||||
}
|
||||
|
||||
template <int cn, template <typename> class Op, typename T, typename S, typename D> void reduceCols_caller(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream)
|
||||
#endif // __CUDA_ARCH__ >= 200
|
||||
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
smem[c * 256 + threadIdx.x] = myVal[c];
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x < 128)
|
||||
{
|
||||
const dim3 block(256);
|
||||
const dim3 grid(src.rows);
|
||||
|
||||
Op<S> op;
|
||||
reduceCols<cn, Op<S>, T, S, D><<<grid, block, 0, stream>>>(src, dst.data, op);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
smem[c * 256 + threadIdx.x] = op(smem[c * 256 + threadIdx.x], smem[c * 256 + threadIdx.x + 128]);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
template <typename T, typename S, typename D> void reduceCols_gpu(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream)
|
||||
if (threadIdx.x < 64)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[4][4] =
|
||||
{
|
||||
{reduceCols_caller<1, SumReductor, T, S, D>, reduceCols_caller<1, AvgReductor, T, S, D>, reduceCols_caller<1, MaxReductor, T, S, D>, reduceCols_caller<1, MinReductor, T, S, D>},
|
||||
{reduceCols_caller<2, SumReductor, T, S, D>, reduceCols_caller<2, AvgReductor, T, S, D>, reduceCols_caller<2, MaxReductor, T, S, D>, reduceCols_caller<2, MinReductor, T, S, D>},
|
||||
{reduceCols_caller<3, SumReductor, T, S, D>, reduceCols_caller<3, AvgReductor, T, S, D>, reduceCols_caller<3, MaxReductor, T, S, D>, reduceCols_caller<3, MinReductor, T, S, D>},
|
||||
{reduceCols_caller<4, SumReductor, T, S, D>, reduceCols_caller<4, AvgReductor, T, S, D>, reduceCols_caller<4, MaxReductor, T, S, D>, reduceCols_caller<4, MinReductor, T, S, D>},
|
||||
};
|
||||
|
||||
callers[cn - 1][reduceOp](static_cast< DevMem2D_<T> >(src), static_cast< DevMem2D_<D> >(dst), stream);
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
smem[c * 256 + threadIdx.x] = op(smem[c * 256 + threadIdx.x], smem[c * 256 + threadIdx.x + 64]);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
template void reduceCols_gpu<uchar, int, uchar>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<uchar, int, int>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<uchar, int, float>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
volatile S* sdata = smem;
|
||||
|
||||
template void reduceCols_gpu<ushort, int, ushort>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<ushort, int, int>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<ushort, int, float>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
if (threadIdx.x < 32)
|
||||
{
|
||||
#pragma unroll
|
||||
for (int c = 0; c < cn; ++c)
|
||||
{
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 32]);
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 16]);
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 8]);
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 4]);
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 2]);
|
||||
sdata[c * 256 + threadIdx.x] = op(sdata[c * 256 + threadIdx.x], sdata[c * 256 + threadIdx.x + 1]);
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
template void reduceCols_gpu<short, int, short>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<short, int, int>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<short, int, float>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
if (threadIdx.x < cn)
|
||||
dst[y * cn + threadIdx.x] = saturate_cast<D>(op.result(smem[threadIdx.x * 256], src.cols));
|
||||
}
|
||||
|
||||
template void reduceCols_gpu<int, int, int>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<int, int, float>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template <int cn, template <typename> class Op, typename T, typename S, typename D> void reduceCols_caller(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(256);
|
||||
const dim3 grid(src.rows);
|
||||
|
||||
template void reduceCols_gpu<float, float, float>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
}}}
|
||||
Op<S> op;
|
||||
reduceCols<cn, Op<S>, T, S, D><<<grid, block, 0, stream>>>(src, dst.data, op);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
}
|
||||
|
||||
template <typename T, typename S, typename D> void reduceCols_gpu(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, DevMem2D_<D> dst, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[4][4] =
|
||||
{
|
||||
{reduceCols_caller<1, SumReductor, T, S, D>, reduceCols_caller<1, AvgReductor, T, S, D>, reduceCols_caller<1, MaxReductor, T, S, D>, reduceCols_caller<1, MinReductor, T, S, D>},
|
||||
{reduceCols_caller<2, SumReductor, T, S, D>, reduceCols_caller<2, AvgReductor, T, S, D>, reduceCols_caller<2, MaxReductor, T, S, D>, reduceCols_caller<2, MinReductor, T, S, D>},
|
||||
{reduceCols_caller<3, SumReductor, T, S, D>, reduceCols_caller<3, AvgReductor, T, S, D>, reduceCols_caller<3, MaxReductor, T, S, D>, reduceCols_caller<3, MinReductor, T, S, D>},
|
||||
{reduceCols_caller<4, SumReductor, T, S, D>, reduceCols_caller<4, AvgReductor, T, S, D>, reduceCols_caller<4, MaxReductor, T, S, D>, reduceCols_caller<4, MinReductor, T, S, D>},
|
||||
};
|
||||
|
||||
callers[cn - 1][reduceOp](static_cast< DevMem2D_<T> >(src), static_cast< DevMem2D_<D> >(dst), stream);
|
||||
}
|
||||
|
||||
template void reduceCols_gpu<uchar, int, uchar>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<uchar, int, int>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<uchar, int, float>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceCols_gpu<ushort, int, ushort>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<ushort, int, int>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<ushort, int, float>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceCols_gpu<short, int, short>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<short, int, int>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<short, int, float>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceCols_gpu<int, int, int>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
template void reduceCols_gpu<int, int, float>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
template void reduceCols_gpu<float, float, float>(const DevMem2Db& src, int cn, const DevMem2Db& dst, int reduceOp, cudaStream_t stream);
|
||||
|
||||
} // namespace mattrix_reductions
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -46,140 +46,142 @@
|
||||
#include "opencv2/gpu/device/vec_math.hpp"
|
||||
#include "opencv2/gpu/device/saturate_cast.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace cv { namespace gpu { namespace imgproc
|
||||
namespace pyr_down {
|
||||
|
||||
template <typename T, typename B> __global__ void pyrDown(const PtrStep<T> src, PtrStep<T> dst, const B b, int dst_cols)
|
||||
{
|
||||
template <typename T, typename B> __global__ void pyrDown(const PtrStep<T> src, PtrStep<T> dst, const B b, int dst_cols)
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type value_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y;
|
||||
|
||||
__shared__ value_type smem[256 + 4];
|
||||
|
||||
value_type sum;
|
||||
|
||||
const int src_y = 2*y;
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + 0.0625f * b.at(src_y - 2, x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y - 1, x, src.data, src.step);
|
||||
sum = sum + 0.375f * b.at(src_y , x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y + 1, x, src.data, src.step);
|
||||
sum = sum + 0.0625f * b.at(src_y + 2, x, src.data, src.step);
|
||||
|
||||
smem[2 + threadIdx.x] = sum;
|
||||
|
||||
if (threadIdx.x < 2)
|
||||
{
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type value_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y;
|
||||
|
||||
__shared__ value_type smem[256 + 4];
|
||||
|
||||
value_type sum;
|
||||
|
||||
const int src_y = 2*y;
|
||||
const int left_x = x - 2 + threadIdx.x;
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + 0.0625f * b.at(src_y - 2, x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y - 1, x, src.data, src.step);
|
||||
sum = sum + 0.375f * b.at(src_y , x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y + 1, x, src.data, src.step);
|
||||
sum = sum + 0.0625f * b.at(src_y + 2, x, src.data, src.step);
|
||||
|
||||
sum = sum + 0.0625f * b.at(src_y - 2, left_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y - 1, left_x, src.data, src.step);
|
||||
sum = sum + 0.375f * b.at(src_y , left_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y + 1, left_x, src.data, src.step);
|
||||
sum = sum + 0.0625f * b.at(src_y + 2, left_x, src.data, src.step);
|
||||
|
||||
smem[2 + threadIdx.x] = sum;
|
||||
|
||||
if (threadIdx.x < 2)
|
||||
{
|
||||
const int left_x = x - 2 + threadIdx.x;
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + 0.0625f * b.at(src_y - 2, left_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y - 1, left_x, src.data, src.step);
|
||||
sum = sum + 0.375f * b.at(src_y , left_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y + 1, left_x, src.data, src.step);
|
||||
sum = sum + 0.0625f * b.at(src_y + 2, left_x, src.data, src.step);
|
||||
|
||||
smem[threadIdx.x] = sum;
|
||||
}
|
||||
|
||||
if (threadIdx.x > 253)
|
||||
{
|
||||
const int right_x = x + threadIdx.x + 2;
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + 0.0625f * b.at(src_y - 2, right_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y - 1, right_x, src.data, src.step);
|
||||
sum = sum + 0.375f * b.at(src_y , right_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y + 1, right_x, src.data, src.step);
|
||||
sum = sum + 0.0625f * b.at(src_y + 2, right_x, src.data, src.step);
|
||||
|
||||
smem[4 + threadIdx.x] = sum;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x < 128)
|
||||
{
|
||||
const int tid2 = threadIdx.x * 2;
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + 0.0625f * smem[2 + tid2 - 2];
|
||||
sum = sum + 0.25f * smem[2 + tid2 - 1];
|
||||
sum = sum + 0.375f * smem[2 + tid2 ];
|
||||
sum = sum + 0.25f * smem[2 + tid2 + 1];
|
||||
sum = sum + 0.0625f * smem[2 + tid2 + 2];
|
||||
|
||||
const int dst_x = (blockIdx.x * blockDim.x + tid2) / 2;
|
||||
|
||||
if (dst_x < dst_cols)
|
||||
dst.ptr(y)[dst_x] = saturate_cast<T>(sum);
|
||||
}
|
||||
smem[threadIdx.x] = sum;
|
||||
}
|
||||
|
||||
template <typename T, template <typename> class B> void pyrDown_caller(const DevMem2D_<T>& src, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
if (threadIdx.x > 253)
|
||||
{
|
||||
const dim3 block(256);
|
||||
const dim3 grid(divUp(src.cols, block.x), dst.rows);
|
||||
const int right_x = x + threadIdx.x + 2;
|
||||
|
||||
B<T> b(src.rows, src.cols);
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + 0.0625f * b.at(src_y - 2, right_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y - 1, right_x, src.data, src.step);
|
||||
sum = sum + 0.375f * b.at(src_y , right_x, src.data, src.step);
|
||||
sum = sum + 0.25f * b.at(src_y + 1, right_x, src.data, src.step);
|
||||
sum = sum + 0.0625f * b.at(src_y + 2, right_x, src.data, src.step);
|
||||
|
||||
pyrDown<T><<<grid, block, 0, stream>>>(src, dst, b, dst.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
smem[4 + threadIdx.x] = sum;
|
||||
}
|
||||
|
||||
template <typename T, int cn> void pyrDown_gpu(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream)
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x < 128)
|
||||
{
|
||||
typedef typename TypeVec<T, cn>::vec_type type;
|
||||
const int tid2 = threadIdx.x * 2;
|
||||
|
||||
typedef void (*caller_t)(const DevMem2D_<type>& src, const DevMem2D_<type>& dst, cudaStream_t stream);
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
static const caller_t callers[] =
|
||||
{
|
||||
pyrDown_caller<type, BrdReflect101>, pyrDown_caller<type, BrdReplicate>, pyrDown_caller<type, BrdConstant>, pyrDown_caller<type, BrdReflect>, pyrDown_caller<type, BrdWrap>
|
||||
};
|
||||
sum = sum + 0.0625f * smem[2 + tid2 - 2];
|
||||
sum = sum + 0.25f * smem[2 + tid2 - 1];
|
||||
sum = sum + 0.375f * smem[2 + tid2 ];
|
||||
sum = sum + 0.25f * smem[2 + tid2 + 1];
|
||||
sum = sum + 0.0625f * smem[2 + tid2 + 2];
|
||||
|
||||
callers[borderType](static_cast< DevMem2D_<type> >(src), static_cast< DevMem2D_<type> >(dst), stream);
|
||||
const int dst_x = (blockIdx.x * blockDim.x + tid2) / 2;
|
||||
|
||||
if (dst_x < dst_cols)
|
||||
dst.ptr(y)[dst_x] = saturate_cast<T>(sum);
|
||||
}
|
||||
}
|
||||
|
||||
template void pyrDown_gpu<uchar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<uchar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<uchar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<uchar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template <typename T, template <typename> class B> void pyrDown_caller(const DevMem2D_<T>& src, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(256);
|
||||
const dim3 grid(divUp(src.cols, block.x), dst.rows);
|
||||
|
||||
template void pyrDown_gpu<schar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<schar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<schar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<schar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
B<T> b(src.rows, src.cols);
|
||||
|
||||
template void pyrDown_gpu<ushort, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<ushort, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<ushort, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<ushort, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
pyrDown<T><<<grid, block, 0, stream>>>(src, dst, b, dst.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
template void pyrDown_gpu<short, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<short, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<short, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<short, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template void pyrDown_gpu<int, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<int, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<int, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<int, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template <typename T, int cn> void pyrDown_gpu(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream)
|
||||
{
|
||||
typedef typename TypeVec<T, cn>::vec_type type;
|
||||
|
||||
template void pyrDown_gpu<float, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<float, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<float, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<float, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
}}}
|
||||
typedef void (*caller_t)(const DevMem2D_<type>& src, const DevMem2D_<type>& dst, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[] =
|
||||
{
|
||||
pyrDown_caller<type, BrdReflect101>, pyrDown_caller<type, BrdReplicate>, pyrDown_caller<type, BrdConstant>, pyrDown_caller<type, BrdReflect>, pyrDown_caller<type, BrdWrap>
|
||||
};
|
||||
|
||||
callers[borderType](static_cast< DevMem2D_<type> >(src), static_cast< DevMem2D_<type> >(dst), stream);
|
||||
}
|
||||
|
||||
template void pyrDown_gpu<uchar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<uchar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<uchar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<uchar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
template void pyrDown_gpu<schar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<schar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<schar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<schar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
template void pyrDown_gpu<ushort, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<ushort, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<ushort, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<ushort, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
template void pyrDown_gpu<short, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<short, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<short, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<short, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
template void pyrDown_gpu<int, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<int, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<int, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<int, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
template void pyrDown_gpu<float, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<float, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<float, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrDown_gpu<float, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
} // namespace pyr_down
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -46,135 +46,137 @@
|
||||
#include "opencv2/gpu/device/vec_math.hpp"
|
||||
#include "opencv2/gpu/device/saturate_cast.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace cv { namespace gpu { namespace imgproc
|
||||
namespace pyr_up {
|
||||
|
||||
template <typename T, typename B> __global__ void pyrUp(const PtrStep<T> src, DevMem2D_<T> dst, const B b)
|
||||
{
|
||||
template <typename T, typename B> __global__ void pyrUp(const PtrStep<T> src, DevMem2D_<T> dst, const B b)
