gpuvideo module for video processing
This commit is contained in:
@@ -54,6 +54,7 @@
|
||||
#include "opencv2/gpufilters.hpp"
|
||||
#include "opencv2/gpuimgproc.hpp"
|
||||
#include "opencv2/gpufeatures2d.hpp"
|
||||
#include "opencv2/gpuvideo.hpp"
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/objdetect.hpp"
|
||||
@@ -433,543 +434,23 @@ private:
|
||||
|
||||
|
||||
|
||||
////////////////////////////////// Optical Flow //////////////////////////////////////////
|
||||
|
||||
class CV_EXPORTS BroxOpticalFlow
|
||||
{
|
||||
public:
|
||||
BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_) :
|
||||
alpha(alpha_), gamma(gamma_), scale_factor(scale_factor_),
|
||||
inner_iterations(inner_iterations_), outer_iterations(outer_iterations_), solver_iterations(solver_iterations_)
|
||||
{
|
||||
}
|
||||
|
||||
//! Compute optical flow
|
||||
//! frame0 - source frame (supports only CV_32FC1 type)
|
||||
//! frame1 - frame to track (with the same size and type as frame0)
|
||||
//! u - flow horizontal component (along x axis)
|
||||
//! v - flow vertical component (along y axis)
|
||||
void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null());
|
||||
|
||||
//! flow smoothness
|
||||
float alpha;
|
||||
|
||||
//! gradient constancy importance
|
||||
float gamma;
|
||||
|
||||
//! pyramid scale factor
|
||||
float scale_factor;
|
||||
|
||||
//! number of lagged non-linearity iterations (inner loop)
|
||||
int inner_iterations;
|
||||
|
||||
//! number of warping iterations (number of pyramid levels)
|
||||
int outer_iterations;
|
||||
|
||||
//! number of linear system solver iterations
|
||||
int solver_iterations;
|
||||
|
||||
GpuMat buf;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
class CV_EXPORTS PyrLKOpticalFlow
|
||||
{
|
||||
public:
|
||||
PyrLKOpticalFlow();
|
||||
|
||||
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
|
||||
GpuMat& status, GpuMat* err = 0);
|
||||
|
||||
void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0);
|
||||
|
||||
void releaseMemory();
|
||||
|
||||
Size winSize;
|
||||
int maxLevel;
|
||||
int iters;
|
||||
bool useInitialFlow;
|
||||
|
||||
private:
|
||||
std::vector<GpuMat> prevPyr_;
|
||||
std::vector<GpuMat> nextPyr_;
|
||||
|
||||
GpuMat buf_;
|
||||
|
||||
GpuMat uPyr_[2];
|
||||
GpuMat vPyr_[2];
|
||||
};
|
||||
|
||||
|
||||
class CV_EXPORTS FarnebackOpticalFlow
|
||||
{
|
||||
public:
|
||||
FarnebackOpticalFlow()
|
||||
{
|
||||
numLevels = 5;
|
||||
pyrScale = 0.5;
|
||||
fastPyramids = false;
|
||||
winSize = 13;
|
||||
numIters = 10;
|
||||
polyN = 5;
|
||||
polySigma = 1.1;
|
||||
flags = 0;
|
||||
}
|
||||
|
||||
int numLevels;
|
||||
double pyrScale;
|
||||
bool fastPyramids;
|
||||
int winSize;
|
||||
int numIters;
|
||||
int polyN;
|
||||
double polySigma;
|
||||
int flags;
|
||||
|
||||
void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null());
|
||||
|
||||
void releaseMemory()
|
||||
{
|
||||
frames_[0].release();
|
||||
frames_[1].release();
|
||||
pyrLevel_[0].release();
|
||||
pyrLevel_[1].release();
|
||||
M_.release();
|
||||
bufM_.release();
|
||||
R_[0].release();
|
||||
R_[1].release();
|
||||
blurredFrame_[0].release();
|
||||
blurredFrame_[1].release();
|
||||
pyramid0_.clear();
|
||||
pyramid1_.clear();
|
||||
}
|
||||
|
||||
private:
|
||||
void prepareGaussian(
|
||||
int n, double sigma, float *g, float *xg, float *xxg,
|
||||
double &ig11, double &ig03, double &ig33, double &ig55);
|
||||
|
||||
void setPolynomialExpansionConsts(int n, double sigma);
|
||||
|
||||
void updateFlow_boxFilter(
|
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat &flowy,
|
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
|
||||
|
||||
void updateFlow_gaussianBlur(
|
||||
