SURF
This commit is contained in:
parent
19c87d1c9d
commit
fbf3de43a2
@ -47,13 +47,13 @@
|
||||
|
||||
#if !defined CUDA_DISABLER
|
||||
|
||||
#include "internal_shared.hpp"
|
||||
#include "opencv2/gpu/device/common.hpp"
|
||||
#include "opencv2/gpu/device/limits.hpp"
|
||||
#include "opencv2/gpu/device/saturate_cast.hpp"
|
||||
#include "opencv2/gpu/device/reduce.hpp"
|
||||
#include "opencv2/gpu/device/utility.hpp"
|
||||
#include "opencv2/gpu/device/functional.hpp"
|
||||
#include "opencv2/gpu/device/filters.hpp"
|
||||
#include <float.h>
|
||||
|
||||
namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
@ -599,8 +599,9 @@ namespace cv { namespace gpu { namespace device
|
||||
sumy += s_Y[threadIdx.x + 96];
|
||||
}
|
||||
|
||||
device::reduce_old<32>(s_sumx + threadIdx.y * 32, sumx, threadIdx.x, plus<volatile float>());
|
||||
device::reduce_old<32>(s_sumy + threadIdx.y * 32, sumy, threadIdx.x, plus<volatile float>());
|
||||
plus<float> op;
|
||||
device::reduce<32>(smem_tuple(s_sumx + threadIdx.y * 32, s_sumy + threadIdx.y * 32),
|
||||
thrust::tie(sumx, sumy), threadIdx.x, thrust::make_tuple(op, op));
|
||||
|
||||
const float temp_mod = sumx * sumx + sumy * sumy;
|
||||
if (temp_mod > best_mod)
|
||||
@ -638,7 +639,7 @@ namespace cv { namespace gpu { namespace device
|
||||
kp_dir *= 180.0f / CV_PI_F;
|
||||
|
||||
kp_dir = 360.0f - kp_dir;
|
||||
if (::fabsf(kp_dir - 360.f) < FLT_EPSILON)
|
||||
if (::fabsf(kp_dir - 360.f) < numeric_limits<float>::epsilon())
|
||||
kp_dir = 0.f;
|
||||
|
||||
featureDir[blockIdx.x] = kp_dir;
|
||||
@ -697,11 +698,6 @@ namespace cv { namespace gpu { namespace device
|
||||
{
|
||||
typedef uchar elem_type;
|
||||
|
||||
__device__ __forceinline__ WinReader(float centerX_, float centerY_, float win_offset_, float cos_dir_, float sin_dir_) :
|
||||
centerX(centerX_), centerY(centerY_), win_offset(win_offset_), cos_dir(cos_dir_), sin_dir(sin_dir_)
|
||||
{
|
||||
}
|
||||
|
||||
__device__ __forceinline__ uchar operator ()(int i, int j) const
|
||||
{
|
||||
float pixel_x = centerX + (win_offset + j) * cos_dir + (win_offset + i) * sin_dir;
|
||||
@ -715,285 +711,215 @@ namespace cv { namespace gpu { namespace device
|
||||
float win_offset;
|
||||
float cos_dir;
|
||||
float sin_dir;
|
||||
int width;
|
||||
int height;
|
||||
};
|
||||
|
||||
__device__ void calc_dx_dy(float s_dx_bin[25], float s_dy_bin[25],
|
||||
const float* featureX, const float* featureY, const float* featureSize, const float* featureDir)
|
||||
__device__ void calc_dx_dy(const float* featureX, const float* featureY, const float* featureSize, const float* featureDir,
|
||||
float& dx, float& dy)
|
||||
{
|
||||
__shared__ float s_PATCH[6][6];
|
||||
__shared__ float s_PATCH[PATCH_SZ + 1][PATCH_SZ + 1];
|
||||
|
||||
const float centerX = featureX[blockIdx.x];
|
||||
const float centerY = featureY[blockIdx.x];
|
||||
const float size = featureSize[blockIdx.x];
|
||||
float descriptor_dir = 360.0f - featureDir[blockIdx.x];
|
||||
