refactor CUDA ORB feature detector/extractor algorithm:
use new abstract interface and hidden implementation
This commit is contained in:
parent
554ddd2ec4
commit
f960a5707d
@ -284,9 +284,11 @@ public:
|
||||
virtual int getMaxNumPoints() const = 0;
|
||||
};
|
||||
|
||||
/** @brief Class for extracting ORB features and descriptors from an image. :
|
||||
*/
|
||||
class CV_EXPORTS ORB_CUDA
|
||||
//
|
||||
// ORB
|
||||
//
|
||||
|
||||
class CV_EXPORTS ORB : public cv::ORB, public Feature2DAsync
|
||||
{
|
||||
public:
|
||||
enum
|
||||
@ -300,113 +302,20 @@ public:
|
||||
ROWS_COUNT
|
||||
};
|
||||
|
||||
enum
|
||||
{
|
||||
DEFAULT_FAST_THRESHOLD = 20
|
||||
};
|
||||
|
||||
/** @brief Constructor.
|
||||
|
||||
@param nFeatures The number of desired features.
|
||||
@param scaleFactor Coefficient by which we divide the dimensions from one scale pyramid level to
|
||||
the next.
|
||||
@param nLevels The number of levels in the scale pyramid.
|
||||
@param edgeThreshold How far from the boundary the points should be.
|
||||
@param firstLevel The level at which the image is given. If 1, that means we will also look at the
|
||||
image scaleFactor times bigger.
|
||||
@param WTA_K
|
||||
@param scoreType
|
||||
@param patchSize
|
||||
*/
|
||||
explicit ORB_CUDA(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31,
|
||||
int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31);
|
||||
|
||||
/** @overload */
|
||||
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints);
|
||||
/** @overload */
|
||||
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
|
||||
|
||||
/** @brief Detects keypoints and computes descriptors for them.
|
||||
|
||||
@param image Input 8-bit grayscale image.
|
||||
@param mask Optional input mask that marks the regions where we should detect features.
|
||||
@param keypoints The input/output vector of keypoints. Can be stored both in CPU and GPU memory.
|
||||
For GPU memory:
|
||||
- keypoints.ptr\<float\>(X_ROW)[i] contains x coordinate of the i'th feature.
|
||||
- keypoints.ptr\<float\>(Y_ROW)[i] contains y coordinate of the i'th feature.
|
||||
- keypoints.ptr\<float\>(RESPONSE_ROW)[i] contains the response of the i'th feature.
|
||||
- keypoints.ptr\<float\>(ANGLE_ROW)[i] contains orientation of the i'th feature.
|
||||
- keypoints.ptr\<float\>(OCTAVE_ROW)[i] contains the octave of the i'th feature.
|
||||
- keypoints.ptr\<float\>(SIZE_ROW)[i] contains the size of the i'th feature.
|
||||
@param descriptors Computed descriptors. if blurForDescriptor is true, image will be blurred
|
||||
before descriptors calculation.
|
||||
*/
|
||||
void operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors);
|
||||
/** @overload */
|
||||
void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors);
|
||||
|
||||
/** @brief Download keypoints from GPU to CPU memory.
|
||||
*/
|
||||
static void downloadKeyPoints(const GpuMat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
||||
/** @brief Converts keypoints from CUDA representation to vector of KeyPoint.
|
||||
*/
|
||||
static void convertKeyPoints(const Mat& d_keypoints, std::vector<KeyPoint>& keypoints);
|
||||
|
||||
//! returns the descriptor size in bytes
|
||||
inline int descriptorSize() const { return kBytes; }
|
||||
|
||||
inline void setFastParams(int threshold, bool nonmaxSuppression = true)
|
||||
{
|
||||
fastDetector_->setThreshold(threshold);
|
||||
fastDetector_->setNonmaxSuppression(nonmaxSuppression);
|
||||
}
|
||||
|
||||
/** @brief Releases inner buffer memory.