const GpuMat& R0, const GpuMat& R1, GpuMat& flowx, GpuMat& flowy,
|
||||
GpuMat& M, GpuMat &bufM, int blockSize, bool updateMatrices, Stream streams[]);
|
||||
|
||||
GpuMat frames_[2];
|
||||
GpuMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
|
||||
std::vector<GpuMat> pyramid0_, pyramid1_;
|
||||
};
|
||||
|
||||
|
||||
// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
|
||||
//
|
||||
// see reference:
|
||||
// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
|
||||
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
||||
class CV_EXPORTS OpticalFlowDual_TVL1_GPU
|
||||
{
|
||||
public:
|
||||
OpticalFlowDual_TVL1_GPU();
|
||||
|
||||
void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy);
|
||||
|
||||
void collectGarbage();
|
||||
|
||||
/**
|
||||
* Time step of the numerical scheme.
|
||||
*/
|
||||
double tau;
|
||||
|
||||
/**
|
||||
* Weight parameter for the data term, attachment parameter.
|
||||
* This is the most relevant parameter, which determines the smoothness of the output.
|
||||
* The smaller this parameter is, the smoother the solutions we obtain.
|
||||
* It depends on the range of motions of the images, so its value should be adapted to each image sequence.
|
||||
*/
|
||||
double lambda;
|
||||
|
||||
/**
|
||||
* Weight parameter for (u - v)^2, tightness parameter.
|
||||
* It serves as a link between the attachment and the regularization terms.
|
||||
* In theory, it should have a small value in order to maintain both parts in correspondence.
|
||||
* The method is stable for a large range of values of this parameter.
|
||||
*/
|
||||
double theta;
|
||||
|
||||
/**
|
||||
* Number of scales used to create the pyramid of images.
|
||||
*/
|
||||
int nscales;
|
||||
|
||||
/**
|
||||
* Number of warpings per scale.
|
||||
* Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
|
||||
* This is a parameter that assures the stability of the method.
|
||||
* It also affects the running time, so it is a compromise between speed and accuracy.
|
||||
*/
|
||||
int warps;
|
||||
|
||||
/**
|
||||
* Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
|
||||
* A small value will yield more accurate solutions at the expense of a slower convergence.
|
||||
*/
|
||||
double epsilon;
|
||||
|
||||
/**
|
||||
* Stopping criterion iterations number used in the numerical scheme.
|
||||
*/
|
||||
int iterations;
|
||||
|
||||
double scaleStep;
|
||||
|
||||
bool useInitialFlow;
|
||||
|
||||
private:
|
||||
void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2);
|
||||
|
||||
std::vector<GpuMat> I0s;
|
||||
std::vector<GpuMat> I1s;
|
||||
std::vector<GpuMat> u1s;
|
||||
std::vector<GpuMat> u2s;
|
||||
|
||||
GpuMat I1x_buf;
|
||||
GpuMat I1y_buf;
|
||||
|
||||
GpuMat I1w_buf;
|
||||
GpuMat I1wx_buf;
|
||||
GpuMat I1wy_buf;
|
||||
|
||||
GpuMat grad_buf;
|
||||
GpuMat rho_c_buf;
|
||||
|
||||
GpuMat p11_buf;
|
||||
GpuMat p12_buf;
|
||||
GpuMat p21_buf;
|
||||
GpuMat p22_buf;
|
||||
|
||||
GpuMat diff_buf;
|
||||
GpuMat norm_buf;
|
||||
};
|
||||
|
||||
|
||||
//! Calculates optical flow for 2 images using block matching algorithm */
|
||||
CV_EXPORTS void calcOpticalFlowBM(const GpuMat& prev, const GpuMat& curr,
|
||||
Size block_size, Size shift_size, Size max_range, bool use_previous,
|
||||
GpuMat& velx, GpuMat& vely, GpuMat& buf,
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
class CV_EXPORTS FastOpticalFlowBM
|
||||
{
|
||||
public:
|
||||
void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy, int search_window = 21, int block_window = 7, Stream& s = Stream::Null());
|
||||
|
||||
private:
|
||||
GpuMat buffer;
|
||||
GpuMat extended_I0;
|
||||
GpuMat extended_I1;
|
||||
};
|
||||
|
||||
|
||||
//! Interpolate frames (images) using provided optical flow (displacement field).