if (std::abs(descriptor_dir - 360.f) < FLT_EPSILON)
|
||||
descriptor_dir = 0.f;
|
||||
descriptor_dir *= (float)(CV_PI_F / 180.0f);
|
||||
dx = dy = 0.0f;
|
||||
|
||||
/* The sampling intervals and wavelet sized for selecting an orientation
|
||||
and building the keypoint descriptor are defined relative to 's' */
|
||||
const float s = size * 1.2f / 9.0f;
|
||||
WinReader win;
|
||||
|
||||
/* Extract a window of pixels around the keypoint of size 20s */
|
||||
win.centerX = featureX[blockIdx.x];
|
||||
win.centerY = featureY[blockIdx.x];
|
||||
|
||||
// The sampling intervals and wavelet sized for selecting an orientation
|
||||
// and building the keypoint descriptor are defined relative to 's'
|
||||
const float s = featureSize[blockIdx.x] * 1.2f / 9.0f;
|
||||
|
||||
// Extract a window of pixels around the keypoint of size 20s
|
||||
const int win_size = (int)((PATCH_SZ + 1) * s);
|
||||
|
||||
float sin_dir;
|
||||
float cos_dir;
|
||||
sincosf(descriptor_dir, &sin_dir, &cos_dir);
|
||||
win.width = win.height = win_size;
|
||||
|
||||
/* Nearest neighbour version (faster) */
|
||||
const float win_offset = -(float)(win_size - 1) / 2;
|
||||
|
||||
// Compute sampling points
|
||||
// since grids are 2D, need to compute xBlock and yBlock indices
|
||||
const int xBlock = (blockIdx.y & 3); // blockIdx.y % 4
|
||||
const int yBlock = (blockIdx.y >> 2); // floor(blockIdx.y/4)
|
||||
const int xIndex = xBlock * 5 + threadIdx.x;
|
||||
const int yIndex = yBlock * 5 + threadIdx.y;
|
||||
|
||||
const float icoo = ((float)yIndex / (PATCH_SZ + 1)) * win_size;
|
||||
const float jcoo = ((float)xIndex / (PATCH_SZ + 1)) * win_size;
|
||||
|
||||
LinearFilter<WinReader> filter(WinReader(centerX, centerY, win_offset, cos_dir, sin_dir));
|
||||
|
||||
s_PATCH[threadIdx.y][threadIdx.x] = filter(icoo, jcoo);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x < 5 && threadIdx.y < 5)
|
||||
{
|
||||
const int tid = threadIdx.y * 5 + threadIdx.x;
|
||||
|
||||
const float dw = c_DW[yIndex * PATCH_SZ + xIndex];
|
||||
|
||||
const float vx = (s_PATCH[threadIdx.y ][threadIdx.x + 1] - s_PATCH[threadIdx.y][threadIdx.x] + s_PATCH[threadIdx.y + 1][threadIdx.x + 1] - s_PATCH[threadIdx.y + 1][threadIdx.x ]) * dw;
|
||||
const float vy = (s_PATCH[threadIdx.y + 1][threadIdx.x ] - s_PATCH[threadIdx.y][threadIdx.x] + s_PATCH[threadIdx.y + 1][threadIdx.x + 1] - s_PATCH[threadIdx.y ][threadIdx.x + 1]) * dw;
|
||||
|
||||
s_dx_bin[tid] = vx;
|
||||
s_dy_bin[tid] = vy;
|
||||
}
|
||||
}
|
||||
|
||||
__device__ void reduce_sum25(volatile float* sdata1, volatile float* sdata2, volatile float* sdata3, volatile float* sdata4, int tid)
|
||||
{
|
||||
// first step is to reduce from 25 to 16
|
||||
if (tid < 9) // use 9 threads
|
||||
{
|
||||
sdata1[tid] += sdata1[tid + 16];
|
||||
sdata2[tid] += sdata2[tid + 16];
|
||||
sdata3[tid] += sdata3[tid + 16];
|
||||
sdata4[tid] += sdata4[tid + 16];
|
||||
}
|
||||
|
||||
// sum (reduce) from 16 to 1 (unrolled - aligned to a half-warp)
|
||||
if (tid < 8)
|
||||