|
||||
*/
|
||||
void release();
|
||||
static Ptr<ORB> create(int nfeatures=500,
|
||||
float scaleFactor=1.2f,
|
||||
int nlevels=8,
|
||||
int edgeThreshold=31,
|
||||
int firstLevel=0,
|
||||
int WTA_K=2,
|
||||
int scoreType=ORB::HARRIS_SCORE,
|
||||
int patchSize=31,
|
||||
int fastThreshold=20,
|
||||
bool blurForDescriptor=false);
|
||||
|
||||
//! if true, image will be blurred before descriptors calculation
|
||||
bool blurForDescriptor;
|
||||
|
||||
private:
|
||||
enum { kBytes = 32 };
|
||||
|
||||
void buildScalePyramids(const GpuMat& image, const GpuMat& mask);
|
||||
|
||||
void computeKeyPointsPyramid();
|
||||
|
||||
void computeDescriptors(GpuMat& descriptors);
|
||||
|
||||
void mergeKeyPoints(GpuMat& keypoints);
|
||||
|
||||
int nFeatures_;
|
||||
float scaleFactor_;
|
||||
int nLevels_;
|
||||
int edgeThreshold_;
|
||||
int firstLevel_;
|
||||
int WTA_K_;
|
||||
int scoreType_;
|
||||
int patchSize_;
|
||||
|
||||
//! The number of desired features per scale
|
||||
std::vector<size_t> n_features_per_level_;
|
||||
|
||||
//! Points to compute BRIEF descriptors from
|
||||
GpuMat pattern_;
|
||||
|
||||
std::vector<GpuMat> imagePyr_;
|
||||
std::vector<GpuMat> maskPyr_;
|
||||
|
||||
GpuMat buf_;
|
||||
|
||||
std::vector<GpuMat> keyPointsPyr_;
|
||||
std::vector<int> keyPointsCount_;
|
||||
|
||||
Ptr<cv::cuda::FastFeatureDetector> fastDetector_;
|
||||
|
||||
Ptr<cuda::Filter> blurFilter;
|
||||
|
||||
GpuMat d_keypoints_;
|
||||
virtual void setBlurForDescriptor(bool blurForDescriptor) = 0;
|
||||
virtual bool getBlurForDescriptor() const = 0;
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
@ -109,15 +109,15 @@ PERF_TEST_P(Image_NFeatures, ORB,
|
||||
|
||||
if (PERF_RUN_CUDA())
|
||||
{
|
||||
cv::cuda::ORB_CUDA d_orb(nFeatures);
|
||||
cv::Ptr<cv::cuda::ORB> d_orb = cv::cuda::ORB::create(nFeatures);
|
||||
|
||||
const cv::cuda::GpuMat d_img(img);
|
||||
cv::cuda::GpuMat d_keypoints, d_descriptors;
|
||||
|
||||
TEST_CYCLE() d_orb(d_img, cv::cuda::GpuMat(), d_keypoints, d_descriptors);
|
||||
TEST_CYCLE() d_orb->detectAndComputeAsync(d_img, cv::noArray(), d_keypoints, d_descriptors);
|
||||
|
||||
std::vector<cv::KeyPoint> gpu_keypoints;
|
||||
d_orb.downloadKeyPoints(d_keypoints, gpu_keypoints);
|
||||
d_orb->convert(d_keypoints, gpu_keypoints);
|
||||
|
||||
cv::Mat gpu_descriptors(d_descriptors);
|
||||
|
||||
|
@ -47,18 +47,7 @@ using namespace cv::cuda;
|
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||||
|
||||
cv::cuda::ORB_CUDA::ORB_CUDA(int, float, int, int, int, int, int, int) : fastDetector_(20) { throw_no_cuda(); }
|
||||
void cv::cuda::ORB_CUDA::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
|
||||
void cv::cuda::ORB_CUDA::operator()(const GpuMat&, const GpuMat&, GpuMat&) { throw_no_cuda(); }
|
||||
void cv::cuda::ORB_CUDA::operator()(const GpuMat&, const GpuMat&, std::vector<KeyPoint>&, GpuMat&) { throw_no_cuda(); }
|
||||
void cv::cuda::ORB_CUDA::operator()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_no_cuda(); }
|
||||
void cv::cuda::ORB_CUDA::downloadKeyPoints(const GpuMat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
|
||||
void cv::cuda::ORB_CUDA::convertKeyPoints(const Mat&, std::vector<KeyPoint>&) { throw_no_cuda(); }
|
||||
void cv::cuda::ORB_CUDA::release() { throw_no_cuda(); }
|
||||
void cv::cuda::ORB_CUDA::buildScalePyramids(const GpuMat&, const GpuMat&) { throw_no_cuda(); }
|
||||
void cv::cuda::ORB_CUDA::computeKeyPointsPyramid() { throw_no_cuda(); }