|
||||
//! frame0 - frame 0 (32-bit floating point images, single channel)
|
||||
//! frame1 - frame 1 (the same type and size)
|
||||
//! fu - forward horizontal displacement
|
||||
//! fv - forward vertical displacement
|
||||
//! bu - backward horizontal displacement
|
||||
//! bv - backward vertical displacement
|
||||
//! pos - new frame position
|
||||
//! newFrame - new frame
|
||||
//! buf - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat;
|
||||
//! occlusion masks 0, occlusion masks 1,
|
||||
//! interpolated forward flow 0, interpolated forward flow 1,
|
||||
//! interpolated backward flow 0, interpolated backward flow 1
|
||||
//!
|
||||
CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1,
|
||||
const GpuMat& fu, const GpuMat& fv,
|
||||
const GpuMat& bu, const GpuMat& bv,
|
||||
float pos, GpuMat& newFrame, GpuMat& buf,
|
||||
Stream& stream = Stream::Null());
|
||||
|
||||
CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors);
|
||||
|
||||
|
||||
//////////////////////// Background/foreground segmentation ////////////////////////
|
||||
|
||||
// Foreground Object Detection from Videos Containing Complex Background.
|
||||
// Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
|
||||
// ACM MM2003 9p
|
||||
class CV_EXPORTS FGDStatModel
|
||||
{
|
||||
public:
|
||||
struct CV_EXPORTS Params
|
||||
{
|
||||
int Lc; // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
|
||||
int N1c; // Number of color vectors used to model normal background color variation at a given pixel.
|
||||
int N2c; // Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c.
|
||||
// Used to allow the first N1c vectors to adapt over time to changing background.
|
||||
|
||||
int Lcc; // Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64.
|
||||
int N1cc; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
|
||||
int N2cc; // Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc.
|
||||
// Used to allow the first N1cc vectors to adapt over time to changing background.
|
||||
|
||||
bool is_obj_without_holes; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
|
||||
int perform_morphing; // Number of erode-dilate-erode foreground-blob cleanup iterations.
|
||||
// These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.
|
||||
|
||||
float alpha1; // How quickly we forget old background pixel values seen. Typically set to 0.1.
|
||||
float alpha2; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
|
||||
float alpha3; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.
|
||||
|
||||
float delta; // Affects color and color co-occurrence quantization, typically set to 2.
|
||||
float T; // A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
|
||||
float minArea; // Discard foreground blobs whose bounding box is smaller than this threshold.
|
||||
|
||||
// default Params
|
||||
Params();
|
||||
};
|
||||
|
||||
// out_cn - channels count in output result (can be 3 or 4)
|
||||
// 4-channels require more memory, but a bit faster
|
||||
explicit FGDStatModel(int out_cn = 3);
|
||||
explicit FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params = Params(), int out_cn = 3);
|
||||
|
||||
~FGDStatModel();
|
||||
|
||||
void create(const cv::gpu::GpuMat& firstFrame, const Params& params = Params());
|
||||
void release();
|
||||
|
||||
int update(const cv::gpu::GpuMat& curFrame);
|
||||
|
||||
//8UC3 or 8UC4 reference background image
|
||||
cv::gpu::GpuMat background;
|
||||
|
||||
//8UC1 foreground image
|
||||
cv::gpu::GpuMat foreground;
|
||||
|
||||
std::vector< std::vector<cv::Point> > foreground_regions;
|
||||
|
||||
private:
|
||||
FGDStatModel(const FGDStatModel&);
|
||||
FGDStatModel& operator=(const FGDStatModel&);
|
||||
|
||||
class Impl;
|
||||
std::auto_ptr<Impl> impl_;
|
||||
};
|
||||
|
||||
/*!