{
|
||||
sdata1[tid] += sdata1[tid + 8];
|
||||
sdata1[tid] += sdata1[tid + 4];
|
||||
sdata1[tid] += sdata1[tid + 2];
|
||||
sdata1[tid] += sdata1[tid + 1];
|
||||
|
||||
sdata2[tid] += sdata2[tid + 8];
|
||||
sdata2[tid] += sdata2[tid + 4];
|
||||
sdata2[tid] += sdata2[tid + 2];
|
||||
sdata2[tid] += sdata2[tid + 1];
|
||||
|
||||
sdata3[tid] += sdata3[tid + 8];
|
||||
sdata3[tid] += sdata3[tid + 4];
|
||||
sdata3[tid] += sdata3[tid + 2];
|
||||
sdata3[tid] += sdata3[tid + 1];
|
||||
|
||||
sdata4[tid] += sdata4[tid + 8];
|
||||
sdata4[tid] += sdata4[tid + 4];
|
||||
sdata4[tid] += sdata4[tid + 2];
|
||||
sdata4[tid] += sdata4[tid + 1];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void compute_descriptors64(PtrStepf descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir)
|
||||
{
|
||||
// 2 floats (dx,dy) for each thread (5x5 sample points in each sub-region)
|
||||
__shared__ float sdx[25];
|
||||
__shared__ float sdy[25];
|
||||
__shared__ float sdxabs[25];
|
||||
__shared__ float sdyabs[25];
|
||||
|
||||
calc_dx_dy(sdx, sdy, featureX, featureY, featureSize, featureDir);
|
||||
__syncthreads();
|
||||
// Nearest neighbour version (faster)
|
||||
win.win_offset = -(win_size - 1.0f) / 2.0f;
|
||||
|
||||
float descriptor_dir = 360.0f - featureDir[blockIdx.x];
|
||||
if (::fabsf(descriptor_dir - 360.f) < numeric_limits<float>::epsilon())
|
||||
descriptor_dir = 0.f;
|
||||
descriptor_dir *= CV_PI_F / 180.0f;
|
||||
sincosf(descriptor_dir, &win.sin_dir, &win.cos_dir);
|
||||
|
||||
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
|
||||
if (tid < 25)
|
||||
const int xLoadInd = tid % (PATCH_SZ + 1);
|
||||
const int yLoadInd = tid / (PATCH_SZ + 1);
|
||||
|
||||
if (yLoadInd < (PATCH_SZ + 1))
|
||||
{
|
||||
sdxabs[tid] = ::fabs(sdx[tid]); // |dx| array
|
||||
sdyabs[tid] = ::fabs(sdy[tid]); // |dy| array
|
||||
__syncthreads();
|
||||
|
||||
reduce_sum25(sdx, sdy, sdxabs, sdyabs, tid);
|
||||
__syncthreads();
|
||||
|
||||
float* descriptors_block = descriptors.ptr(blockIdx.x) + (blockIdx.y << 2);
|
||||
|
||||
// write dx, dy, |dx|, |dy|
|
||||
if (tid == 0)
|
||||
if (s > 1)
|
||||
{
|
||||
descriptors_block[0] = sdx[0];
|
||||
descriptors_block[1] = sdy[0];
|
||||
descriptors_block[2] = sdxabs[0];
|
||||
descriptors_block[3] = sdyabs[0];
|
||||
AreaFilter<WinReader> filter(win, s, s);
|
||||
s_PATCH[yLoadInd][xLoadInd] = filter(yLoadInd, xLoadInd);
|
||||
}
|
||||
else
|
||||
{
|
||||
LinearFilter<WinReader> filter(win);
|
||||
s_PATCH[yLoadInd][xLoadInd] = filter(yLoadInd * s, xLoadInd * s);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int xPatchInd = threadIdx.x % 5;
|
||||
const int yPatchInd = threadIdx.x / 5;
|
||||
|
||||
if (yPatchInd < 5)
|
||||
{
|
||||
const int xBlockInd = threadIdx.y % 4;
|
||||
const int yBlockInd = threadIdx.y / 4;
|
||||
|
||||
const int xInd = xBlockInd * 5 + xPatchInd;
|
||||
const int yInd = yBlockInd * 5 + yPatchInd;
|
||||
|
||||
const float dw = c_DW[yInd * PATCH_SZ + xInd];
|
||||
|
||||