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type value_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
__shared__ T smem1[10][10];
|
||||
__shared__ value_type smem2[20][16];
|
||||
|
||||
value_type sum;
|
||||
|
||||
if (threadIdx.x < 10 && threadIdx.y < 10)
|
||||
smem1[threadIdx.y][threadIdx.x] = b.at(blockIdx.y * blockDim.y / 2 + threadIdx.y - 1, blockIdx.x * blockDim.x / 2 + threadIdx.x - 1, src.data, src.step);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int tidx = threadIdx.x;
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[1 + threadIdx.y / 2][1 + ((tidx - 2) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[1 + threadIdx.y / 2][1 + ((tidx - 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.375f * smem1[1 + threadIdx.y / 2][1 + ((tidx ) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[1 + threadIdx.y / 2][1 + ((tidx + 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[1 + threadIdx.y / 2][1 + ((tidx + 2) >> 1)];
|
||||
|
||||
smem2[2 + threadIdx.y][tidx] = sum;
|
||||
|
||||
if (threadIdx.y < 2)
|
||||
{
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type value_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
__shared__ T smem1[10][10];
|
||||
__shared__ value_type smem2[20][16];
|
||||
|
||||
value_type sum;
|
||||
|
||||
if (threadIdx.x < 10 && threadIdx.y < 10)
|
||||
smem1[threadIdx.y][threadIdx.x] = b.at(blockIdx.y * blockDim.y / 2 + threadIdx.y - 1, blockIdx.x * blockDim.x / 2 + threadIdx.x - 1, src.data, src.step);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int tidx = threadIdx.x;
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[1 + threadIdx.y / 2][1 + ((tidx - 2) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[1 + threadIdx.y / 2][1 + ((tidx - 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.375f * smem1[1 + threadIdx.y / 2][1 + ((tidx ) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[1 + threadIdx.y / 2][1 + ((tidx + 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[1 + threadIdx.y / 2][1 + ((tidx + 2) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[0][1 + ((tidx - 2) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[0][1 + ((tidx - 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.375f * smem1[0][1 + ((tidx ) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[0][1 + ((tidx + 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[0][1 + ((tidx + 2) >> 1)];
|
||||
|
||||
smem2[2 + threadIdx.y][tidx] = sum;
|
||||
|
||||
if (threadIdx.y < 2)
|
||||
{
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[0][1 + ((tidx - 2) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[0][1 + ((tidx - 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.375f * smem1[0][1 + ((tidx ) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[0][1 + ((tidx + 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[0][1 + ((tidx + 2) >> 1)];
|
||||
|
||||
smem2[threadIdx.y][tidx] = sum;
|
||||
}
|
||||
|
||||
if (threadIdx.y > 13)
|
||||
{
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[9][1 + ((tidx - 2) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[9][1 + ((tidx - 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.375f * smem1[9][1 + ((tidx ) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[9][1 + ((tidx + 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[9][1 + ((tidx + 2) >> 1)];
|
||||
|
||||
smem2[4 + threadIdx.y][tidx] = sum;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
smem2[threadIdx.y][tidx] = sum;
|
||||
}
|
||||
|
||||
if (threadIdx.y > 13)
|
||||
{
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem2[2 + threadIdx.y - 2][tidx];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem2[2 + threadIdx.y - 1][tidx];
|
||||
sum = sum + (tidx % 2 == 0) * 0.375f * smem2[2 + threadIdx.y ][tidx];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem2[2 + threadIdx.y + 1][tidx];
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem2[2 + threadIdx.y + 2][tidx];
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[9][1 + ((tidx - 2) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[9][1 + ((tidx - 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.375f * smem1[9][1 + ((tidx ) >> 1)];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem1[9][1 + ((tidx + 1) >> 1)];
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem1[9][1 + ((tidx + 2) >> 1)];
|
||||
|
||||
if (x < dst.cols && y < dst.rows)
|
||||
dst.ptr(y)[x] = saturate_cast<T>(4.0f * sum);
|
||||
smem2[4 + threadIdx.y][tidx] = sum;
|
||||
}
|
||||
|
||||
template <typename T, template <typename> class B> void pyrUp_caller(const DevMem2D_<T>& src, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
__syncthreads();
|
||||
|
||||
sum = VecTraits<value_type>::all(0);
|
||||
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem2[2 + threadIdx.y - 2][tidx];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem2[2 + threadIdx.y - 1][tidx];
|
||||
sum = sum + (tidx % 2 == 0) * 0.375f * smem2[2 + threadIdx.y ][tidx];
|
||||
sum = sum + (tidx % 2 != 0) * 0.25f * smem2[2 + threadIdx.y + 1][tidx];
|
||||
sum = sum + (tidx % 2 == 0) * 0.0625f * smem2[2 + threadIdx.y + 2][tidx];
|
||||
|
||||
if (x < dst.cols && y < dst.rows)
|
||||
dst.ptr(y)[x] = saturate_cast<T>(4.0f * sum);
|
||||
}
|
||||
|
||||
template <typename T, template <typename> class B> void pyrUp_caller(const DevMem2D_<T>& src, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
{
|
||||
const dim3 block(16, 16);
|
||||
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
|
||||
B<T> b(src.rows, src.cols);
|
||||
|
||||
pyrUp<T><<<grid, block, 0, stream>>>(src, dst, b);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <typename T, int cn> void pyrUp_gpu(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream)
|
||||
{
|
||||
typedef typename TypeVec<T, cn>::vec_type type;
|
||||
|
||||
typedef void (*caller_t)(const DevMem2D_<type>& src, const DevMem2D_<type>& dst, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[] =
|
||||
{
|
||||
const dim3 block(16, 16);
|
||||
const dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
pyrUp_caller<type, BrdReflect101>, pyrUp_caller<type, BrdReplicate>, pyrUp_caller<type, BrdConstant>, pyrUp_caller<type, BrdReflect>, pyrUp_caller<type, BrdWrap>
|
||||
};
|
||||
|
||||
B<T> b(src.rows, src.cols);
|
||||
callers[borderType](static_cast< DevMem2D_<type> >(src), static_cast< DevMem2D_<type> >(dst), stream);
|
||||
}
|
||||
|
||||
pyrUp<T><<<grid, block, 0, stream>>>(src, dst, b);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
template void pyrUp_gpu<uchar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<uchar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<uchar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<uchar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
template void pyrUp_gpu<schar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<schar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<schar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<schar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
template <typename T, int cn> void pyrUp_gpu(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream)
|
||||
{
|
||||
typedef typename TypeVec<T, cn>::vec_type type;
|
||||
template void pyrUp_gpu<ushort, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<ushort, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<ushort, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<ushort, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
typedef void (*caller_t)(const DevMem2D_<type>& src, const DevMem2D_<type>& dst, cudaStream_t stream);
|
||||
template void pyrUp_gpu<short, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<short, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<short, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<short, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[] =
|
||||
{
|
||||
pyrUp_caller<type, BrdReflect101>, pyrUp_caller<type, BrdReplicate>, pyrUp_caller<type, BrdConstant>, pyrUp_caller<type, BrdReflect>, pyrUp_caller<type, BrdWrap>
|
||||
};
|
||||
template void pyrUp_gpu<int, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<int, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<int, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<int, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
callers[borderType](static_cast< DevMem2D_<type> >(src), static_cast< DevMem2D_<type> >(dst), stream);
|
||||
}
|
||||
template void pyrUp_gpu<float, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<float, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<float, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<float, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
template void pyrUp_gpu<uchar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<uchar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<uchar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<uchar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
} // namespace pyr_up
|
||||
|
||||
template void pyrUp_gpu<schar, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<schar, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<schar, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<schar, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
template void pyrUp_gpu<ushort, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<ushort, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<ushort, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<ushort, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
template void pyrUp_gpu<short, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<short, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<short, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<short, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
template void pyrUp_gpu<int, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<int, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<int, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<int, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
|
||||
template void pyrUp_gpu<float, 1>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<float, 2>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<float, 3>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
template void pyrUp_gpu<float, 4>(const DevMem2Db& src, const DevMem2Db& dst, int borderType, cudaStream_t stream);
|
||||
}}}
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -47,64 +47,62 @@
|
||||
#include "opencv2/gpu/device/saturate_cast.hpp"
|
||||
#include "opencv2/gpu/device/filters.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace cv { namespace gpu { namespace imgproc
|
||||
namespace remap {
|
||||
|
||||
template <typename Ptr2D, typename T> __global__ void remap(const Ptr2D src, const PtrStepf mapx, const PtrStepf mapy, DevMem2D_<T> dst)
|
||||
{
|
||||
|
||||
template <typename Ptr2D, typename T> __global__ void remap(const Ptr2D src, const PtrStepf mapx, const PtrStepf mapy, DevMem2D_<T> dst)
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
|
||||
if (x < dst.cols && y < dst.rows)
|
||||
{
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
const float xcoo = mapx.ptr(y)[x];
|
||||
const float ycoo = mapy.ptr(y)[x];
|
||||
|
||||
if (x < dst.cols && y < dst.rows)
|
||||
{
|
||||
const float xcoo = mapx.ptr(y)[x];
|
||||
const float ycoo = mapy.ptr(y)[x];
|
||||
|
||||
dst.ptr(y)[x] = saturate_cast<T>(src(ycoo, xcoo));
|
||||
}
|
||||
dst.ptr(y)[x] = saturate_cast<T>(src(ycoo, xcoo));
|
||||
}
|
||||
}
|
||||
|
||||
template <template <typename> class Filter, template <typename> class B, typename T> struct RemapDispatcherStream
|
||||
template <template <typename> class Filter, template <typename> class B, typename T> struct RemapDispatcherStream
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2Df& mapx, const DevMem2Df& mapy, const DevMem2D_<T>& dst,
|
||||
const float* borderValue, cudaStream_t stream, int)
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2Df& mapx, const DevMem2Df& mapy, const DevMem2D_<T>& dst,
|
||||
const float* borderValue, cudaStream_t stream, int)
|
||||
{
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type work_type;
|
||||
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type work_type;
|
||||
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
|
||||
B<work_type> brd(src.rows, src.cols, VecTraits<work_type>::make(borderValue));
|
||||
BorderReader< PtrStep<T>, B<work_type> > brdSrc(src, brd);
|
||||
Filter< BorderReader< PtrStep<T>, B<work_type> > > filter_src(brdSrc);
|
||||
B<work_type> brd(src.rows, src.cols, VecTraits<work_type>::make(borderValue));
|
||||
BorderReader< PtrStep<T>, B<work_type> > brdSrc(src, brd);
|
||||
Filter< BorderReader< PtrStep<T>, B<work_type> > > filter_src(brdSrc);
|
||||
|
||||
remap<<<grid, block, 0, stream>>>(filter_src, mapx, mapy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
};
|
||||
|
||||
template <template <typename> class Filter, template <typename> class B, typename T> struct RemapDispatcherNonStream
|
||||
remap<<<grid, block, 0, stream>>>(filter_src, mapx, mapy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
};
|
||||
|
||||
template <template <typename> class Filter, template <typename> class B, typename T> struct RemapDispatcherNonStream
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2Df& mapx, const DevMem2Df& mapy, const DevMem2D_<T>& dst, const float* borderValue, int)
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2Df& mapx, const DevMem2Df& mapy, const DevMem2D_<T>& dst, const float* borderValue, int)
|
||||
{
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type work_type;
|
||||
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type work_type;
|
||||
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
|
||||
B<work_type> brd(src.rows, src.cols, VecTraits<work_type>::make(borderValue));
|
||||
BorderReader< PtrStep<T>, B<work_type> > brdSrc(src, brd);
|
||||
Filter< BorderReader< PtrStep<T>, B<work_type> > > filter_src(brdSrc);
|
||||
B<work_type> brd(src.rows, src.cols, VecTraits<work_type>::make(borderValue));
|
||||
BorderReader< PtrStep<T>, B<work_type> > brdSrc(src, brd);
|
||||
Filter< BorderReader< PtrStep<T>, B<work_type> > > filter_src(brdSrc);
|
||||
|
||||
remap<<<grid, block>>>(filter_src, mapx, mapy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
remap<<<grid, block>>>(filter_src, mapx, mapy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
|
||||
#define OPENCV_GPU_IMPLEMENT_REMAP_TEX(type) \
|
||||
texture< type , cudaTextureType2D> tex_remap_ ## type (0, cudaFilterModePoint, cudaAddressModeClamp); \
|
||||
@@ -124,7 +122,7 @@ namespace cv { namespace gpu { namespace imgproc
|
||||
typedef typename TypeVec<float, VecTraits< type >::cn>::vec_type work_type; \
|
||||
dim3 block(32, cc >= 20 ? 8 : 4); \
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); \
|
||||
TextureBinder texHandler(&tex_remap_ ## type , src); \
|
||||
bindTexture(&tex_remap_ ## type , src); \
|
||||
tex_remap_ ## type ##_reader texSrc; \
|
||||
B<work_type> brd(src.rows, src.cols, VecTraits<work_type>::make(borderValue)); \
|
||||
BorderReader< tex_remap_ ## type ##_reader, B<work_type> > brdSrc(texSrc, brd); \
|
||||
@@ -140,7 +138,7 @@ namespace cv { namespace gpu { namespace imgproc
|
||||
{ \
|
||||
dim3 block(32, 8); \
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); \
|
||||
TextureBinder texHandler(&tex_remap_ ## type , src); \
|
||||
bindTexture(&tex_remap_ ## type , src); \
|
||||
tex_remap_ ## type ##_reader texSrc; \
|
||||
Filter< tex_remap_ ## type ##_reader > filter_src(texSrc); \
|
||||
remap<<<grid, block>>>(filter_src, mapx, mapy, dst); \
|
||||
@@ -149,105 +147,108 @@ namespace cv { namespace gpu { namespace imgproc
|
||||
} \
|
||||
};
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(uchar)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(uchar2)
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(uchar4)
|
||||
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(schar)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(char2)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(char4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(ushort)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(ushort2)
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(ushort4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(short)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(short2)
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(short4)
|
||||
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(int)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(int2)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(int4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(float)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(float2)
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(float4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(uchar)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(uchar2)
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(uchar4)
|
||||
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(schar)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(char2)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(char4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(ushort)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(ushort2)