|
||||
Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm
|
||||
|
||||
The class implements the following algorithm:
|
||||
"An improved adaptive background mixture model for real-time tracking with shadow detection"
|
||||
P. KadewTraKuPong and R. Bowden,
|
||||
Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
|
||||
http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
|
||||
*/
|
||||
class CV_EXPORTS MOG_GPU
|
||||
{
|
||||
public:
|
||||
//! the default constructor
|
||||
MOG_GPU(int nmixtures = -1);
|
||||
|
||||
//! re-initiaization method
|
||||
void initialize(Size frameSize, int frameType);
|
||||
|
||||
//! the update operator
|
||||
void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null());
|
||||
|
||||
//! computes a background image which are the mean of all background gaussians
|
||||
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
|
||||
|
||||
//! releases all inner buffers
|
||||
void release();
|
||||
|
||||
int history;
|
||||
float varThreshold;
|
||||
float backgroundRatio;
|
||||
float noiseSigma;
|
||||
|
||||
private:
|
||||
int nmixtures_;
|
||||
|
||||
Size frameSize_;
|
||||
int frameType_;
|
||||
int nframes_;
|
||||
|
||||
GpuMat weight_;
|
||||
GpuMat sortKey_;
|
||||
GpuMat mean_;
|
||||
GpuMat var_;
|
||||
};
|
||||
|
||||
/*!
|
||||
The class implements the following algorithm:
|
||||
"Improved adaptive Gausian mixture model for background subtraction"
|
||||
Z.Zivkovic
|
||||
International Conference Pattern Recognition, UK, August, 2004.
|
||||
http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
|
||||
*/
|
||||
class CV_EXPORTS MOG2_GPU
|
||||
{
|
||||
public:
|
||||
//! the default constructor
|
||||
MOG2_GPU(int nmixtures = -1);
|
||||
|
||||
//! re-initiaization method
|
||||
void initialize(Size frameSize, int frameType);
|
||||
|
||||
//! the update operator
|
||||
void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());
|
||||
|
||||
//! computes a background image which are the mean of all background gaussians
|
||||
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
|
||||
|
||||
//! releases all inner buffers
|
||||
void release();
|
||||
|
||||
// parameters
|
||||
// you should call initialize after parameters changes
|
||||
|
||||
int history;
|
||||
|
||||
//! here it is the maximum allowed number of mixture components.
|
||||
//! Actual number is determined dynamically per pixel
|
||||
float varThreshold;
|
||||
// threshold on the squared Mahalanobis distance to decide if it is well described
|
||||
// by the background model or not. Related to Cthr from the paper.
|
||||
// This does not influence the update of the background. A typical value could be 4 sigma
|
||||
// and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
|
||||
|
||||
/////////////////////////
|
||||
// less important parameters - things you might change but be carefull
|
||||
////////////////////////
|
||||
|
||||
float backgroundRatio;
|
||||
// corresponds to fTB=1-cf from the paper
|
||||
// TB - threshold when the component becomes significant enough to be included into
|
||||
// the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
|
||||
// For alpha=0.001 it means that the mode should exist for approximately 105 frames before
|
||||
// it is considered foreground
|
||||
// float noiseSigma;
|
||||
float varThresholdGen;
|
||||
|
||||
//correspondts to Tg - threshold on the squared Mahalan. dist. to decide
|
||||
//when a sample is close to the existing components. If it is not close
|
||||
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
|
||||
//Smaller Tg leads to more generated components and higher Tg might make
|
||||
//lead to small number of components but they can grow too large
|
||||
float fVarInit;
|
||||
float fVarMin;
|
||||
float fVarMax;
|
||||
|
||||
//initial variance for the newly generated components.