dx = (s_PATCH[yInd ][xInd + 1] - s_PATCH[yInd][xInd] + s_PATCH[yInd + 1][xInd + 1] - s_PATCH[yInd + 1][xInd ]) * dw;
|
||||
dy = (s_PATCH[yInd + 1][xInd ] - s_PATCH[yInd][xInd] + s_PATCH[yInd + 1][xInd + 1] - s_PATCH[yInd ][xInd + 1]) * dw;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void compute_descriptors128(PtrStepf descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir)
|
||||
__global__ void compute_descriptors_64(PtrStep<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir)
|
||||
{
|
||||
// 2 floats (dx,dy) for each thread (5x5 sample points in each sub-region)
|
||||
__shared__ float sdx[25];
|
||||
__shared__ float sdy[25];
|
||||
__shared__ float smem[32 * 16];
|
||||
|
||||
// sum (reduce) 5x5 area response
|
||||
__shared__ float sd1[25];
|
||||
__shared__ float sd2[25];
|
||||
__shared__ float sdabs1[25];
|
||||
__shared__ float sdabs2[25];
|
||||
float* sRow = smem + threadIdx.y * 32;
|
||||
|
||||
calc_dx_dy(sdx, sdy, featureX, featureY, featureSize, featureDir);
|
||||
__syncthreads();
|
||||
float dx, dy;
|
||||
calc_dx_dy(featureX, featureY, featureSize, featureDir, dx, dy);
|
||||
|
||||
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
|
||||
float dxabs = ::fabsf(dx);
|
||||
float dyabs = ::fabsf(dy);
|
||||
|
||||
if (tid < 25)
|
||||
plus<float> op;
|
||||
|
||||
reduce<32>(sRow, dx, threadIdx.x, op);
|
||||
reduce<32>(sRow, dy, threadIdx.x, op);
|
||||
reduce<32>(sRow, dxabs, threadIdx.x, op);
|
||||
reduce<32>(sRow, dyabs, threadIdx.x, op);
|
||||
|
||||
float4* descriptors_block = descriptors.ptr(blockIdx.x) + threadIdx.y;
|
||||
|
||||
// write dx, dy, |dx|, |dy|
|
||||
if (threadIdx.x == 0)
|
||||
*descriptors_block = make_float4(dx, dy, dxabs, dyabs);
|
||||
}
|
||||
|
||||
__global__ void compute_descriptors_128(PtrStep<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir)
|
||||
{
|
||||
__shared__ float smem[32 * 16];
|
||||
|
||||
float* sRow = smem + threadIdx.y * 32;
|
||||
|
||||
float dx, dy;
|
||||
calc_dx_dy(featureX, featureY, featureSize, featureDir, dx, dy);
|
||||
|
||||
float4* descriptors_block = descriptors.ptr(blockIdx.x) + threadIdx.y * 2;
|
||||
|
||||
plus<float> op;
|
||||
|
||||
float d1 = 0.0f;
|
||||
float d2 = 0.0f;
|
||||
float abs1 = 0.0f;
|
||||
float abs2 = 0.0f;
|
||||
|
||||
if (dy >= 0)
|
||||
{
|
||||
if (sdy[tid] >= 0)
|
||||
{
|
||||
sd1[tid] = sdx[tid];
|
||||
sdabs1[tid] = ::fabs(sdx[tid]);
|
||||
sd2[tid] = 0;
|
||||
sdabs2[tid] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
sd1[tid] = 0;
|
||||
sdabs1[tid] = 0;
|
||||
sd2[tid] = sdx[tid];
|
||||
sdabs2[tid] = ::fabs(sdx[tid]);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
|
||||
__syncthreads();
|
||||
|
||||
float* descriptors_block = descriptors.ptr(blockIdx.x) + (blockIdx.y << 3);
|
||||
|
||||
// write dx (dy >= 0), |dx| (dy >= 0), dx (dy < 0), |dx| (dy < 0)
|
||||
if (tid == 0)
|
||||
{
|
||||
descriptors_block[0] = sd1[0];
|
||||
descriptors_block[1] = sdabs1[0];
|
||||
descriptors_block[2] = sd2[0];
|
||||