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(ushort4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(short)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(short2)
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(short4)
|
||||
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(int)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(int2)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(int4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(float)
|
||||
//OPENCV_GPU_IMPLEMENT_REMAP_TEX(float2)
|
||||
OPENCV_GPU_IMPLEMENT_REMAP_TEX(float4)
|
||||
|
||||
#undef OPENCV_GPU_IMPLEMENT_REMAP_TEX
|
||||
|
||||
template <template <typename> class Filter, template <typename> class B, typename T> struct RemapDispatcher
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2Df& mapx, const DevMem2Df& mapy, const DevMem2D_<T>& dst,
|
||||
const float* borderValue, cudaStream_t stream, int cc)
|
||||
{
|
||||
if (stream == 0)
|
||||
RemapDispatcherNonStream<Filter, B, T>::call(src, mapx, mapy, dst, borderValue, cc);
|
||||
else
|
||||
RemapDispatcherStream<Filter, B, T>::call(src, mapx, mapy, dst, borderValue, stream, cc);
|
||||
template <template <typename> class Filter, template <typename> class B, typename T> struct RemapDispatcher
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, const DevMem2Df& mapx, const DevMem2Df& mapy, const DevMem2D_<T>& dst,
|
||||
const float* borderValue, cudaStream_t stream, int cc)
|
||||
{
|
||||
if (stream == 0)
|
||||
RemapDispatcherNonStream<Filter, B, T>::call(src, mapx, mapy, dst, borderValue, cc);
|
||||
else
|
||||
RemapDispatcherStream<Filter, B, T>::call(src, mapx, mapy, dst, borderValue, stream, cc);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T> void remap_gpu(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation,
|
||||
int borderMode, const float* borderValue, cudaStream_t stream, int cc)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2D_<T>& dst,
|
||||
const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
static const caller_t callers[3][5] =
|
||||
{
|
||||
{
|
||||
RemapDispatcher<PointFilter, BrdReflect101, T>::call,
|
||||
RemapDispatcher<PointFilter, BrdReplicate, T>::call,
|
||||
RemapDispatcher<PointFilter, BrdConstant, T>::call,
|
||||
RemapDispatcher<PointFilter, BrdReflect, T>::call,
|
||||
RemapDispatcher<PointFilter, BrdWrap, T>::call
|
||||
},
|
||||
{
|
||||
RemapDispatcher<LinearFilter, BrdReflect101, T>::call,
|
||||
RemapDispatcher<LinearFilter, BrdReplicate, T>::call,
|
||||
RemapDispatcher<LinearFilter, BrdConstant, T>::call,
|
||||
RemapDispatcher<LinearFilter, BrdReflect, T>::call,
|
||||
RemapDispatcher<LinearFilter, BrdWrap, T>::call
|
||||
},
|
||||
{
|
||||
RemapDispatcher<CubicFilter, BrdReflect101, T>::call,
|
||||
RemapDispatcher<CubicFilter, BrdReplicate, T>::call,
|
||||
RemapDispatcher<CubicFilter, BrdConstant, T>::call,
|
||||
RemapDispatcher<CubicFilter, BrdReflect, T>::call,
|
||||
RemapDispatcher<CubicFilter, BrdWrap, T>::call
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T> void remap_gpu(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation,
|
||||
int borderMode, const float* borderValue, cudaStream_t stream, int cc)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2D_<T>& dst,
|
||||
const float* borderValue, cudaStream_t stream, int cc);
|
||||
callers[interpolation][borderMode](static_cast< DevMem2D_<T> >(src), xmap, ymap, static_cast< DevMem2D_<T> >(dst), borderValue, stream, cc);
|
||||
}
|
||||
|
||||
static const caller_t callers[3][5] =
|
||||
{
|
||||
{
|
||||
RemapDispatcher<PointFilter, BrdReflect101, T>::call,
|
||||
RemapDispatcher<PointFilter, BrdReplicate, T>::call,
|
||||
RemapDispatcher<PointFilter, BrdConstant, T>::call,
|
||||
RemapDispatcher<PointFilter, BrdReflect, T>::call,
|
||||
RemapDispatcher<PointFilter, BrdWrap, T>::call
|
||||
},
|
||||
{
|
||||
RemapDispatcher<LinearFilter, BrdReflect101, T>::call,
|
||||
RemapDispatcher<LinearFilter, BrdReplicate, T>::call,
|
||||
RemapDispatcher<LinearFilter, BrdConstant, T>::call,
|
||||
RemapDispatcher<LinearFilter, BrdReflect, T>::call,
|
||||
RemapDispatcher<LinearFilter, BrdWrap, T>::call
|
||||
},
|
||||
{
|
||||
RemapDispatcher<CubicFilter, BrdReflect101, T>::call,
|
||||
RemapDispatcher<CubicFilter, BrdReplicate, T>::call,
|
||||
RemapDispatcher<CubicFilter, BrdConstant, T>::call,
|
||||
RemapDispatcher<CubicFilter, BrdReflect, T>::call,
|
||||
RemapDispatcher<CubicFilter, BrdWrap, T>::call
|
||||
}
|
||||
};
|
||||
template void remap_gpu<uchar >(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<uchar2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<uchar3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<uchar4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
callers[interpolation][borderMode](static_cast< DevMem2D_<T> >(src), xmap, ymap, static_cast< DevMem2D_<T> >(dst), borderValue, stream, cc);
|
||||
}
|
||||
//template void remap_gpu<schar>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<char2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<char3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<char4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
template void remap_gpu<uchar >(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<uchar2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<uchar3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<uchar4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
//template void remap_gpu<schar>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<char2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<char3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<char4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
template void remap_gpu<ushort >(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<ushort2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<ushort3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<ushort4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
template void remap_gpu<short >(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<short2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<short3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<short4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
//template void remap_gpu<int >(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<int2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<int3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<int4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
template void remap_gpu<float >(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<float2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<float3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<float4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
}}}
|
||||
template void remap_gpu<ushort >(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<ushort2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<ushort3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<ushort4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
template void remap_gpu<short >(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<short2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<short3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<short4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
//template void remap_gpu<int >(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<int2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<int3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<int4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
template void remap_gpu<float >(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
//template void remap_gpu<float2>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<float3>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
template void remap_gpu<float4>(const DevMem2Db& src, const DevMem2Df& xmap, const DevMem2Df& ymap, const DevMem2Db& dst, int interpolation, int borderMode, const float* borderValue, cudaStream_t stream, int cc);
|
||||
|
||||
} // namespace remap
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -47,102 +47,100 @@
|
||||
#include "opencv2/gpu/device/saturate_cast.hpp"
|
||||
#include "opencv2/gpu/device/filters.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace cv { namespace gpu { namespace imgproc
|
||||
namespace resize {
|
||||
|
||||
template <typename Ptr2D, typename T> __global__ void resize(const Ptr2D src, float fx, float fy, DevMem2D_<T> dst)
|
||||
{
|
||||
|
||||
template <typename Ptr2D, typename T> __global__ void resize(const Ptr2D src, float fx, float fy, DevMem2D_<T> dst)
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
|
||||
if (x < dst.cols && y < dst.rows)
|
||||
{
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
const float xcoo = x / fx;
|
||||
const float ycoo = y / fy;
|
||||
|
||||
if (x < dst.cols && y < dst.rows)
|
||||
{
|
||||
const float xcoo = x / fx;
|
||||
const float ycoo = y / fy;
|
||||
|
||||
dst.ptr(y)[x] = saturate_cast<T>(src(ycoo, xcoo));
|
||||
}
|
||||
dst.ptr(y)[x] = saturate_cast<T>(src(ycoo, xcoo));
|
||||
}
|
||||
template <typename Ptr2D, typename T> __global__ void resizeNN(const Ptr2D src, float fx, float fy, DevMem2D_<T> dst)
|
||||
}
|
||||
template <typename Ptr2D, typename T> __global__ void resizeNN(const Ptr2D src, float fx, float fy, DevMem2D_<T> dst)
|
||||
{
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
|
||||
if (x < dst.cols && y < dst.rows)
|
||||
{
|
||||
const int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
const int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
const float xcoo = x / fx;
|
||||
const float ycoo = y / fy;
|
||||
|
||||
if (x < dst.cols && y < dst.rows)
|
||||
{
|
||||
const float xcoo = x / fx;
|
||||
const float ycoo = y / fy;
|
||||
|
||||
dst.ptr(y)[x] = src(__float2int_rd(ycoo), __float2int_rd(xcoo));
|
||||
}
|
||||
dst.ptr(y)[x] = src(__float2int_rd(ycoo), __float2int_rd(xcoo));
|
||||
}
|
||||
}
|
||||
|
||||
template <template <typename> class Filter, typename T> struct ResizeDispatcherStream
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
{
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
template <template <typename> class Filter, typename T> struct ResizeDispatcherStream
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
{
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
|
||||
BrdReplicate<T> brd(src.rows, src.cols);
|
||||
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
|
||||
Filter< BorderReader< PtrStep<T>, BrdReplicate<T> > > filter_src(brdSrc);
|
||||
BrdReplicate<T> brd(src.rows, src.cols);
|
||||
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
|
||||
Filter< BorderReader< PtrStep<T>, BrdReplicate<T> > > filter_src(brdSrc);
|
||||
|
||||
resize<<<grid, block, 0, stream>>>(filter_src, fx, fy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
};
|
||||
template <typename T> struct ResizeDispatcherStream<PointFilter, T>
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
{
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
resize<<<grid, block, 0, stream>>>(filter_src, fx, fy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
};
|
||||
template <typename T> struct ResizeDispatcherStream<PointFilter, T>
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
{
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
|
||||
BrdReplicate<T> brd(src.rows, src.cols);
|
||||
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
|
||||
BrdReplicate<T> brd(src.rows, src.cols);
|
||||
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
|
||||
|
||||
resizeNN<<<grid, block, 0, stream>>>(brdSrc, fx, fy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
};
|
||||
|
||||
template <template <typename> class Filter, typename T> struct ResizeDispatcherNonStream
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst)
|
||||
{
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
resizeNN<<<grid, block, 0, stream>>>(brdSrc, fx, fy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
}
|
||||
};
|
||||
|
||||
BrdReplicate<T> brd(src.rows, src.cols);
|
||||
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
|
||||
Filter< BorderReader< PtrStep<T>, BrdReplicate<T> > > filter_src(brdSrc);
|
||||
template <template <typename> class Filter, typename T> struct ResizeDispatcherNonStream
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst)
|
||||
{
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
|
||||
resize<<<grid, block>>>(filter_src, fx, fy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
BrdReplicate<T> brd(src.rows, src.cols);
|
||||
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
|
||||
Filter< BorderReader< PtrStep<T>, BrdReplicate<T> > > filter_src(brdSrc);
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
template <typename T> struct ResizeDispatcherNonStream<PointFilter, T>
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst)
|
||||
{
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
resize<<<grid, block>>>(filter_src, fx, fy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
BrdReplicate<T> brd(src.rows, src.cols);
|
||||
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
template <typename T> struct ResizeDispatcherNonStream<PointFilter, T>
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst)
|
||||
{
|
||||
dim3 block(32, 8);
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y));
|
||||
|
||||
resizeNN<<<grid, block>>>(brdSrc, fx, fy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
BrdReplicate<T> brd(src.rows, src.cols);
|
||||
BorderReader< PtrStep<T>, BrdReplicate<T> > brdSrc(src, brd);
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
resizeNN<<<grid, block>>>(brdSrc, fx, fy, dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
};
|
||||
|
||||
#define OPENCV_GPU_IMPLEMENT_RESIZE_TEX(type) \
|
||||
texture< type , cudaTextureType2D> tex_resize_ ## type (0, cudaFilterModePoint, cudaAddressModeClamp); \
|
||||
@@ -161,7 +159,7 @@ namespace cv { namespace gpu { namespace imgproc
|
||||
{ \
|
||||
dim3 block(32, 8); \
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); \
|
||||
TextureBinder texHandler(&tex_resize_ ## type , src); \
|
||||
bindTexture(&tex_resize_ ## type , src); \
|
||||
tex_resize_ ## type ##_reader texSrc; \
|
||||
Filter< tex_resize_ ## type ##_reader > filter_src(texSrc); \
|
||||
resize<<<grid, block>>>(filter_src, fx, fy, dst); \
|
||||
@@ -175,7 +173,7 @@ namespace cv { namespace gpu { namespace imgproc
|
||||
{ \
|
||||
dim3 block(32, 8); \
|
||||
dim3 grid(divUp(dst.cols, block.x), divUp(dst.rows, block.y)); \
|
||||
TextureBinder texHandler(&tex_resize_ ## type , src); \
|
||||
bindTexture(&tex_resize_ ## type , src); \
|
||||
tex_resize_ ## type ##_reader texSrc; \
|
||||
resizeNN<<<grid, block>>>(texSrc, fx, fy, dst); \
|
||||
cudaSafeCall( cudaGetLastError() ); \
|
||||
@@ -183,82 +181,85 @@ namespace cv { namespace gpu { namespace imgproc
|
||||
} \
|
||||
};
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar2)
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar4)
|
||||
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(schar)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(char2)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(char4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort2)
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short2)
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short4)
|
||||
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(int)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(int2)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(int4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float2)
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar2)
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(uchar4)
|
||||
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(schar)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(char2)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(char4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort2)
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(ushort4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short2)
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(short4)
|
||||
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(int)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(int2)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(int4)
|
||||
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float)
|
||||
//OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float2)
|
||||
OPENCV_GPU_IMPLEMENT_RESIZE_TEX(float4)
|
||||
|
||||
#undef OPENCV_GPU_IMPLEMENT_RESIZE_TEX
|
||||
|
||||
template <template <typename> class Filter, typename T> struct ResizeDispatcher
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
{
|
||||
if (stream == 0)
|
||||
ResizeDispatcherNonStream<Filter, T>::call(src, fx, fy, dst);
|
||||
else
|
||||
ResizeDispatcherStream<Filter, T>::call(src, fx, fy, dst, stream);
|
||||
}
|
||||
template <template <typename> class Filter, typename T> struct ResizeDispatcher
|
||||
{
|
||||
static void call(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst, cudaStream_t stream)