|
||||
//It will will influence the speed of adaptation. A good guess should be made.
|
||||
//A simple way is to estimate the typical standard deviation from the images.
|
||||
//I used here 10 as a reasonable value
|
||||
// min and max can be used to further control the variance
|
||||
float fCT; //CT - complexity reduction prior
|
||||
//this is related to the number of samples needed to accept that a component
|
||||
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
|
||||
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
|
||||
|
||||
//shadow detection parameters
|
||||
bool bShadowDetection; //default 1 - do shadow detection
|
||||
unsigned char nShadowDetection; //do shadow detection - insert this value as the detection result - 127 default value
|
||||
float fTau;
|
||||
// Tau - shadow threshold. The shadow is detected if the pixel is darker
|
||||
//version of the background. Tau is a threshold on how much darker the shadow can be.
|
||||
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
|
||||
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
||||
|
||||
private:
|
||||
int nmixtures_;
|
||||
|
||||
Size frameSize_;
|
||||
int frameType_;
|
||||
int nframes_;
|
||||
|
||||
GpuMat weight_;
|
||||
GpuMat variance_;
|
||||
GpuMat mean_;
|
||||
|
||||
GpuMat bgmodelUsedModes_; //keep track of number of modes per pixel
|
||||
};
|
||||
|
||||
/**
|
||||
* Background Subtractor module. Takes a series of images and returns a sequence of mask (8UC1)
|
||||
* images of the same size, where 255 indicates Foreground and 0 represents Background.
|
||||
* This class implements an algorithm described in "Visual Tracking of Human Visitors under
|
||||
* Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere,
|
||||
* A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012.
|
||||
*/
|
||||
class CV_EXPORTS GMG_GPU
|
||||
{
|
||||
public:
|
||||
GMG_GPU();
|
||||
|
||||
/**
|
||||
* Validate parameters and set up data structures for appropriate frame size.
|
||||
* @param frameSize Input frame size
|
||||
* @param min Minimum value taken on by pixels in image sequence. Usually 0
|
||||
* @param max Maximum value taken on by pixels in image sequence. e.g. 1.0 or 255
|
||||
*/
|
||||
void initialize(Size frameSize, float min = 0.0f, float max = 255.0f);
|
||||
|
||||
/**
|
||||
* Performs single-frame background subtraction and builds up a statistical background image
|
||||
* model.
|
||||
* @param frame Input frame
|
||||
* @param fgmask Output mask image representing foreground and background pixels
|
||||
* @param stream Stream for the asynchronous version
|
||||
*/
|
||||
void operator ()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());
|
||||
|
||||
//! Releases all inner buffers
|
||||
void release();
|
||||
|
||||
//! Total number of distinct colors to maintain in histogram.
|
||||
int maxFeatures;
|
||||
|
||||
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
|
||||
float learningRate;
|
||||
|
||||
//! Number of frames of video to use to initialize histograms.
|
||||
int numInitializationFrames;
|
||||
|
||||
//! Number of discrete levels in each channel to be used in histograms.
|
||||
int quantizationLevels;
|
||||
|
||||
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
|
||||
float backgroundPrior;
|
||||
|
||||
//! Value above which pixel is determined to be FG.
|
||||
float decisionThreshold;
|
||||
|
||||
//! Smoothing radius, in pixels, for cleaning up FG image.
|
||||
int smoothingRadius;
|
||||
|
||||
//! Perform background model update.
|
||||
bool updateBackgroundModel;
|
||||
|
||||
private:
|
||||
float maxVal_, minVal_;
|
||||
|
||||
Size frameSize_;
|
||||
|
||||
int frameNum_;
|
||||
|
||||
GpuMat nfeatures_;
|
||||
GpuMat colors_;
|
||||
GpuMat weights_;
|
||||
|
||||
Ptr<FilterEngine_GPU> boxFilter_;
|
||||
GpuMat buf_;
|
||||
};
|
||||
|
||||
//! removes points (CV_32FC2, single row matrix) with zero mask value
|
||||
CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask);
|
||||
|
Reference in New Issue
Block a user