descriptors_block[3] = sdabs2[0];
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
if (sdx[tid] >= 0)
|
||||
{
|
||||
sd1[tid] = sdy[tid];
|
||||
sdabs1[tid] = ::fabs(sdy[tid]);
|
||||
sd2[tid] = 0;
|
||||
sdabs2[tid] = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
sd1[tid] = 0;
|
||||
sdabs1[tid] = 0;
|
||||
sd2[tid] = sdy[tid];
|
||||
sdabs2[tid] = ::fabs(sdy[tid]);
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
reduce_sum25(sd1, sd2, sdabs1, sdabs2, tid);
|
||||
__syncthreads();
|
||||
|
||||
// write dy (dx >= 0), |dy| (dx >= 0), dy (dx < 0), |dy| (dx < 0)
|
||||
if (tid == 0)
|
||||
{
|
||||
descriptors_block[4] = sd1[0];
|
||||
descriptors_block[5] = sdabs1[0];
|
||||
descriptors_block[6] = sd2[0];
|
||||
descriptors_block[7] = sdabs2[0];
|
||||
}
|
||||
d1 = dx;
|
||||
abs1 = ::fabsf(dx);
|
||||
}
|
||||
else
|
||||
{
|
||||
d2 = dx;
|
||||
abs2 = ::fabsf(dx);
|
||||
}
|
||||
|
||||
reduce<32>(sRow, d1, threadIdx.x, op);
|
||||
reduce<32>(sRow, d2, threadIdx.x, op);
|
||||
reduce<32>(sRow, abs1, threadIdx.x, op);
|
||||
reduce<32>(sRow, abs2, threadIdx.x, op);
|
||||
|
||||
// write dx (dy >= 0), |dx| (dy >= 0), dx (dy < 0), |dx| (dy < 0)
|
||||
if (threadIdx.x == 0)
|
||||
descriptors_block[0] = make_float4(d1, abs1, d2, abs2);
|
||||
|
||||
if (dx >= 0)
|
||||
{
|
||||
d1 = dy;
|
||||
abs1 = ::fabsf(dy);
|
||||
d2 = 0.0f;
|
||||
abs2 = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
d1 = 0.0f;
|
||||
abs1 = 0.0f;
|
||||
d2 = dy;
|
||||
abs2 = ::fabsf(dy);
|
||||
}
|
||||
|
||||
reduce<32>(sRow, d1, threadIdx.x, op);
|
||||
reduce<32>(sRow, d2, threadIdx.x, op);
|
||||
reduce<32>(sRow, abs1, threadIdx.x, op);
|
||||
reduce<32>(sRow, abs2, threadIdx.x, op);
|
||||
|
||||
// write dy (dx >= 0), |dy| (dx >= 0), dy (dx < 0), |dy| (dx < 0)
|
||||
if (threadIdx.x == 0)
|
||||
descriptors_block[1] = make_float4(d1, abs1, d2, abs2);
|
||||
}
|
||||
|
||||
template <int BLOCK_DIM_X> __global__ void normalize_descriptors(PtrStepf descriptors)
|
||||
{
|
||||
__shared__ float smem[BLOCK_DIM_X];
|
||||
__shared__ float s_len;
|
||||
|
||||
// no need for thread ID
|
||||
float* descriptor_base = descriptors.ptr(blockIdx.x);
|
||||
|
||||
// read in the unnormalized descriptor values (squared)
|
||||
__shared__ float sqDesc[BLOCK_DIM_X];
|
||||
const float lookup = descriptor_base[threadIdx.x];
|
||||
sqDesc[threadIdx.x] = lookup * lookup;
|
||||
__syncthreads();
|
||||
const float val = descriptor_base[threadIdx.x];
|
||||
|
||||
if (BLOCK_DIM_X >= 128)
|
||||
{
|
||||
if (threadIdx.x < 64)
|
||||
sqDesc[threadIdx.x] += sqDesc[threadIdx.x + 64];
|
||||
__syncthreads();
|
||||
}
|
||||
float len = val * val;
|
||||
reduce<BLOCK_DIM_X>(smem, len, threadIdx.x, plus<float>());
|
||||
|
||||
// reduction to get total
|
||||
if (threadIdx.x < 32)
|
||||
{
|
||||
volatile float* smem = sqDesc;
|
||||
|
||||
smem[threadIdx.x] += smem[threadIdx.x + 32];
|
||||
smem[threadIdx.x] += smem[threadIdx.x + 16];
|
||||
smem[threadIdx.x] += smem[threadIdx.x + 8];