|
||||
{
|
||||
if (stream == 0)
|
||||
ResizeDispatcherNonStream<Filter, T>::call(src, fx, fy, dst);
|
||||
else
|
||||
ResizeDispatcherStream<Filter, T>::call(src, fx, fy, dst, stream);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T> void resize_gpu(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst, cudaStream_t stream);
|
||||
|
||||
static const caller_t callers[3] =
|
||||
{
|
||||
ResizeDispatcher<PointFilter, T>::call, ResizeDispatcher<LinearFilter, T>::call, ResizeDispatcher<CubicFilter, T>::call
|
||||
};
|
||||
|
||||
template <typename T> void resize_gpu(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, float fx, float fy, const DevMem2D_<T>& dst, cudaStream_t stream);
|
||||
callers[interpolation](static_cast< DevMem2D_<T> >(src), fx, fy, static_cast< DevMem2D_<T> >(dst), stream);
|
||||
}
|
||||
|
||||
static const caller_t callers[3] =
|
||||
{
|
||||
ResizeDispatcher<PointFilter, T>::call, ResizeDispatcher<LinearFilter, T>::call, ResizeDispatcher<CubicFilter, T>::call
|
||||
};
|
||||
template void resize_gpu<uchar >(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<uchar2>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<uchar3>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<uchar4>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
|
||||
callers[interpolation](static_cast< DevMem2D_<T> >(src), fx, fy, static_cast< DevMem2D_<T> >(dst), stream);
|
||||
}
|
||||
//template void resize_gpu<schar>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<char2>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<char3>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<char4>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
|
||||
template void resize_gpu<uchar >(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<uchar2>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<uchar3>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<uchar4>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
|
||||
//template void resize_gpu<schar>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<char2>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<char3>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<char4>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
|
||||
template void resize_gpu<ushort >(const DevMem2Db& src,float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<ushort2>(const DevMem2Db& src,float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<ushort3>(const DevMem2Db& src,float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<ushort4>(const DevMem2Db& src,float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
|
||||
template void resize_gpu<short >(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<short2>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<short3>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<short4>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
|
||||
//template void resize_gpu<int >(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<int2>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<int3>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<int4>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
|
||||
template void resize_gpu<float >(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<float2>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<float3>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<float4>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
}}}
|
||||
template void resize_gpu<ushort >(const DevMem2Db& src,float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<ushort2>(const DevMem2Db& src,float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<ushort3>(const DevMem2Db& src,float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<ushort4>(const DevMem2Db& src,float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
|
||||
template void resize_gpu<short >(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<short2>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<short3>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<short4>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
|
||||
//template void resize_gpu<int >(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<int2>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<int3>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<int4>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
|
||||
template void resize_gpu<float >(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
//template void resize_gpu<float2>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<float3>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
template void resize_gpu<float4>(const DevMem2Db& src, float fx, float fy, const DevMem2Db& dst, int interpolation, cudaStream_t stream);
|
||||
|
||||
} // namespace resize
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -47,8 +47,7 @@
|
||||
#include "opencv2/gpu/device/limits.hpp"
|
||||
#include "opencv2/gpu/device/border_interpolate.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
#define MAX_KERNEL_SIZE 16
|
||||
#define BLOCK_DIM_X 16
|
||||
@@ -56,218 +55,218 @@ using namespace cv::gpu::device;
|
||||
#define RESULT_STEPS 8
|
||||
#define HALO_STEPS 1
|
||||
|
||||
namespace filter_row
|
||||
namespace row_filter {
|
||||
|
||||
__constant__ float c_kernel[MAX_KERNEL_SIZE];
|
||||
|
||||
void loadKernel(const float kernel[], int ksize)
|
||||
{
|
||||
__constant__ float c_kernel[MAX_KERNEL_SIZE];
|
||||
cudaSafeCall( cudaMemcpyToSymbol(c_kernel, kernel, ksize * sizeof(float)) );
|
||||
}
|
||||
|
||||
void loadKernel(const float kernel[], int ksize)
|
||||
namespace detail
|
||||
{
|
||||
template <typename T, size_t size> struct SmemType
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(c_kernel, kernel, ksize * sizeof(float)) );
|
||||
}
|
||||
|
||||
namespace detail
|
||||
{
|
||||
template <typename T, size_t size> struct SmemType
|
||||
{
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type smem_t;
|
||||
};
|
||||
|
||||
template <typename T> struct SmemType<T, 4>
|
||||
{
|
||||
typedef T smem_t;
|
||||
};
|
||||
}
|
||||
|
||||
template <typename T> struct SmemType
|
||||
{
|
||||
typedef typename detail::SmemType<T, sizeof(T)>::smem_t smem_t;
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type smem_t;
|
||||
};
|
||||
|
||||
template <int KERNEL_SIZE, typename T, typename D, typename B>
|
||||
__global__ void linearRowFilter(const DevMem2D_<T> src, PtrStep<D> dst, int anchor, const B b)
|
||||
template <typename T> struct SmemType<T, 4>
|
||||
{
|
||||
typedef typename SmemType<T>::smem_t smem_t;
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_t;
|
||||
typedef T smem_t;
|
||||
};
|
||||
}
|
||||
|
||||
__shared__ smem_t smem[BLOCK_DIM_Y][(RESULT_STEPS + 2 * HALO_STEPS) * BLOCK_DIM_X];
|
||||
template <typename T> struct SmemType
|
||||
{
|
||||
typedef typename detail::SmemType<T, sizeof(T)>::smem_t smem_t;
|
||||
};
|
||||
|
||||
//Offset to the left halo edge
|
||||
const int x = (blockIdx.x * RESULT_STEPS - HALO_STEPS) * BLOCK_DIM_X + threadIdx.x;
|
||||
const int y = blockIdx.y * BLOCK_DIM_Y + threadIdx.y;
|
||||
template <int KERNEL_SIZE, typename T, typename D, typename B>
|
||||
__global__ void linearRowFilter(const DevMem2D_<T> src, PtrStep<D> dst, int anchor, const B b)
|
||||
{
|
||||
typedef typename SmemType<T>::smem_t smem_t;
|
||||
typedef typename TypeVec<float, VecTraits<T>::cn>::vec_type sum_t;
|
||||
|
||||
if (y < src.rows)
|
||||
__shared__ smem_t smem[BLOCK_DIM_Y][(RESULT_STEPS + 2 * HALO_STEPS) * BLOCK_DIM_X];
|
||||
|
||||
//Offset to the left halo edge
|
||||
const int x = (blockIdx.x * RESULT_STEPS - HALO_STEPS) * BLOCK_DIM_X + threadIdx.x;
|
||||
const int y = blockIdx.y * BLOCK_DIM_Y + threadIdx.y;
|
||||
|
||||
if (y < src.rows)
|
||||
{
|
||||
const T* src_row = src.ptr(y);
|
||||
|
||||
//Load main data
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; ++i)
|
||||
smem[threadIdx.y][threadIdx.x + i * BLOCK_DIM_X] = b.at_high(i * BLOCK_DIM_X + x, src_row);
|
||||
|
||||
//Load left halo
|
||||
#pragma unroll
|
||||
for(int i = 0; i < HALO_STEPS; ++i)
|
||||
smem[threadIdx.y][threadIdx.x + i * BLOCK_DIM_X] = b.at_low(i * BLOCK_DIM_X + x, src_row);
|
||||
|
||||
//Load right halo
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS + RESULT_STEPS; i < HALO_STEPS + RESULT_STEPS + HALO_STEPS; ++i)
|
||||
smem[threadIdx.y][threadIdx.x + i * BLOCK_DIM_X] = b.at_high(i * BLOCK_DIM_X + x, src_row);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
D* dst_row = dst.ptr(y);
|
||||
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; ++i)
|
||||
{
|
||||
const T* src_row = src.ptr(y);
|
||||
|
||||
//Load main data
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; ++i)
|
||||
smem[threadIdx.y][threadIdx.x + i * BLOCK_DIM_X] = b.at_high(i * BLOCK_DIM_X + x, src_row);
|
||||
|
||||
//Load left halo
|
||||
#pragma unroll
|
||||
for(int i = 0; i < HALO_STEPS; ++i)
|
||||
smem[threadIdx.y][threadIdx.x + i * BLOCK_DIM_X] = b.at_low(i * BLOCK_DIM_X + x, src_row);
|
||||
|
||||
//Load right halo
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS + RESULT_STEPS; i < HALO_STEPS + RESULT_STEPS + HALO_STEPS; ++i)
|
||||
smem[threadIdx.y][threadIdx.x + i * BLOCK_DIM_X] = b.at_high(i * BLOCK_DIM_X + x, src_row);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
D* dst_row = dst.ptr(y);
|
||||
sum_t sum = VecTraits<sum_t>::all(0);
|
||||
|
||||
#pragma unroll
|
||||
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; ++i)
|
||||
{
|
||||
sum_t sum = VecTraits<sum_t>::all(0);
|
||||
for (int j = 0; j < KERNEL_SIZE; ++j)
|
||||
sum = sum + smem[threadIdx.y][threadIdx.x + i * BLOCK_DIM_X + j - anchor] * c_kernel[j];
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < KERNEL_SIZE; ++j)
|
||||
sum = sum + smem[threadIdx.y][threadIdx.x + i * BLOCK_DIM_X + j - anchor] * c_kernel[j];
|
||||
int dstX = x + i * BLOCK_DIM_X;
|
||||
|
||||
int dstX = x + i * BLOCK_DIM_X;
|
||||
|
||||
if (dstX < src.cols)
|
||||
dst_row[dstX] = saturate_cast<D>(sum);
|
||||
}
|
||||
if (dstX < src.cols)
|
||||
dst_row[dstX] = saturate_cast<D>(sum);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace cv { namespace gpu { namespace filters
|
||||
template <int ksize, typename T, typename D, template<typename> class B>
|
||||
void linearRowFilter_caller(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, int anchor, cudaStream_t stream)
|
||||
{
|
||||
template <int ksize, typename T, typename D, template<typename> class B>
|
||||
void linearRowFilter_caller(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, int anchor, cudaStream_t stream)
|
||||
typedef typename SmemType<T>::smem_t smem_t;
|
||||
|
||||
const dim3 block(BLOCK_DIM_X, BLOCK_DIM_Y);
|
||||
const dim3 grid(divUp(src.cols, RESULT_STEPS * BLOCK_DIM_X), divUp(src.rows, BLOCK_DIM_Y));
|
||||
|
||||
B<smem_t> b(src.cols);
|
||||
|
||||
linearRowFilter<ksize, T, D><<<grid, block, 0, stream>>>(src, dst, anchor, b);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <typename T, typename D>
|
||||
void linearRowFilter_gpu(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, int anchor, cudaStream_t stream);
|
||||
static const caller_t callers[5][17] =
|
||||
{
|
||||
typedef typename filter_row::SmemType<T>::smem_t smem_t;
|
||||
|
||||
const dim3 block(BLOCK_DIM_X, BLOCK_DIM_Y);
|
||||
const dim3 grid(divUp(src.cols, RESULT_STEPS * BLOCK_DIM_X), divUp(src.rows, BLOCK_DIM_Y));
|
||||
|
||||
B<smem_t> b(src.cols);
|
||||
|
||||
filter_row::linearRowFilter<ksize, T, D><<<grid, block, 0, stream>>>(src, dst, anchor, b);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <typename T, typename D>
|
||||
void linearRowFilter_gpu(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream)
|
||||
{
|
||||
typedef void (*caller_t)(const DevMem2D_<T>& src, const DevMem2D_<D>& dst, int anchor, cudaStream_t stream);
|
||||
static const caller_t callers[5][17] =
|
||||
{
|
||||
{
|
||||
0,
|
||||
linearRowFilter_caller<1 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<2 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<3 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<4 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<5 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<6 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<7 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<8 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<9 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<10, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<11, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<12, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<13, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<14, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<15, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<16, T, D, BrdRowReflect101>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearRowFilter_caller<1 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<2 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<3 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<4 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<5 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<6 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<7 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<8 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<9 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<10, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<11, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<12, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<13, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<14, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<15, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<16, T, D, BrdRowReplicate>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearRowFilter_caller<1 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<2 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<3 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<4 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<5 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<6 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<7 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<8 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<9 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<10, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<11, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<12, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<13, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<14, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<15, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<16, T, D, BrdRowConstant>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearRowFilter_caller<1 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<2 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<3 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<4 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<5 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<6 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<7 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<8 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<9 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<10, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<11, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<12, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<13, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<14, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<15, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<16, T, D, BrdRowReflect>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearRowFilter_caller<1 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<2 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<3 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<4 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<5 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<6 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<7 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<8 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<9 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<10, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<11, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<12, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<13, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<14, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<15, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<16, T, D, BrdRowWrap>
|
||||
}
|
||||
};
|
||||
|
||||
filter_row::loadKernel(kernel, ksize);
|
||||
0,
|
||||
linearRowFilter_caller<1 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<2 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<3 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<4 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<5 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<6 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<7 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<8 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<9 , T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<10, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<11, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<12, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<13, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<14, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<15, T, D, BrdRowReflect101>,