|
||||
void cv::cuda::ORB_CUDA::computeDescriptors(GpuMat&) { throw_no_cuda(); }
|
||||
void cv::cuda::ORB_CUDA::mergeKeyPoints(GpuMat&) { throw_no_cuda(); }
|
||||
Ptr<cv::cuda::ORB> cv::cuda::ORB::create(int, float, int, int, int, int, int, int, int, bool) { throw_no_cuda(); return Ptr<cv::cuda::ORB>(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
@ -346,7 +335,100 @@ namespace
|
||||
-1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/
|
||||
};
|
||||
|
||||
void initializeOrbPattern(const Point* pattern0, Mat& pattern, int ntuples, int tupleSize, int poolSize)
|
||||
class ORB_Impl : public cv::cuda::ORB
|
||||
{
|
||||
public:
|
||||
ORB_Impl(int nfeatures,
|
||||
float scaleFactor,
|
||||
int nlevels,
|
||||
int edgeThreshold,
|
||||
int firstLevel,
|
||||
int WTA_K,
|
||||
int scoreType,
|
||||
int patchSize,
|
||||
int fastThreshold,
|
||||
bool blurForDescriptor);
|
||||
|
||||
virtual void detectAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints);
|
||||
virtual void detectAndComputeAsync(InputArray _image, InputArray _mask, OutputArray _keypoints, OutputArray _descriptors, bool useProvidedKeypoints, Stream& stream);
|
||||
|
||||
virtual void convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints);
|
||||
|
||||
virtual int descriptorSize() const { return kBytes; }
|
||||
virtual int descriptorType() const { return CV_8U; }
|
||||
virtual int defaultNorm() const { return NORM_HAMMING; }
|
||||
|
||||
virtual void setMaxFeatures(int maxFeatures) { nFeatures_ = maxFeatures; }
|
||||
virtual int getMaxFeatures() const { return nFeatures_; }
|
||||
|
||||
virtual void setScaleFactor(double scaleFactor) { scaleFactor_ = scaleFactor; }
|
||||
virtual double getScaleFactor() const { return scaleFactor_; }
|
||||
|
||||
virtual void setNLevels(int nlevels) { nLevels_ = nlevels; }
|
||||
virtual int getNLevels() const { return nLevels_; }
|
||||
|
||||
virtual void setEdgeThreshold(int edgeThreshold) { edgeThreshold_ = edgeThreshold; }
|
||||
virtual int getEdgeThreshold() const { return edgeThreshold_; }
|
||||
|
||||
virtual void setFirstLevel(int firstLevel) { firstLevel_ = firstLevel; }
|
||||
virtual int getFirstLevel() const { return firstLevel_; }
|
||||
|
||||
virtual void setWTA_K(int wta_k) { WTA_K_ = wta_k; }
|
||||
virtual int getWTA_K() const { return WTA_K_; }
|
||||
|
||||
virtual void setScoreType(int scoreType) { scoreType_ = scoreType; }
|
||||
virtual int getScoreType() const { return scoreType_; }
|
||||
|
||||
virtual void setPatchSize(int patchSize) { patchSize_ = patchSize; }
|
||||
virtual int getPatchSize() const { return patchSize_; }
|
||||
|
||||
virtual void setFastThreshold(int fastThreshold) { fastThreshold_ = fastThreshold; }
|
||||
virtual int getFastThreshold() const { return fastThreshold_; }
|
||||
|
||||
virtual void setBlurForDescriptor(bool blurForDescriptor) { blurForDescriptor_ = blurForDescriptor; }
|
||||
virtual bool getBlurForDescriptor() const { return blurForDescriptor_; }
|
||||
|
||||
private:
|
||||
int nFeatures_;
|
||||
float scaleFactor_;
|
||||
int nLevels_;
|
||||
int edgeThreshold_;
|
||||
int firstLevel_;
|
||||
int WTA_K_;
|
||||
int scoreType_;
|
||||
int patchSize_;
|
||||
int fastThreshold_;
|
||||
bool blurForDescriptor_;
|
||||
|
||||
private:
|
||||
void buildScalePyramids(InputArray _image, InputArray _mask);
|
||||
void computeKeyPointsPyramid();
|
||||
void computeDescriptors(OutputArray _descriptors);
|
||||
void mergeKeyPoints(OutputArray _keypoints);