|
||||
smem[threadIdx.x] += smem[threadIdx.x + 4];
|
||||
smem[threadIdx.x] += smem[threadIdx.x + 2];
|
||||
smem[threadIdx.x] += smem[threadIdx.x + 1];
|
||||
}
|
||||
|
||||
// compute length (square root)
|
||||
__shared__ float len;
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
len = sqrtf(sqDesc[0]);
|
||||
}
|
||||
s_len = ::sqrtf(len);
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// normalize and store in output
|
||||
descriptor_base[threadIdx.x] = lookup / len;
|
||||
descriptor_base[threadIdx.x] = val / s_len;
|
||||
}
|
||||
|
||||
void compute_descriptors_gpu(const PtrStepSzf& descriptors,
|
||||
const float* featureX, const float* featureY, const float* featureSize, const float* featureDir, int nFeatures)
|
||||
void compute_descriptors_gpu(PtrStepSz<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir, int nFeatures)
|
||||
{
|
||||
// compute unnormalized descriptors, then normalize them - odd indexing since grid must be 2D
|
||||
|
||||
if (descriptors.cols == 64)
|
||||
{
|
||||
compute_descriptors64<<<dim3(nFeatures, 16, 1), dim3(6, 6, 1)>>>(descriptors, featureX, featureY, featureSize, featureDir);
|
||||
compute_descriptors_64<<<nFeatures, dim3(32, 16)>>>(descriptors, featureX, featureY, featureSize, featureDir);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
normalize_descriptors<64><<<dim3(nFeatures, 1, 1), dim3(64, 1, 1)>>>(descriptors);
|
||||
normalize_descriptors<64><<<nFeatures, 64>>>((PtrStepSzf) descriptors);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
else
|
||||
{
|
||||
compute_descriptors128<<<dim3(nFeatures, 16, 1), dim3(6, 6, 1)>>>(descriptors, featureX, featureY, featureSize, featureDir);
|
||||
compute_descriptors_128<<<nFeatures, dim3(32, 16)>>>(descriptors, featureX, featureY, featureSize, featureDir);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
normalize_descriptors<128><<<dim3(nFeatures, 1, 1), dim3(128, 1, 1)>>>(descriptors);
|
||||
normalize_descriptors<128><<<nFeatures, 128>>>((PtrStepSzf) descriptors);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
@ -86,8 +86,7 @@ namespace cv { namespace gpu { namespace device
|
||||
|
||||
void icvCalcOrientation_gpu(const float* featureX, const float* featureY, const float* featureSize, float* featureDir, int nFeatures);
|
||||
|
||||
void compute_descriptors_gpu(const PtrStepSzf& descriptors,
|
||||
const float* featureX, const float* featureY, const float* featureSize, const float* featureDir, int nFeatures);
|
||||
void compute_descriptors_gpu(PtrStepSz<float4> descriptors, const float* featureX, const float* featureY, const float* featureSize, const float* featureDir, int nFeatures);
|
||||
}
|
||||
}}}
|
||||
|
||||
|
@ -328,7 +328,7 @@ TEST_P(SURF, Descriptor)
|
||||
int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches);
|
||||
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
|
||||
|
||||
EXPECT_GT(matchedRatio, 0.35);
|
||||
EXPECT_GT(matchedRatio, 0.6);
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user