|
||||
linearRowFilter_caller<16, T, D, BrdRowReflect101>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearRowFilter_caller<1 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<2 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<3 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<4 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<5 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<6 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<7 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<8 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<9 , T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<10, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<11, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<12, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<13, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<14, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<15, T, D, BrdRowReplicate>,
|
||||
linearRowFilter_caller<16, T, D, BrdRowReplicate>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearRowFilter_caller<1 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<2 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<3 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<4 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<5 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<6 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<7 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<8 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<9 , T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<10, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<11, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<12, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<13, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<14, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<15, T, D, BrdRowConstant>,
|
||||
linearRowFilter_caller<16, T, D, BrdRowConstant>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearRowFilter_caller<1 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<2 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<3 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<4 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<5 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<6 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<7 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<8 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<9 , T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<10, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<11, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<12, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<13, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<14, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<15, T, D, BrdRowReflect>,
|
||||
linearRowFilter_caller<16, T, D, BrdRowReflect>
|
||||
},
|
||||
{
|
||||
0,
|
||||
linearRowFilter_caller<1 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<2 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<3 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<4 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<5 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<6 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<7 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<8 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<9 , T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<10, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<11, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<12, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<13, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<14, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<15, T, D, BrdRowWrap>,
|
||||
linearRowFilter_caller<16, T, D, BrdRowWrap>
|
||||
}
|
||||
};
|
||||
|
||||
loadKernel(kernel, ksize);
|
||||
|
||||
callers[brd_type][ksize]((DevMem2D_<T>)src, (DevMem2D_<D>)dst, anchor, stream);
|
||||
}
|
||||
callers[brd_type][ksize]((DevMem2D_<T>)src, (DevMem2D_<D>)dst, anchor, stream);
|
||||
}
|
||||
|
||||
template void linearRowFilter_gpu<uchar , float >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<uchar4, float4>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
//template void linearRowFilter_gpu<short , float >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
//template void linearRowFilter_gpu<short2, float2>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<short3, float3>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<int , float >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<float , float >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
}}}
|
||||
template void linearRowFilter_gpu<uchar , float >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<uchar4, float4>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
//template void linearRowFilter_gpu<short , float >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
//template void linearRowFilter_gpu<short2, float2>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<short3, float3>(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<int , float >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
template void linearRowFilter_gpu<float , float >(const DevMem2Db& src, const DevMem2Db& dst, const float kernel[], int ksize, int anchor, int brd_type, cudaStream_t stream);
|
||||
|
||||
} // namespace row_filter
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -43,9 +43,9 @@
|
||||
#ifndef __OPENCV_CUDA_SAFE_CALL_HPP__
|
||||
#define __OPENCV_CUDA_SAFE_CALL_HPP__
|
||||
|
||||
#include "cuda_runtime_api.h"
|
||||
#include "cufft.h"
|
||||
#include "cublas.h"
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <cufft.h>
|
||||
#include <cublas.h>
|
||||
#include "NCV.hpp"
|
||||
|
||||
#if defined(__GNUC__)
|
||||
@@ -62,46 +62,44 @@
|
||||
#define cublasSafeCall(expr) ___cublasSafeCall(expr, __FILE__, __LINE__)
|
||||
#endif
|
||||
|
||||
namespace cv
|
||||
namespace cv { namespace gpu {
|
||||
|
||||
void error(const char *error_string, const char *file, const int line, const char *func = "");
|
||||
void nppError(int err, const char *file, const int line, const char *func = "");
|
||||
void ncvError(int err, const char *file, const int line, const char *func = "");
|
||||
void cufftError(int err, const char *file, const int line, const char *func = "");
|
||||
void cublasError(int err, const char *file, const int line, const char *func = "");
|
||||
|
||||
static inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
namespace gpu
|
||||
{
|
||||
void error(const char *error_string, const char *file, const int line, const char *func = "");
|
||||
void nppError(int err, const char *file, const int line, const char *func = "");
|
||||
void ncvError(int err, const char *file, const int line, const char *func = "");
|
||||
void cufftError(int err, const char *file, const int line, const char *func = "");
|
||||
void cublasError(int err, const char *file, const int line, const char *func = "");
|
||||
|
||||
static inline void ___cudaSafeCall(cudaError_t err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (cudaSuccess != err)
|
||||
cv::gpu::error(cudaGetErrorString(err), file, line, func);
|
||||
}
|
||||
|
||||
static inline void ___nppSafeCall(int err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (err < 0)
|
||||
cv::gpu::nppError(err, file, line, func);
|
||||
}
|
||||
|
||||
static inline void ___ncvSafeCall(int err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (NCV_SUCCESS != err)
|
||||
cv::gpu::ncvError(err, file, line, func);
|
||||
}
|
||||
|
||||
static inline void ___cufftSafeCall(cufftResult_t err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (CUFFT_SUCCESS != err)
|
||||
cv::gpu::cufftError(err, file, line, func);
|
||||
}
|
||||
|
||||
static inline void ___cublasSafeCall(cublasStatus_t err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (CUBLAS_STATUS_SUCCESS != err)
|
||||
cv::gpu::cublasError(err, file, line, func);
|
||||
}
|
||||
}
|
||||
if (cudaSuccess != err)
|
||||
cv::gpu::error(cudaGetErrorString(err), file, line, func);
|
||||
}
|
||||
|
||||
static inline void ___nppSafeCall(int err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (err < 0)
|
||||
cv::gpu::nppError(err, file, line, func);
|
||||
}
|
||||
|
||||
static inline void ___ncvSafeCall(int err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (NCV_SUCCESS != err)
|
||||
cv::gpu::ncvError(err, file, line, func);
|
||||
}
|
||||
|
||||
static inline void ___cufftSafeCall(cufftResult_t err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (CUFFT_SUCCESS != err)
|
||||
cv::gpu::cufftError(err, file, line, func);
|
||||
}
|
||||
|
||||
static inline void ___cublasSafeCall(cublasStatus_t err, const char *file, const int line, const char *func = "")
|
||||
{
|
||||
if (CUBLAS_STATUS_SUCCESS != err)
|
||||
cv::gpu::cublasError(err, file, line, func);
|
||||
}
|
||||
|
||||
}}
|
||||
|
||||
#endif /* __OPENCV_CUDA_SAFE_CALL_HPP__ */
|
@@ -42,465 +42,467 @@
|
||||
|
||||
#include "internal_shared.hpp"
|
||||
|
||||
namespace cv { namespace gpu { namespace split_merge {
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
template <typename T, size_t elem_size = sizeof(T)>
|
||||
struct TypeTraits
|
||||
namespace split_merge {
|
||||
|
||||
template <typename T, size_t elem_size = sizeof(T)>
|
||||
struct TypeTraits
|
||||
{
|
||||
typedef T type;
|
||||
typedef T type2;
|
||||
typedef T type3;
|
||||
typedef T type4;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct TypeTraits<T, 1>
|
||||
{
|
||||
typedef char type;
|
||||
typedef char2 type2;
|
||||
typedef char3 type3;
|
||||
typedef char4 type4;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct TypeTraits<T, 2>
|
||||
{
|
||||
typedef short type;
|
||||
typedef short2 type2;
|
||||
typedef short3 type3;
|
||||
typedef short4 type4;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct TypeTraits<T, 4>
|
||||
{
|
||||
typedef int type;
|
||||
typedef int2 type2;
|
||||
typedef int3 type3;
|
||||
typedef int4 type4;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct TypeTraits<T, 8>
|
||||
{
|
||||
typedef double type;
|
||||
typedef double2 type2;
|
||||
//typedef double3 type3;
|
||||
//typedef double4 type3;
|
||||
};
|
||||
|
||||
typedef void (*MergeFunction)(const DevMem2Db* src, DevMem2Db& dst, const cudaStream_t& stream);
|
||||
typedef void (*SplitFunction)(const DevMem2Db& src, DevMem2Db* dst, const cudaStream_t& stream);
|
||||
|
||||
//------------------------------------------------------------
|
||||
// Merge
|
||||
|
||||
template <typename T>
|
||||
__global__ void mergeC2_(const uchar* src0, size_t src0_step,
|
||||
const uchar* src1, size_t src1_step,
|
||||
int rows, int cols, uchar* dst, size_t dst_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type2 dst_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const T* src0_y = (const T*)(src0 + y * src0_step);
|
||||
const T* src1_y = (const T*)(src1 + y * src1_step);
|
||||
dst_type* dst_y = (dst_type*)(dst + y * dst_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst_type dst_elem;
|
||||
dst_elem.x = src0_y[x];
|
||||
dst_elem.y = src1_y[x];
|
||||
dst_y[x] = dst_elem;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void mergeC3_(const uchar* src0, size_t src0_step,
|
||||
const uchar* src1, size_t src1_step,
|
||||
const uchar* src2, size_t src2_step,
|
||||
int rows, int cols, uchar* dst, size_t dst_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type3 dst_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const T* src0_y = (const T*)(src0 + y * src0_step);
|
||||
const T* src1_y = (const T*)(src1 + y * src1_step);
|
||||
const T* src2_y = (const T*)(src2 + y * src2_step);
|
||||
dst_type* dst_y = (dst_type*)(dst + y * dst_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst_type dst_elem;
|
||||
dst_elem.x = src0_y[x];
|
||||
dst_elem.y = src1_y[x];
|
||||
dst_elem.z = src2_y[x];
|
||||
dst_y[x] = dst_elem;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
__global__ void mergeC3_<double>(const uchar* src0, size_t src0_step,
|
||||
const uchar* src1, size_t src1_step,
|
||||
const uchar* src2, size_t src2_step,
|
||||
int rows, int cols, uchar* dst, size_t dst_step)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const double* src0_y = (const double*)(src0 + y * src0_step);
|
||||
const double* src1_y = (const double*)(src1 + y * src1_step);
|
||||
const double* src2_y = (const double*)(src2 + y * src2_step);
|
||||
double* dst_y = (double*)(dst + y * dst_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst_y[3 * x] = src0_y[x];
|
||||
dst_y[3 * x + 1] = src1_y[x];
|
||||
dst_y[3 * x + 2] = src2_y[x];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void mergeC4_(const uchar* src0, size_t src0_step,
|
||||
const uchar* src1, size_t src1_step,
|
||||
const uchar* src2, size_t src2_step,
|
||||
const uchar* src3, size_t src3_step,
|
||||
int rows, int cols, uchar* dst, size_t dst_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type4 dst_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const T* src0_y = (const T*)(src0 + y * src0_step);
|
||||
const T* src1_y = (const T*)(src1 + y * src1_step);
|
||||
const T* src2_y = (const T*)(src2 + y * src2_step);
|
||||
const T* src3_y = (const T*)(src3 + y * src3_step);
|
||||
dst_type* dst_y = (dst_type*)(dst + y * dst_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst_type dst_elem;
|
||||
dst_elem.x = src0_y[x];
|
||||
dst_elem.y = src1_y[x];
|
||||
dst_elem.z = src2_y[x];
|
||||
dst_elem.w = src3_y[x];
|
||||
dst_y[x] = dst_elem;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
__global__ void mergeC4_<double>(const uchar* src0, size_t src0_step,
|
||||
const uchar* src1, size_t src1_step,
|
||||
const uchar* src2, size_t src2_step,
|
||||
const uchar* src3, size_t src3_step,
|
||||
int rows, int cols, uchar* dst, size_t dst_step)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const double* src0_y = (const double*)(src0 + y * src0_step);
|
||||
const double* src1_y = (const double*)(src1 + y * src1_step);
|
||||
const double* src2_y = (const double*)(src2 + y * src2_step);
|
||||
const double* src3_y = (const double*)(src3 + y * src3_step);
|
||||
double2* dst_y = (double2*)(dst + y * dst_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst_y[2 * x] = make_double2(src0_y[x], src1_y[x]);
|
||||
dst_y[2 * x + 1] = make_double2(src2_y[x], src3_y[x]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
static void mergeC2_(const DevMem2Db* src, DevMem2Db& dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(dst.cols, blockDim.x), divUp(dst.rows, blockDim.y));
|
||||
mergeC2_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src[0].data, src[0].step,
|
||||
src[1].data, src[1].step,
|
||||
dst.rows, dst.cols, dst.data, dst.step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
static void mergeC3_(const DevMem2Db* src, DevMem2Db& dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(dst.cols, blockDim.x), divUp(dst.rows, blockDim.y));
|
||||
mergeC3_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src[0].data, src[0].step,
|
||||
src[1].data, src[1].step,
|
||||
src[2].data, src[2].step,
|
||||
dst.rows, dst.cols, dst.data, dst.step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
static void mergeC4_(const DevMem2Db* src, DevMem2Db& dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(dst.cols, blockDim.x), divUp(dst.rows, blockDim.y));
|
||||
mergeC4_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src[0].data, src[0].step,
|
||||
src[1].data, src[1].step,
|
||||
src[2].data, src[2].step,
|
||||
src[3].data, src[3].step,
|
||||
dst.rows, dst.cols, dst.data, dst.step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
void merge_caller(const DevMem2Db* src, DevMem2Db& dst,
|
||||
int total_channels, size_t elem_size,
|
||||
const cudaStream_t& stream)
|
||||
{
|
||||
static MergeFunction merge_func_tbl[] =
|
||||
{
|
||||
typedef T type;
|
||||
typedef T type2;
|
||||
typedef T type3;
|
||||
typedef T type4;
|
||||
mergeC2_<char>, mergeC2_<short>, mergeC2_<int>, 0, mergeC2_<double>,
|
||||
mergeC3_<char>, mergeC3_<short>, mergeC3_<int>, 0, mergeC3_<double>,
|
||||
mergeC4_<char>, mergeC4_<short>, mergeC4_<int>, 0, mergeC4_<double>,
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct TypeTraits<T, 1>
|
||||
size_t merge_func_id = (total_channels - 2) * 5 + (elem_size >> 1);
|
||||
MergeFunction merge_func = merge_func_tbl[merge_func_id];
|
||||
|
||||
if (merge_func == 0)
|
||||
cv::gpu::error("Unsupported channel count or data type", __FILE__, __LINE__);
|
||||
|
||||
merge_func(src, dst, stream);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//------------------------------------------------------------
|
||||
// Split
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void splitC2_(const uchar* src, size_t src_step,
