As some processed distances are already ^2, use template to select whether or not we have to ^2 in KMeanspp
This commit is contained in:
parent
5aeeaa6fce
commit
fa749de0dc
@ -53,6 +53,62 @@
|
|||||||
namespace cvflann
|
namespace cvflann
|
||||||
{
|
{
|
||||||
|
|
||||||
|
template <typename Distance, typename ElementType>
|
||||||
|
struct squareDistance
|
||||||
|
{
|
||||||
|
typedef typename Distance::ResultType ResultType;
|
||||||
|
ResultType operator()( ResultType dist ) { return dist*dist; }
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template <typename ElementType>
|
||||||
|
struct squareDistance<L2_Simple<ElementType>, ElementType>
|
||||||
|
{
|
||||||
|
typedef typename L2_Simple<ElementType>::ResultType ResultType;
|
||||||
|
ResultType operator()( ResultType dist ) { return dist; }
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename ElementType>
|
||||||
|
struct squareDistance<L2<ElementType>, ElementType>
|
||||||
|
{
|
||||||
|
typedef typename L2<ElementType>::ResultType ResultType;
|
||||||
|
ResultType operator()( ResultType dist ) { return dist; }
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template <typename ElementType>
|
||||||
|
struct squareDistance<MinkowskiDistance<ElementType>, ElementType>
|
||||||
|
{
|
||||||
|
typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
|
||||||
|
ResultType operator()( ResultType dist ) { return dist; }
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename ElementType>
|
||||||
|
struct squareDistance<HellingerDistance<ElementType>, ElementType>
|
||||||
|
{
|
||||||
|
typedef typename HellingerDistance<ElementType>::ResultType ResultType;
|
||||||
|
ResultType operator()( ResultType dist ) { return dist; }
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename ElementType>
|
||||||
|
struct squareDistance<ChiSquareDistance<ElementType>, ElementType>
|
||||||
|
{
|
||||||
|
typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
|
||||||
|
ResultType operator()( ResultType dist ) { return dist; }
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
template <typename Distance>
|
||||||
|
typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist )
|
||||||
|
{
|
||||||
|
typedef typename Distance::ElementType ElementType;
|
||||||
|
|
||||||
|
squareDistance<Distance, ElementType> dummy;
|
||||||
|
return dummy( dist );
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
struct KMeansIndexParams : public IndexParams
|
struct KMeansIndexParams : public IndexParams
|
||||||
{
|
{
|
||||||
KMeansIndexParams(int branching = 32, int iterations = 11,
|
KMeansIndexParams(int branching = 32, int iterations = 11,
|
||||||
@ -211,7 +267,7 @@ public:
|
|||||||
|
|
||||||
for (int i = 0; i < n; i++) {
|
for (int i = 0; i < n; i++) {
|
||||||
closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
|
closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
|
||||||
closestDistSq[i] *= closestDistSq[i];
|
closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
|
||||||
currentPot += closestDistSq[i];
|
currentPot += closestDistSq[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -239,7 +295,7 @@ public:
|
|||||||
double newPot = 0;
|
double newPot = 0;
|
||||||
for (int i = 0; i < n; i++) {
|
for (int i = 0; i < n; i++) {
|
||||||
DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
|
DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
|
||||||
newPot += std::min( dist*dist, closestDistSq[i] );
|
newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
|
||||||
}
|
}
|
||||||
|
|
||||||
// Store the best result
|
// Store the best result
|
||||||
@ -254,7 +310,7 @@ public:
|
|||||||
currentPot = bestNewPot;
|
currentPot = bestNewPot;
|
||||||
for (int i = 0; i < n; i++) {
|
for (int i = 0; i < n; i++) {
|
||||||
DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
|
DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
|
||||||
closestDistSq[i] = std::min( dist*dist, closestDistSq[i] );
|
closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user