|
||||
int rows, int cols,
|
||||
uchar* dst0, size_t dst0_step,
|
||||
uchar* dst1, size_t dst1_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type2 src_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const src_type* src_y = (const src_type*)(src + y * src_step);
|
||||
T* dst0_y = (T*)(dst0 + y * dst0_step);
|
||||
T* dst1_y = (T*)(dst1 + y * dst1_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
typedef char type;
|
||||
typedef char2 type2;
|
||||
typedef char3 type3;
|
||||
typedef char4 type4;
|
||||
src_type src_elem = src_y[x];
|
||||
dst0_y[x] = src_elem.x;
|
||||
dst1_y[x] = src_elem.y;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void splitC3_(const uchar* src, size_t src_step,
|
||||
int rows, int cols,
|
||||
uchar* dst0, size_t dst0_step,
|
||||
uchar* dst1, size_t dst1_step,
|
||||
uchar* dst2, size_t dst2_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type3 src_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const src_type* src_y = (const src_type*)(src + y * src_step);
|
||||
T* dst0_y = (T*)(dst0 + y * dst0_step);
|
||||
T* dst1_y = (T*)(dst1 + y * dst1_step);
|
||||
T* dst2_y = (T*)(dst2 + y * dst2_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
src_type src_elem = src_y[x];
|
||||
dst0_y[x] = src_elem.x;
|
||||
dst1_y[x] = src_elem.y;
|
||||
dst2_y[x] = src_elem.z;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
__global__ void splitC3_<double>(
|
||||
const uchar* src, size_t src_step, int rows, int cols,
|
||||
uchar* dst0, size_t dst0_step,
|
||||
uchar* dst1, size_t dst1_step,
|
||||
uchar* dst2, size_t dst2_step)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const double* src_y = (const double*)(src + y * src_step);
|
||||
double* dst0_y = (double*)(dst0 + y * dst0_step);
|
||||
double* dst1_y = (double*)(dst1 + y * dst1_step);
|
||||
double* dst2_y = (double*)(dst2 + y * dst2_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst0_y[x] = src_y[3 * x];
|
||||
dst1_y[x] = src_y[3 * x + 1];
|
||||
dst2_y[x] = src_y[3 * x + 2];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void splitC4_(const uchar* src, size_t src_step, int rows, int cols,
|
||||
uchar* dst0, size_t dst0_step,
|
||||
uchar* dst1, size_t dst1_step,
|
||||
uchar* dst2, size_t dst2_step,
|
||||
uchar* dst3, size_t dst3_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type4 src_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const src_type* src_y = (const src_type*)(src + y * src_step);
|
||||
T* dst0_y = (T*)(dst0 + y * dst0_step);
|
||||
T* dst1_y = (T*)(dst1 + y * dst1_step);
|
||||
T* dst2_y = (T*)(dst2 + y * dst2_step);
|
||||
T* dst3_y = (T*)(dst3 + y * dst3_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
src_type src_elem = src_y[x];
|
||||
dst0_y[x] = src_elem.x;
|
||||
dst1_y[x] = src_elem.y;
|
||||
dst2_y[x] = src_elem.z;
|
||||
dst3_y[x] = src_elem.w;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
__global__ void splitC4_<double>(
|
||||
const uchar* src, size_t src_step, int rows, int cols,
|
||||
uchar* dst0, size_t dst0_step,
|
||||
uchar* dst1, size_t dst1_step,
|
||||
uchar* dst2, size_t dst2_step,
|
||||
uchar* dst3, size_t dst3_step)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const double2* src_y = (const double2*)(src + y * src_step);
|
||||
double* dst0_y = (double*)(dst0 + y * dst0_step);
|
||||
double* dst1_y = (double*)(dst1 + y * dst1_step);
|
||||
double* dst2_y = (double*)(dst2 + y * dst2_step);
|
||||
double* dst3_y = (double*)(dst3 + y * dst3_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
double2 src_elem1 = src_y[2 * x];
|
||||
double2 src_elem2 = src_y[2 * x + 1];
|
||||
dst0_y[x] = src_elem1.x;
|
||||
dst1_y[x] = src_elem1.y;
|
||||
dst2_y[x] = src_elem2.x;
|
||||
dst3_y[x] = src_elem2.y;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void splitC2_(const DevMem2Db& src, DevMem2Db* dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(src.cols, blockDim.x), divUp(src.rows, blockDim.y));
|
||||
splitC2_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src.data, src.step, src.rows, src.cols,
|
||||
dst[0].data, dst[0].step,
|
||||
dst[1].data, dst[1].step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
static void splitC3_(const DevMem2Db& src, DevMem2Db* dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(src.cols, blockDim.x), divUp(src.rows, blockDim.y));
|
||||
splitC3_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src.data, src.step, src.rows, src.cols,
|
||||
dst[0].data, dst[0].step,
|
||||
dst[1].data, dst[1].step,
|
||||
dst[2].data, dst[2].step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
static void splitC4_(const DevMem2Db& src, DevMem2Db* dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(src.cols, blockDim.x), divUp(src.rows, blockDim.y));
|
||||
splitC4_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src.data, src.step, src.rows, src.cols,
|
||||
dst[0].data, dst[0].step,
|
||||
dst[1].data, dst[1].step,
|
||||
dst[2].data, dst[2].step,
|
||||
dst[3].data, dst[3].step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
void split_caller(const DevMem2Db& src, DevMem2Db* dst, int num_channels, size_t elem_size1, const cudaStream_t& stream)
|
||||
{
|
||||
static SplitFunction split_func_tbl[] =
|
||||
{
|
||||
splitC2_<char>, splitC2_<short>, splitC2_<int>, 0, splitC2_<double>,
|
||||
splitC3_<char>, splitC3_<short>, splitC3_<int>, 0, splitC3_<double>,
|
||||
splitC4_<char>, splitC4_<short>, splitC4_<int>, 0, splitC4_<double>,
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct TypeTraits<T, 2>
|
||||
{
|
||||
typedef short type;
|
||||
typedef short2 type2;
|
||||
typedef short3 type3;
|
||||
typedef short4 type4;
|
||||
};
|
||||
size_t split_func_id = (num_channels - 2) * 5 + (elem_size1 >> 1);
|
||||
SplitFunction split_func = split_func_tbl[split_func_id];
|
||||
|
||||
template <typename T>
|
||||
struct TypeTraits<T, 4>
|
||||
{
|
||||
typedef int type;
|
||||
typedef int2 type2;
|
||||
typedef int3 type3;
|
||||
typedef int4 type4;
|
||||
};
|
||||
if (split_func == 0)
|
||||
cv::gpu::error("Unsupported channel count or data type", __FILE__, __LINE__);
|
||||
|
||||
template <typename T>
|
||||
struct TypeTraits<T, 8>
|
||||
{
|
||||
typedef double type;
|
||||
typedef double2 type2;
|
||||
//typedef double3 type3;
|
||||
//typedef double4 type3;
|
||||
};
|
||||
split_func(src, dst, stream);
|
||||
}
|
||||
|
||||
typedef void (*MergeFunction)(const DevMem2Db* src, DevMem2Db& dst, const cudaStream_t& stream);
|
||||
typedef void (*SplitFunction)(const DevMem2Db& src, DevMem2Db* dst, const cudaStream_t& stream);
|
||||
} // namespace split_merge
|
||||
|
||||
//------------------------------------------------------------
|
||||
// Merge
|
||||
|
||||
template <typename T>
|
||||
__global__ void mergeC2_(const uchar* src0, size_t src0_step,
|
||||
const uchar* src1, size_t src1_step,
|
||||
int rows, int cols, uchar* dst, size_t dst_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type2 dst_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const T* src0_y = (const T*)(src0 + y * src0_step);
|
||||
const T* src1_y = (const T*)(src1 + y * src1_step);
|
||||
dst_type* dst_y = (dst_type*)(dst + y * dst_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst_type dst_elem;
|
||||
dst_elem.x = src0_y[x];
|
||||
dst_elem.y = src1_y[x];
|
||||
dst_y[x] = dst_elem;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void mergeC3_(const uchar* src0, size_t src0_step,
|
||||
const uchar* src1, size_t src1_step,
|
||||
const uchar* src2, size_t src2_step,
|
||||
int rows, int cols, uchar* dst, size_t dst_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type3 dst_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const T* src0_y = (const T*)(src0 + y * src0_step);
|
||||
const T* src1_y = (const T*)(src1 + y * src1_step);
|
||||
const T* src2_y = (const T*)(src2 + y * src2_step);
|
||||
dst_type* dst_y = (dst_type*)(dst + y * dst_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst_type dst_elem;
|
||||
dst_elem.x = src0_y[x];
|
||||
dst_elem.y = src1_y[x];
|
||||
dst_elem.z = src2_y[x];
|
||||
dst_y[x] = dst_elem;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
__global__ void mergeC3_<double>(const uchar* src0, size_t src0_step,
|
||||
const uchar* src1, size_t src1_step,
|
||||
const uchar* src2, size_t src2_step,
|
||||
int rows, int cols, uchar* dst, size_t dst_step)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const double* src0_y = (const double*)(src0 + y * src0_step);
|
||||
const double* src1_y = (const double*)(src1 + y * src1_step);
|
||||
const double* src2_y = (const double*)(src2 + y * src2_step);
|
||||
double* dst_y = (double*)(dst + y * dst_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst_y[3 * x] = src0_y[x];
|
||||
dst_y[3 * x + 1] = src1_y[x];
|
||||
dst_y[3 * x + 2] = src2_y[x];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void mergeC4_(const uchar* src0, size_t src0_step,
|
||||
const uchar* src1, size_t src1_step,
|
||||
const uchar* src2, size_t src2_step,
|
||||
const uchar* src3, size_t src3_step,
|
||||
int rows, int cols, uchar* dst, size_t dst_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type4 dst_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const T* src0_y = (const T*)(src0 + y * src0_step);
|
||||
const T* src1_y = (const T*)(src1 + y * src1_step);
|
||||
const T* src2_y = (const T*)(src2 + y * src2_step);
|
||||
const T* src3_y = (const T*)(src3 + y * src3_step);
|
||||
dst_type* dst_y = (dst_type*)(dst + y * dst_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst_type dst_elem;
|
||||
dst_elem.x = src0_y[x];
|
||||
dst_elem.y = src1_y[x];
|
||||
dst_elem.z = src2_y[x];
|
||||
dst_elem.w = src3_y[x];
|
||||
dst_y[x] = dst_elem;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
__global__ void mergeC4_<double>(const uchar* src0, size_t src0_step,
|
||||
const uchar* src1, size_t src1_step,
|
||||
const uchar* src2, size_t src2_step,
|
||||
const uchar* src3, size_t src3_step,
|
||||
int rows, int cols, uchar* dst, size_t dst_step)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const double* src0_y = (const double*)(src0 + y * src0_step);
|
||||
const double* src1_y = (const double*)(src1 + y * src1_step);
|
||||
const double* src2_y = (const double*)(src2 + y * src2_step);
|
||||
const double* src3_y = (const double*)(src3 + y * src3_step);
|
||||
double2* dst_y = (double2*)(dst + y * dst_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst_y[2 * x] = make_double2(src0_y[x], src1_y[x]);
|
||||
dst_y[2 * x + 1] = make_double2(src2_y[x], src3_y[x]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
static void mergeC2_(const DevMem2Db* src, DevMem2Db& dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(dst.cols, blockDim.x), divUp(dst.rows, blockDim.y));
|
||||
mergeC2_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src[0].data, src[0].step,
|
||||
src[1].data, src[1].step,
|
||||
dst.rows, dst.cols, dst.data, dst.step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
static void mergeC3_(const DevMem2Db* src, DevMem2Db& dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(dst.cols, blockDim.x), divUp(dst.rows, blockDim.y));
|
||||
mergeC3_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src[0].data, src[0].step,
|
||||
src[1].data, src[1].step,
|
||||
src[2].data, src[2].step,
|
||||
dst.rows, dst.cols, dst.data, dst.step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
static void mergeC4_(const DevMem2Db* src, DevMem2Db& dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(dst.cols, blockDim.x), divUp(dst.rows, blockDim.y));
|
||||
mergeC4_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src[0].data, src[0].step,
|
||||
src[1].data, src[1].step,
|
||||
src[2].data, src[2].step,
|
||||
src[3].data, src[3].step,
|
||||
dst.rows, dst.cols, dst.data, dst.step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
extern "C" void merge_caller(const DevMem2Db* src, DevMem2Db& dst,
|
||||
int total_channels, size_t elem_size,
|
||||
const cudaStream_t& stream)
|
||||
{
|
||||
static MergeFunction merge_func_tbl[] =
|
||||
{
|
||||
mergeC2_<char>, mergeC2_<short>, mergeC2_<int>, 0, mergeC2_<double>,
|
||||
mergeC3_<char>, mergeC3_<short>, mergeC3_<int>, 0, mergeC3_<double>,
|
||||
mergeC4_<char>, mergeC4_<short>, mergeC4_<int>, 0, mergeC4_<double>,
|
||||
};
|
||||
|
||||
size_t merge_func_id = (total_channels - 2) * 5 + (elem_size >> 1);
|
||||
MergeFunction merge_func = merge_func_tbl[merge_func_id];
|
||||
|
||||
if (merge_func == 0)
|
||||
cv::gpu::error("Unsupported channel count or data type", __FILE__, __LINE__);
|
||||
|
||||
merge_func(src, dst, stream);
|
||||
}
|
||||
|
||||
|
||||
|
||||
//------------------------------------------------------------
|
||||
// Split
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void splitC2_(const uchar* src, size_t src_step,
|
||||
int rows, int cols,
|
||||
uchar* dst0, size_t dst0_step,
|
||||
uchar* dst1, size_t dst1_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type2 src_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const src_type* src_y = (const src_type*)(src + y * src_step);
|
||||
T* dst0_y = (T*)(dst0 + y * dst0_step);
|
||||
T* dst1_y = (T*)(dst1 + y * dst1_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
src_type src_elem = src_y[x];
|
||||
dst0_y[x] = src_elem.x;
|
||||
dst1_y[x] = src_elem.y;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void splitC3_(const uchar* src, size_t src_step,
|
||||
int rows, int cols,
|
||||
uchar* dst0, size_t dst0_step,
|
||||
uchar* dst1, size_t dst1_step,
|
||||
uchar* dst2, size_t dst2_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type3 src_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const src_type* src_y = (const src_type*)(src + y * src_step);
|
||||
T* dst0_y = (T*)(dst0 + y * dst0_step);
|
||||
T* dst1_y = (T*)(dst1 + y * dst1_step);
|
||||
T* dst2_y = (T*)(dst2 + y * dst2_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
src_type src_elem = src_y[x];
|
||||
dst0_y[x] = src_elem.x;
|
||||
dst1_y[x] = src_elem.y;
|
||||
dst2_y[x] = src_elem.z;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
__global__ void splitC3_<double>(
|
||||
const uchar* src, size_t src_step, int rows, int cols,
|
||||
uchar* dst0, size_t dst0_step,
|
||||
uchar* dst1, size_t dst1_step,
|
||||
uchar* dst2, size_t dst2_step)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const double* src_y = (const double*)(src + y * src_step);
|
||||
double* dst0_y = (double*)(dst0 + y * dst0_step);
|
||||
double* dst1_y = (double*)(dst1 + y * dst1_step);
|
||||
double* dst2_y = (double*)(dst2 + y * dst2_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
dst0_y[x] = src_y[3 * x];
|
||||
dst1_y[x] = src_y[3 * x + 1];
|
||||
dst2_y[x] = src_y[3 * x + 2];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void splitC4_(const uchar* src, size_t src_step, int rows, int cols,
|
||||
uchar* dst0, size_t dst0_step,
|
||||
uchar* dst1, size_t dst1_step,
|
||||
uchar* dst2, size_t dst2_step,
|
||||
uchar* dst3, size_t dst3_step)
|
||||
{
|
||||
typedef typename TypeTraits<T>::type4 src_type;
|
||||
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const src_type* src_y = (const src_type*)(src + y * src_step);
|
||||
T* dst0_y = (T*)(dst0 + y * dst0_step);
|
||||
T* dst1_y = (T*)(dst1 + y * dst1_step);
|
||||
T* dst2_y = (T*)(dst2 + y * dst2_step);
|
||||
T* dst3_y = (T*)(dst3 + y * dst3_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
src_type src_elem = src_y[x];
|
||||
dst0_y[x] = src_elem.x;
|
||||
dst1_y[x] = src_elem.y;
|
||||
dst2_y[x] = src_elem.z;
|
||||
dst3_y[x] = src_elem.w;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <>
|
||||
__global__ void splitC4_<double>(
|
||||
const uchar* src, size_t src_step, int rows, int cols,
|
||||
uchar* dst0, size_t dst0_step,
|
||||
uchar* dst1, size_t dst1_step,
|
||||
uchar* dst2, size_t dst2_step,
|
||||
uchar* dst3, size_t dst3_step)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
const double2* src_y = (const double2*)(src + y * src_step);
|
||||
double* dst0_y = (double*)(dst0 + y * dst0_step);
|
||||
double* dst1_y = (double*)(dst1 + y * dst1_step);
|
||||
double* dst2_y = (double*)(dst2 + y * dst2_step);
|
||||
double* dst3_y = (double*)(dst3 + y * dst3_step);
|
||||
|
||||
if (x < cols && y < rows)
|
||||
{
|
||||
double2 src_elem1 = src_y[2 * x];
|
||||
double2 src_elem2 = src_y[2 * x + 1];
|
||||
dst0_y[x] = src_elem1.x;
|
||||
dst1_y[x] = src_elem1.y;
|
||||
dst2_y[x] = src_elem2.x;
|
||||
dst3_y[x] = src_elem2.y;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void splitC2_(const DevMem2Db& src, DevMem2Db* dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(src.cols, blockDim.x), divUp(src.rows, blockDim.y));
|
||||
splitC2_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src.data, src.step, src.rows, src.cols,
|
||||
dst[0].data, dst[0].step,
|
||||
dst[1].data, dst[1].step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
static void splitC3_(const DevMem2Db& src, DevMem2Db* dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(src.cols, blockDim.x), divUp(src.rows, blockDim.y));
|
||||
splitC3_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src.data, src.step, src.rows, src.cols,
|
||||
dst[0].data, dst[0].step,
|
||||
dst[1].data, dst[1].step,
|
||||
dst[2].data, dst[2].step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
static void splitC4_(const DevMem2Db& src, DevMem2Db* dst, const cudaStream_t& stream)
|
||||
{
|
||||
dim3 blockDim(32, 8);
|
||||
dim3 gridDim(divUp(src.cols, blockDim.x), divUp(src.rows, blockDim.y));
|
||||
splitC4_<T><<<gridDim, blockDim, 0, stream>>>(
|
||||
src.data, src.step, src.rows, src.cols,
|
||||
dst[0].data, dst[0].step,
|
||||
dst[1].data, dst[1].step,
|
||||
dst[2].data, dst[2].step,
|
||||
dst[3].data, dst[3].step);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
|
||||
extern "C" void split_caller(const DevMem2Db& src, DevMem2Db* dst,
|
||||
int num_channels, size_t elem_size1,
|
||||
const cudaStream_t& stream)
|
||||
{
|
||||
static SplitFunction split_func_tbl[] =
|
||||
{
|
||||
splitC2_<char>, splitC2_<short>, splitC2_<int>, 0, splitC2_<double>,
|
||||
splitC3_<char>, splitC3_<short>, splitC3_<int>, 0, splitC3_<double>,
|
||||
splitC4_<char>, splitC4_<short>, splitC4_<int>, 0, splitC4_<double>,
|
||||
};
|
||||
|
||||
size_t split_func_id = (num_channels - 2) * 5 + (elem_size1 >> 1);
|
||||
SplitFunction split_func = split_func_tbl[split_func_id];
|
||||
|
||||
if (split_func == 0)
|
||||
cv::gpu::error("Unsupported channel count or data type", __FILE__, __LINE__);
|
||||
|
||||
split_func(src, dst, stream);
|
||||
}
|
||||
|
||||
}}} // namespace cv::gpu::split_merge
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -40,23 +40,18 @@
|
||||
//
|
||||
//M*/
|
||||
|
||||
//#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/devmem2d.hpp"
|
||||
#include "safe_call.hpp"
|
||||
static inline int divUp(int total, int grain) { return (total + grain - 1) / grain; }
|
||||
#include "internal_shared.hpp"
|
||||
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
using namespace cv::gpu;
|
||||
namespace stereobm {
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/////////////////////////////////////// Streeo BM ////////////////////////////////////////////////
|
||||
/////////////////////////////////////// Stereo BM ////////////////////////////////////////////////
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#define ROWSperTHREAD 21 // the number of rows a thread will process
|
||||
|
||||
namespace cv { namespace gpu { namespace bm
|
||||
{
|
||||
|
||||
#define BLOCK_W 128 // the thread block width (464)
|
||||
#define N_DISPARITIES 8
|
||||
|
||||
@@ -117,7 +112,7 @@ __device__ uint2 MinSSD(volatile unsigned int *col_ssd_cache, volatile unsigned
|
||||
__syncthreads();
|
||||
ssd[7] = CalcSSD<RADIUS>(col_ssd_cache, col_ssd + 7 * (BLOCK_W + 2 * RADIUS));
|
||||
|
||||
int mssd = min(min(min(ssd[0], ssd[1]), min(ssd[4], ssd[5])), min(min(ssd[2], ssd[3]), min(ssd[6], ssd[7])));
|
||||
int mssd = ::min(::min(::min(ssd[0], ssd[1]), ::min(ssd[4], ssd[5])), ::min(::min(ssd[2], ssd[3]), ::min(ssd[6], ssd[7])));
|
||||
|
||||
int bestIdx = 0;
|
||||
for (int i = 0; i < N_DISPARITIES; i++)
|
||||
@@ -252,7 +247,7 @@ __global__ void stereoKernel(unsigned char *left, unsigned char *right, size_t i
|
||||
for(uint *ptr = minSSDImage; ptr != minSSDImage_end; ptr += minssd_step )
|
||||
*ptr = 0xFFFFFFFF;
|
||||
}*/
|
||||
int end_row = min(ROWSperTHREAD, cheight - Y - RADIUS);
|
||||
int end_row = ::min(ROWSperTHREAD, cheight - Y - RADIUS);
|
||||
int y_tex;
|
||||
int x_tex = X - RADIUS;
|
||||
|
||||
@@ -346,7 +341,7 @@ const static kernel_caller_t callers[] =
|
||||
};
|
||||
const int calles_num = sizeof(callers)/sizeof(callers[0]);
|
||||
|
||||
extern "C" void stereoBM_GPU(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& disp, int maxdisp, int winsz, const DevMem2D_<unsigned int>& minSSD_buf, cudaStream_t& stream)
|
||||
void stereoBM_GPU(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& disp, int maxdisp, int winsz, const DevMem2D_<unsigned int>& minSSD_buf, cudaStream_t& stream)
|
||||
{
|
||||
int winsz2 = winsz >> 1;
|
||||
|
||||
@@ -375,7 +370,7 @@ extern "C" void stereoBM_GPU(const DevMem2Db& left, const DevMem2Db& right, cons
|
||||
|
||||
texture<unsigned char, 2, cudaReadModeElementType> texForSobel;
|
||||
|
||||
extern "C" __global__ void prefilter_kernel(DevMem2Db output, int prefilterCap)
|
||||
__global__ void prefilter_kernel(DevMem2Db output, int prefilterCap)
|
||||
{
|
||||
int x = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int y = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
@@ -387,12 +382,12 @@ extern "C" __global__ void prefilter_kernel(DevMem2Db output, int prefilterCap)
|
||||
(int)tex2D(texForSobel, x - 1, y + 1) * (-1) + (int)tex2D(texForSobel, x + 1, y + 1) * (1);
|
||||
|
||||
|
||||
conv = min(min(max(-prefilterCap, conv), prefilterCap) + prefilterCap, 255);
|
||||
conv = ::min(::min(::max(-prefilterCap, conv), prefilterCap) + prefilterCap, 255);
|
||||
output.ptr(y)[x] = conv & 0xFF;
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void prefilter_xsobel(const DevMem2Db& input, const DevMem2Db& output, int prefilterCap, cudaStream_t & stream)
|
||||
void prefilter_xsobel(const DevMem2Db& input, const DevMem2Db& output, int prefilterCap, cudaStream_t & stream)
|
||||
{
|
||||
cudaChannelFormatDesc desc = cudaCreateChannelDesc<unsigned char>();
|
||||
cudaSafeCall( cudaBindTexture2D( 0, texForSobel, input.data, desc, input.cols, input.rows, input.step ) );
|
||||
@@ -451,7 +446,7 @@ __device__ float CalcSums(float *cols, float *cols_cache, int winsz)
|
||||
|
||||
#define RpT (2 * ROWSperTHREAD) // got experimentally
|
||||
|
||||
extern "C" __global__ void textureness_kernel(DevMem2Db disp, int winsz, float threshold)
|
||||
__global__ void textureness_kernel(DevMem2Db disp, int winsz, float threshold)
|
||||
{
|
||||
int winsz2 = winsz/2;
|
||||
int n_dirty_pixels = (winsz2) * 2;
|
||||
@@ -462,7 +457,7 @@ extern "C" __global__ void textureness_kernel(DevMem2Db disp, int winsz, float t
|
||||
|
||||
int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int beg_row = blockIdx.y * RpT;
|
||||
int end_row = min(beg_row + RpT, disp.rows);
|
||||
int end_row = ::min(beg_row + RpT, disp.rows);
|
||||
|
||||
if (x < disp.cols)
|
||||
{
|
||||
@@ -510,7 +505,7 @@ extern "C" __global__ void textureness_kernel(DevMem2Db disp, int winsz, float t
|
||||
}
|
||||
}
|
||||
|
||||
extern "C" void postfilter_textureness(const DevMem2Db& input, int winsz, float avgTexturenessThreshold, const DevMem2Db& disp, cudaStream_t & stream)
|
||||
void postfilter_textureness(const DevMem2Db& input, int winsz, float avgTexturenessThreshold, const DevMem2Db& disp, cudaStream_t & stream)
|
||||
{
|
||||
avgTexturenessThreshold *= winsz * winsz;
|
||||
|
||||
@@ -537,4 +532,6 @@ extern "C" void postfilter_textureness(const DevMem2Db& input, int winsz, float
|
||||
cudaSafeCall( cudaUnbindTexture (texForTF) );
|
||||
}
|
||||
|
||||
}}}
|
||||
} // namespace stereobm
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
@@ -44,484 +44,489 @@
|
||||
#include "opencv2/gpu/device/saturate_cast.hpp"
|
||||
#include "opencv2/gpu/device/limits.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
BEGIN_OPENCV_DEVICE_NAMESPACE
|
||||
|
||||
namespace stereobp {
|
||||
|
||||
namespace cv { namespace gpu { namespace bp
|
||||
{
|
||||
///////////////////////////////////////////////////////////////
|
||||
/////////////////////// load constants ////////////////////////
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
__constant__ int cndisp;
|
||||
__constant__ float cmax_data_term;
|
||||
__constant__ float cdata_weight;
|
||||
__constant__ float cmax_disc_term;
|
||||
__constant__ float cdisc_single_jump;
|
||||
__constant__ int cndisp;
|
||||
__constant__ float cmax_data_term;
|
||||
__constant__ float cdata_weight;
|
||||
__constant__ float cmax_disc_term;
|
||||
__constant__ float cdisc_single_jump;
|
||||
|
||||
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cndisp, &ndisp, sizeof(int )) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cmax_data_term, &max_data_term, sizeof(float)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cdata_weight, &data_weight, sizeof(float)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cmax_disc_term, &max_disc_term, sizeof(float)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cdisc_single_jump, &disc_single_jump, sizeof(float)) );
|
||||
}
|
||||
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump)
|
||||
{
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cndisp, &ndisp, sizeof(int )) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cmax_data_term, &max_data_term, sizeof(float)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cdata_weight, &data_weight, sizeof(float)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cmax_disc_term, &max_disc_term, sizeof(float)) );
|
||||
cudaSafeCall( cudaMemcpyToSymbol(cdisc_single_jump, &disc_single_jump, sizeof(float)) );
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
////////////////////////// comp data //////////////////////////
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
template <int cn> struct PixDiff;
|
||||
template <> struct PixDiff<1>
|
||||
template <int cn> struct PixDiff;
|
||||
template <> struct PixDiff<1>
|
||||
{
|
||||
__device__ __forceinline__ PixDiff(const uchar* ls)
|
||||
{
|
||||
__device__ __forceinline__ PixDiff(const uchar* ls)
|
||||
{
|
||||
l = *ls;
|
||||
}
|
||||
__device__ __forceinline__ float operator()(const uchar* rs) const
|
||||
{
|
||||
return abs((int)l - *rs);
|
||||
}
|
||||
uchar l;
|
||||
};
|
||||
template <> struct PixDiff<3>
|
||||
l = *ls;
|
||||
}
|
||||
__device__ __forceinline__ float operator()(const uchar* rs) const
|
||||
{
|
||||
__device__ __forceinline__ PixDiff(const uchar* ls)
|
||||
{
|
||||
l = *((uchar3*)ls);
|
||||
}
|
||||
__device__ __forceinline__ float operator()(const uchar* rs) const
|
||||
{
|
||||
const float tr = 0.299f;
|
||||
const float tg = 0.587f;
|
||||
const float tb = 0.114f;
|
||||
|
||||
float val = tb * abs((int)l.x - rs[0]);
|
||||
val += tg * abs((int)l.y - rs[1]);
|
||||
val += tr * abs((int)l.z - rs[2]);
|
||||
|
||||
return val;
|
||||
}
|
||||
uchar3 l;
|
||||
};
|
||||
template <> struct PixDiff<4>
|
||||
return ::abs((int)l - *rs);
|
||||
}
|
||||
uchar l;
|
||||
};
|
||||
template <> struct PixDiff<3>
|
||||
{
|
||||
__device__ __forceinline__ PixDiff(const uchar* ls)
|
||||
{
|
||||
__device__ __forceinline__ PixDiff(const uchar* ls)
|
||||
{
|
||||
l = *((uchar4*)ls);
|
||||
}
|
||||
__device__ __forceinline__ float operator()(const uchar* rs) const
|
||||
{
|
||||
const float tr = 0.299f;
|
||||
const float tg = 0.587f;
|
||||
const float tb = 0.114f;
|
||||
|
||||
uchar4 r = *((uchar4*)rs);
|
||||
|
||||
float val = tb * abs((int)l.x - r.x);
|
||||
val += tg * abs((int)l.y - r.y);
|
||||
val += tr * abs((int)l.z - r.z);
|
||||
|
||||
return val;
|
||||
}
|
||||
uchar4 l;
|
||||
};
|
||||
|
||||
template <int cn, typename D>
|
||||
__global__ void comp_data(const DevMem2Db left, const PtrStepb right, PtrElemStep_<D> data)
|
||||
l = *((uchar3*)ls);
|
||||
}
|
||||
__device__ __forceinline__ float operator()(const uchar* rs) const
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const float tr = 0.299f;
|
||||
const float tg = 0.587f;
|
||||
const float tb = 0.114f;
|
||||
|
||||
if (y > 0 && y < left.rows - 1 && x > 0 && x < left.cols - 1)
|
||||
float val = tb * ::abs((int)l.x - rs[0]);
|
||||
val += tg * ::abs((int)l.y - rs[1]);
|
||||
val += tr * ::abs((int)l.z - rs[2]);
|
||||
|
||||
return val;
|
||||
}
|
||||
uchar3 l;
|
||||
};
|
||||
template <> struct PixDiff<4>
|
||||
{
|
||||
__device__ __forceinline__ PixDiff(const uchar* ls)
|
||||
{
|
||||
l = *((uchar4*)ls);
|
||||
}
|
||||
__device__ __forceinline__ float operator()(const uchar* rs) const
|
||||
{
|
||||
const float tr = 0.299f;
|
||||
const float tg = 0.587f;
|
||||
const float tb = 0.114f;
|
||||
|
||||
uchar4 r = *((uchar4*)rs);
|
||||
|
||||
float val = tb * ::abs((int)l.x - r.x);
|
||||
val += tg * ::abs((int)l.y - r.y);
|
||||
val += tr * ::abs((int)l.z - r.z);
|
||||
|
||||
return val;
|
||||
}
|
||||
uchar4 l;
|
||||
};
|
||||
|
||||
template <int cn, typename D>
|
||||
__global__ void comp_data(const DevMem2Db left, const PtrStepb right, PtrElemStep_<D> data)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (y > 0 && y < left.rows - 1 && x > 0 && x < left.cols - 1)
|
||||
{
|
||||
const uchar* ls = left.ptr(y) + x * cn;
|
||||
const PixDiff<cn> pixDiff(ls);
|
||||
const uchar* rs = right.ptr(y) + x * cn;
|
||||
|
||||
D* ds = data.ptr(y) + x;
|
||||
const size_t disp_step = data.step * left.rows;
|
||||
|
||||
for (int disp = 0; disp < cndisp; disp++)
|
||||
{
|
||||
const uchar* ls = left.ptr(y) + x * cn;
|
||||
const PixDiff<cn> pixDiff(ls);
|
||||
const uchar* rs = right.ptr(y) + x * cn;
|
||||
|
||||
D* ds = data.ptr(y) + x;
|
||||
const size_t disp_step = data.step * left.rows;
|
||||
|
||||
for (int disp = 0; disp < cndisp; disp++)
|
||||
if (x - disp >= 1)
|
||||
{
|
||||
if (x - disp >= 1)
|
||||
{
|
||||
float val = pixDiff(rs - disp * cn);
|
||||
float val = pixDiff(rs - disp * cn);
|
||||
|
||||
ds[disp * disp_step] = saturate_cast<D>(fmin(cdata_weight * val, cdata_weight * cmax_data_term));
|
||||
}
|
||||
else
|
||||
{
|
||||
ds[disp * disp_step] = saturate_cast<D>(cdata_weight * cmax_data_term);
|
||||
}
|
||||
ds[disp * disp_step] = saturate_cast<D>(fmin(cdata_weight * val, cdata_weight * cmax_data_term));
|
||||
}
|
||||
else
|
||||
{
|
||||
ds[disp * disp_step] = saturate_cast<D>(cdata_weight * cmax_data_term);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T, typename D>
|
||||
void comp_data_gpu(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream);
|
||||
template<typename T, typename D>
|
||||
void comp_data_gpu(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream);
|
||||
|
||||
template <> void comp_data_gpu<uchar, short>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
template <> void comp_data_gpu<uchar, short>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
|
||||
comp_data<1, short><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<short>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
comp_data<1, short><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<short>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
template <> void comp_data_gpu<uchar, float>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
template <> void comp_data_gpu<uchar, float>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
|
||||
comp_data<1, float><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<float>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
comp_data<1, float><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<float>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <> void comp_data_gpu<uchar3, short>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
template <> void comp_data_gpu<uchar3, short>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
|
||||
comp_data<3, short><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<short>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
comp_data<3, short><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<short>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
template <> void comp_data_gpu<uchar3, float>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
template <> void comp_data_gpu<uchar3, float>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
|
||||
comp_data<3, float><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<float>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
comp_data<3, float><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<float>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template <> void comp_data_gpu<uchar4, short>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
template <> void comp_data_gpu<uchar4, short>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
|
||||
comp_data<4, short><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<short>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
comp_data<4, short><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<short>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
template <> void comp_data_gpu<uchar4, float>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
template <> void comp_data_gpu<uchar4, float>(const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
grid.x = divUp(left.cols, threads.x);
|
||||
grid.y = divUp(left.rows, threads.y);
|
||||
|
||||
comp_data<4, float><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<float>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
comp_data<4, float><<<grid, threads, 0, stream>>>(left, right, (DevMem2D_<float>)data);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
//////////////////////// data step down ///////////////////////
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename T>
|
||||
__global__ void data_step_down(int dst_cols, int dst_rows, int src_rows, const PtrStep<T> src, PtrStep<T> dst)
|
||||
template <typename T>
|
||||
__global__ void data_step_down(int dst_cols, int dst_rows, int src_rows, const PtrStep<T> src, PtrStep<T> dst)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
for (int d = 0; d < cndisp; ++d)
|
||||
{
|
||||
for (int d = 0; d < cndisp; ++d)
|
||||
{
|
||||
float dst_reg = src.ptr(d * src_rows + (2*y+0))[(2*x+0)];
|
||||
dst_reg += src.ptr(d * src_rows + (2*y+1))[(2*x+0)];
|
||||
dst_reg += src.ptr(d * src_rows + (2*y+0))[(2*x+1)];
|
||||
dst_reg += src.ptr(d * src_rows + (2*y+1))[(2*x+1)];
|
||||
float dst_reg = src.ptr(d * src_rows + (2*y+0))[(2*x+0)];
|
||||
dst_reg += src.ptr(d * src_rows + (2*y+1))[(2*x+0)];
|
||||
dst_reg += src.ptr(d * src_rows + (2*y+0))[(2*x+1)];
|
||||
dst_reg += src.ptr(d * src_rows + (2*y+1))[(2*x+1)];
|
||||
|
||||
dst.ptr(d * dst_rows + y)[x] = saturate_cast<T>(dst_reg);
|
||||
}
|
||||
dst.ptr(d * dst_rows + y)[x] = saturate_cast<T>(dst_reg);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const DevMem2Db& src, const DevMem2Db& dst, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
template<typename T>
|
||||
void data_step_down_gpu(int dst_cols, int dst_rows, int src_rows, const DevMem2Db& src, const DevMem2Db& dst, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(dst_cols, threads.x);
|
||||
grid.y = divUp(dst_rows, threads.y);
|
||||
grid.x = divUp(dst_cols, threads.x);
|
||||
grid.y = divUp(dst_rows, threads.y);
|
||||
|
||||
data_step_down<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)src, (DevMem2D_<T>)dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
data_step_down<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)src, (DevMem2D_<T>)dst);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template void data_step_down_gpu<short>(int dst_cols, int dst_rows, int src_rows, const DevMem2Db& src, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void data_step_down_gpu<float>(int dst_cols, int dst_rows, int src_rows, const DevMem2Db& src, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void data_step_down_gpu<short>(int dst_cols, int dst_rows, int src_rows, const DevMem2Db& src, const DevMem2Db& dst, cudaStream_t stream);
|
||||
template void data_step_down_gpu<float>(int dst_cols, int dst_rows, int src_rows, const DevMem2Db& src, const DevMem2Db& dst, cudaStream_t stream);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
/////////////////// level up messages ////////////////////////
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename T>
|
||||
__global__ void level_up_message(int dst_cols, int dst_rows, int src_rows, const PtrElemStep_<T> src, PtrElemStep_<T> dst)
|
||||
template <typename T>
|
||||
__global__ void level_up_message(int dst_cols, int dst_rows, int src_rows, const PtrElemStep_<T> src, PtrElemStep_<T> dst)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const size_t dst_disp_step = dst.step * dst_rows;
|
||||
const size_t src_disp_step = src.step * src_rows;
|
||||
|
||||
if (x < dst_cols && y < dst_rows)
|
||||
{
|
||||
const size_t dst_disp_step = dst.step * dst_rows;
|
||||
const size_t src_disp_step = src.step * src_rows;
|
||||
T* dstr = dst.ptr(y ) + x;
|
||||
const T* srcr = src.ptr(y/2) + x/2;
|
||||
|
||||
T* dstr = dst.ptr(y ) + x;
|
||||
const T* srcr = src.ptr(y/2) + x/2;
|
||||
|
||||
for (int d = 0; d < cndisp; ++d)
|
||||
dstr[d * dst_disp_step] = srcr[d * src_disp_step];
|
||||
}
|
||||
for (int d = 0; d < cndisp; ++d)
|
||||
dstr[d * dst_disp_step] = srcr[d * src_disp_step];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Db* mus, DevMem2Db* mds, DevMem2Db* mls, DevMem2Db* mrs, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
template <typename T>
|
||||
void level_up_messages_gpu(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Db* mus, DevMem2Db* mds, DevMem2Db* mls, DevMem2Db* mrs, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(dst_cols, threads.x);
|
||||
grid.y = divUp(dst_rows, threads.y);
|
||||
grid.x = divUp(dst_cols, threads.x);
|
||||
grid.y = divUp(dst_rows, threads.y);
|
||||
|
||||
int src_idx = (dst_idx + 1) & 1;
|
||||
int src_idx = (dst_idx + 1) & 1;
|
||||
|
||||
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mus[src_idx], (DevMem2D_<T>)mus[dst_idx]);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mds[src_idx], (DevMem2D_<T>)mds[dst_idx]);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mls[src_idx], (DevMem2D_<T>)mls[dst_idx]);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mrs[src_idx], (DevMem2D_<T>)mrs[dst_idx]);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mus[src_idx], (DevMem2D_<T>)mus[dst_idx]);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mds[src_idx], (DevMem2D_<T>)mds[dst_idx]);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
template void level_up_messages_gpu<short>(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Db* mus, DevMem2Db* mds, DevMem2Db* mls, DevMem2Db* mrs, cudaStream_t stream);
|
||||
template void level_up_messages_gpu<float>(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Db* mus, DevMem2Db* mds, DevMem2Db* mls, DevMem2Db* mrs, cudaStream_t stream);
|
||||
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mls[src_idx], (DevMem2D_<T>)mls[dst_idx]);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
level_up_message<T><<<grid, threads, 0, stream>>>(dst_cols, dst_rows, src_rows, (DevMem2D_<T>)mrs[src_idx], (DevMem2D_<T>)mrs[dst_idx]);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template void level_up_messages_gpu<short>(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Db* mus, DevMem2Db* mds, DevMem2Db* mls, DevMem2Db* mrs, cudaStream_t stream);
|
||||
template void level_up_messages_gpu<float>(int dst_idx, int dst_cols, int dst_rows, int src_rows, DevMem2Db* mus, DevMem2Db* mds, DevMem2Db* mls, DevMem2Db* mrs, cudaStream_t stream);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
//////////////////// calc all iterations /////////////////////
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename T>
|
||||
__device__ void calc_min_linear_penalty(T* dst, size_t step)
|
||||
template <typename T>
|
||||
__device__ void calc_min_linear_penalty(T* dst, size_t step)
|
||||
{
|
||||
float prev = dst[0];
|
||||
float cur;
|
||||
for (int disp = 1; disp < cndisp; ++disp)
|
||||
{
|
||||
float prev = dst[0];
|
||||
float cur;
|
||||
for (int disp = 1; disp < cndisp; ++disp)
|
||||
prev += cdisc_single_jump;
|
||||
cur = dst[step * disp];
|
||||
if (prev < cur)
|
||||
{
|
||||
prev += cdisc_single_jump;
|
||||
cur = dst[step * disp];
|
||||
if (prev < cur)
|
||||
{
|
||||
cur = prev;
|
||||
dst[step * disp] = saturate_cast<T>(prev);
|
||||
}
|
||||
prev = cur;
|
||||
}
|
||||
|
||||
prev = dst[(cndisp - 1) * step];
|
||||
for (int disp = cndisp - 2; disp >= 0; disp--)
|
||||
{
|
||||
prev += cdisc_single_jump;
|
||||
cur = dst[step * disp];
|
||||
if (prev < cur)
|
||||
{
|
||||
cur = prev;
|
||||
dst[step * disp] = saturate_cast<T>(prev);
|
||||
}
|
||||
prev = cur;
|
||||
cur = prev;
|
||||
dst[step * disp] = saturate_cast<T>(prev);
|
||||
}
|
||||
prev = cur;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ void message(const T* msg1, const T* msg2, const T* msg3, const T* data, T* dst, size_t msg_disp_step, size_t data_disp_step)
|
||||
prev = dst[(cndisp - 1) * step];
|
||||
for (int disp = cndisp - 2; disp >= 0; disp--)
|
||||
{
|
||||
float minimum = numeric_limits<float>::max();
|
||||
|
||||
for(int i = 0; i < cndisp; ++i)
|
||||
prev += cdisc_single_jump;
|
||||
cur = dst[step * disp];
|
||||
if (prev < cur)
|
||||
{
|
||||
float dst_reg = msg1[msg_disp_step * i];
|
||||
dst_reg += msg2[msg_disp_step * i];
|
||||
dst_reg += msg3[msg_disp_step * i];
|
||||
dst_reg += data[data_disp_step * i];
|
||||
|
||||
if (dst_reg < minimum)
|
||||
minimum = dst_reg;
|
||||
|
||||
dst[msg_disp_step * i] = saturate_cast<T>(dst_reg);
|
||||
cur = prev;
|
||||
dst[step * disp] = saturate_cast<T>(prev);
|
||||
}
|
||||
prev = cur;
|
||||
}
|
||||
}
|
||||
|
||||
calc_min_linear_penalty(dst, msg_disp_step);
|
||||
template <typename T>
|
||||
__device__ void message(const T* msg1, const T* msg2, const T* msg3, const T* data, T* dst, size_t msg_disp_step, size_t data_disp_step)
|
||||
{
|
||||
float minimum = device::numeric_limits<float>::max();
|
||||
|
||||
minimum += cmax_disc_term;
|
||||
for(int i = 0; i < cndisp; ++i)
|
||||
{
|
||||
float dst_reg = msg1[msg_disp_step * i];
|
||||
dst_reg += msg2[msg_disp_step * i];
|
||||
dst_reg += msg3[msg_disp_step * i];
|
||||
dst_reg += data[data_disp_step * i];
|
||||
|
||||
float sum = 0;
|
||||
for(int i = 0; i < cndisp; ++i)
|
||||
{
|
||||
float dst_reg = dst[msg_disp_step * i];
|
||||
if (dst_reg > minimum)
|
||||
{
|
||||
dst_reg = minimum;
|
||||
dst[msg_disp_step * i] = saturate_cast<T>(minimum);
|
||||
}
|
||||
sum += dst_reg;
|
||||
}
|
||||
sum /= cndisp;
|
||||
if (dst_reg < minimum)
|
||||
minimum = dst_reg;
|
||||
|
||||
for(int i = 0; i < cndisp; ++i)
|
||||
dst[msg_disp_step * i] -= sum;
|
||||
dst[msg_disp_step * i] = saturate_cast<T>(dst_reg);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void one_iteration(int t, PtrElemStep_<T> u, T* d, T* l, T* r, const PtrElemStep_<T> data, int cols, int rows)
|
||||
{
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + t) & 1);
|
||||
calc_min_linear_penalty(dst, msg_disp_step);
|
||||
|
||||
if ((y > 0) && (y < rows - 1) && (x > 0) && (x < cols - 1))
|
||||
minimum += cmax_disc_term;
|
||||
|
||||
float sum = 0;
|
||||
for(int i = 0; i < cndisp; ++i)
|
||||
{
|
||||
float dst_reg = dst[msg_disp_step * i];
|
||||
if (dst_reg > minimum)
|
||||
{
|
||||
T* us = u.ptr(y) + x;
|
||||
T* ds = d + y * u.step + x;
|
||||
T* ls = l + y * u.step + x;
|
||||
T* rs = r + y * u.step + x;
|
||||
const T* dt = data.ptr(y) + x;
|
||||
|
||||
size_t msg_disp_step = u.step * rows;
|
||||
size_t data_disp_step = data.step * rows;
|
||||
|
||||
message(us + u.step, ls + 1, rs - 1, dt, us, msg_disp_step, data_disp_step);
|
||||
message(ds - u.step, ls + 1, rs - 1, dt, ds, msg_disp_step, data_disp_step);
|
||||
message(us + u.step, ds - u.step, rs - 1, dt, rs, msg_disp_step, data_disp_step);
|
||||
message(us + u.step, ds - u.step, ls + 1, dt, ls, msg_disp_step, data_disp_step);
|
||||
dst_reg = minimum;
|
||||
dst[msg_disp_step * i] = saturate_cast<T>(minimum);
|
||||
}
|
||||
sum += dst_reg;
|
||||
}
|
||||
sum /= cndisp;
|
||||
|
||||
template <typename T>
|
||||
void calc_all_iterations_gpu(int cols, int rows, int iters, const DevMem2Db& u, const DevMem2Db& d,
|
||||
const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, cudaStream_t stream)
|
||||
for(int i = 0; i < cndisp; ++i)
|
||||
dst[msg_disp_step * i] -= sum;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void one_iteration(int t, PtrElemStep_<T> u, T* d, T* l, T* r, const PtrElemStep_<T> data, int cols, int rows)
|
||||
{
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + t) & 1);
|
||||
|
||||
if ((y > 0) && (y < rows - 1) && (x > 0) && (x < cols - 1))
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
T* us = u.ptr(y) + x;
|
||||
T* ds = d + y * u.step + x;
|
||||
T* ls = l + y * u.step + x;
|
||||
T* rs = r + y * u.step + x;
|
||||
const T* dt = data.ptr(y) + x;
|
||||
|
||||
grid.x = divUp(cols, threads.x << 1);
|
||||
grid.y = divUp(rows, threads.y);
|
||||
size_t msg_disp_step = u.step * rows;
|
||||
size_t data_disp_step = data.step * rows;
|
||||
|
||||
for(int t = 0; t < iters; ++t)
|
||||
{
|
||||
one_iteration<T><<<grid, threads, 0, stream>>>(t, (DevMem2D_<T>)u, (T*)d.data, (T*)l.data, (T*)r.data, (DevMem2D_<T>)data, cols, rows);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
message(us + u.step, ls + 1, rs - 1, dt, us, msg_disp_step, data_disp_step);
|
||||
message(ds - u.step, ls + 1, rs - 1, dt, ds, msg_disp_step, data_disp_step);
|
||||
message(us + u.step, ds - u.step, rs - 1, dt, rs, msg_disp_step, data_disp_step);
|
||||
message(us + u.step, ds - u.step, ls + 1, dt, ls, msg_disp_step, data_disp_step);
|
||||
}
|
||||
}
|
||||
|
||||
template void calc_all_iterations_gpu<short>(int cols, int rows, int iters, const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, cudaStream_t stream);
|
||||
template void calc_all_iterations_gpu<float>(int cols, int rows, int iters, const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, cudaStream_t stream);
|
||||
template <typename T>
|
||||
void calc_all_iterations_gpu(int cols, int rows, int iters, const DevMem2Db& u, const DevMem2Db& d,
|
||||
const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
/////////////////////////// output ////////////////////////////
|
||||
///////////////////////////////////////////////////////////////
|
||||
grid.x = divUp(cols, threads.x << 1);
|
||||
grid.y = divUp(rows, threads.y);
|
||||
|
||||
template <typename T>
|
||||
__global__ void output(const PtrElemStep_<T> u, const T* d, const T* l, const T* r, const T* data,
|
||||
DevMem2D_<short> disp)
|
||||
for(int t = 0; t < iters; ++t)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (y > 0 && y < disp.rows - 1 && x > 0 && x < disp.cols - 1)
|
||||
{
|
||||
const T* us = u.ptr(y + 1) + x;
|
||||
const T* ds = d + (y - 1) * u.step + x;
|
||||
const T* ls = l + y * u.step + (x + 1);
|
||||
const T* rs = r + y * u.step + (x - 1);
|
||||
const T* dt = data + y * u.step + x;
|
||||
|
||||
size_t disp_step = disp.rows * u.step;
|
||||
|
||||
int best = 0;
|
||||
float best_val = numeric_limits<float>::max();
|
||||
for (int d = 0; d < cndisp; ++d)
|
||||
{
|
||||
float val = us[d * disp_step];
|
||||
val += ds[d * disp_step];
|
||||
val += ls[d * disp_step];
|
||||
val += rs[d * disp_step];
|
||||
val += dt[d * disp_step];
|
||||
|
||||
if (val < best_val)
|
||||
{
|
||||
best_val = val;
|
||||
best = d;
|
||||
}
|
||||
}
|
||||
|
||||
disp.ptr(y)[x] = saturate_cast<short>(best);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void output_gpu(const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data,
|
||||
const DevMem2D_<short>& disp, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(disp.cols, threads.x);
|
||||
grid.y = divUp(disp.rows, threads.y);
|
||||
|
||||
output<T><<<grid, threads, 0, stream>>>((DevMem2D_<T>)u, (const T*)d.data, (const T*)l.data, (const T*)r.data, (const T*)data.data, disp);
|
||||
one_iteration<T><<<grid, threads, 0, stream>>>(t, (DevMem2D_<T>)u, (T*)d.data, (T*)l.data, (T*)r.data, (DevMem2D_<T>)data, cols, rows);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
|
||||
template void output_gpu<short>(const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, const DevMem2D_<short>& disp, cudaStream_t stream);
|
||||
template void output_gpu<float>(const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, const DevMem2D_<short>& disp, cudaStream_t stream);
|
||||
}}}
|
||||
template void calc_all_iterations_gpu<short>(int cols, int rows, int iters, const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, cudaStream_t stream);
|
||||
template void calc_all_iterations_gpu<float>(int cols, int rows, int iters, const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, cudaStream_t stream);
|
||||
|
||||
///////////////////////////////////////////////////////////////
|
||||
/////////////////////////// output ////////////////////////////
|
||||
///////////////////////////////////////////////////////////////
|
||||
|
||||
template <typename T>
|
||||
__global__ void output(const PtrElemStep_<T> u, const T* d, const T* l, const T* r, const T* data,
|
||||
DevMem2D_<short> disp)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (y > 0 && y < disp.rows - 1 && x > 0 && x < disp.cols - 1)
|
||||
{
|
||||
const T* us = u.ptr(y + 1) + x;
|
||||
const T* ds = d + (y - 1) * u.step + x;
|
||||
const T* ls = l + y * u.step + (x + 1);
|
||||
const T* rs = r + y * u.step + (x - 1);
|
||||
const T* dt = data + y * u.step + x;
|
||||
|
||||
size_t disp_step = disp.rows * u.step;
|
||||
|
||||
int best = 0;
|
||||
float best_val = numeric_limits<float>::max();
|
||||
for (int d = 0; d < cndisp; ++d)
|
||||
{
|
||||
float val = us[d * disp_step];
|
||||
val += ds[d * disp_step];
|
||||
val += ls[d * disp_step];
|
||||
val += rs[d * disp_step];
|
||||
val += dt[d * disp_step];
|
||||
|
||||
if (val < best_val)
|
||||
{
|
||||
best_val = val;
|
||||
best = d;
|
||||
}
|
||||
}
|
||||
|
||||
disp.ptr(y)[x] = saturate_cast<short>(best);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void output_gpu(const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data,
|
||||
const DevMem2D_<short>& disp, cudaStream_t stream)
|
||||
{
|
||||
dim3 threads(32, 8, 1);
|
||||
dim3 grid(1, 1, 1);
|
||||
|
||||
grid.x = divUp(disp.cols, threads.x);
|
||||
grid.y = divUp(disp.rows, threads.y);
|
||||
|
||||
output<T><<<grid, threads, 0, stream>>>((DevMem2D_<T>)u, (const T*)d.data, (const T*)l.data, (const T*)r.data, (const T*)data.data, disp);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
if (stream == 0)
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
template void output_gpu<short>(const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, const DevMem2D_<short>& disp, cudaStream_t stream);
|
||||
template void output_gpu<float>(const DevMem2Db& u, const DevMem2Db& d, const DevMem2Db& l, const DevMem2Db& r, const DevMem2Db& data, const DevMem2D_<short>& disp, cudaStream_t stream);
|
||||
|
||||
} // namespace stereobp
|
||||
|
||||
END_OPENCV_DEVICE_NAMESPACE
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user