|
||||
|
||||
private:
|
||||
Ptr<cv::cuda::FastFeatureDetector> fastDetector_;
|
||||
|
||||
//! The number of desired features per scale
|
||||
std::vector<size_t> n_features_per_level_;
|
||||
|
||||
//! Points to compute BRIEF descriptors from
|
||||
GpuMat pattern_;
|
||||
|
||||
std::vector<GpuMat> imagePyr_;
|
||||
std::vector<GpuMat> maskPyr_;
|
||||
|
||||
GpuMat buf_;
|
||||
|
||||
std::vector<GpuMat> keyPointsPyr_;
|
||||
std::vector<int> keyPointsCount_;
|
||||
|
||||
Ptr<cuda::Filter> blurFilter_;
|
||||
|
||||
GpuMat d_keypoints_;
|
||||
};
|
||||
|
||||
static void initializeOrbPattern(const Point* pattern0, Mat& pattern, int ntuples, int tupleSize, int poolSize)
|
||||
{
|
||||
RNG rng(0x12345678);
|
||||
|
||||
@ -381,7 +463,7 @@ namespace
|
||||
}
|
||||
}
|
||||
|
||||
void makeRandomPattern(int patchSize, Point* pattern, int npoints)
|
||||
static void makeRandomPattern(int patchSize, Point* pattern, int npoints)
|
||||
{
|
||||
// we always start with a fixed seed,
|
||||
// to make patterns the same on each run
|
||||
@ -393,14 +475,32 @@ namespace
|
||||
pattern[i].y = rng.uniform(-patchSize / 2, patchSize / 2 + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cv::cuda::ORB_CUDA::ORB_CUDA(int nFeatures, float scaleFactor, int nLevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType, int patchSize) :
|
||||
nFeatures_(nFeatures), scaleFactor_(scaleFactor), nLevels_(nLevels), edgeThreshold_(edgeThreshold), firstLevel_(firstLevel), WTA_K_(WTA_K),
|
||||
scoreType_(scoreType), patchSize_(patchSize),
|
||||
fastDetector_(cuda::FastFeatureDetector::create(DEFAULT_FAST_THRESHOLD))
|
||||
{
|
||||
CV_Assert(patchSize_ >= 2);
|
||||
ORB_Impl::ORB_Impl(int nFeatures,
|
||||
float scaleFactor,
|
||||
int nLevels,
|
||||
int edgeThreshold,
|
||||
int firstLevel,
|
||||
int WTA_K,
|
||||
int scoreType,
|
||||
int patchSize,
|
||||
int fastThreshold,
|
||||
bool blurForDescriptor) :
|
||||
nFeatures_(nFeatures),
|
||||
scaleFactor_(scaleFactor),
|
||||
nLevels_(nLevels),
|
||||
edgeThreshold_(edgeThreshold),
|
||||
firstLevel_(firstLevel),
|
||||
WTA_K_(WTA_K),
|
||||
scoreType_(scoreType),
|
||||
patchSize_(patchSize),
|
||||
fastThreshold_(fastThreshold),
|
||||
blurForDescriptor_(blurForDescriptor)
|
||||
{
|
||||
CV_Assert( patchSize_ >= 2 );
|
||||
CV_Assert( WTA_K_ == 2 || WTA_K_ == 3 || WTA_K_ == 4 );
|
||||
|
||||
fastDetector_ = cuda::FastFeatureDetector::create(fastThreshold_);
|
||||
|
||||
// fill the extractors and descriptors for the corresponding scales
|
||||
float factor = 1.0f / scaleFactor_;
|
||||
@ -420,7 +520,9 @@ cv::cuda::ORB_CUDA::ORB_CUDA(int nFeatures, float scaleFactor, int nLevels, int
|
||||
int half_patch_size = patchSize_ / 2;
|
||||
std::vector<int> u_max(half_patch_size + 2);
|
||||
for (int v = 0; v <= half_patch_size * std::sqrt(2.f) / 2 + 1; ++v)
|
||||
{
|
||||
u_max[v] = cvRound(std::sqrt(static_cast<float>(half_patch_size * half_patch_size - v * v)));
|
||||
}
|
||||
|
||||
// Make sure we are symmetric
|
||||
for (int v = half_patch_size, v_0 = 0; v >= half_patch_size * std::sqrt(2.f) / 2; --v)
|
||||
@ -430,7 +532,7 @@ cv::cuda::ORB_CUDA::ORB_CUDA(int nFeatures, float scaleFactor, int nLevels, int
|
||||
u_max[v] = v_0;
|
||||
++v_0;
|
||||
}
|
||||
CV_Assert(u_max.size() < 32);
|
||||
CV_Assert( u_max.size() < 32 );
|
||||
cv::cuda::device::orb::loadUMax(&u_max[0], static_cast<int>(u_max.size()));
|
||||
|
||||
// Calc pattern
|
||||
@ -443,10 +545,7 @@ cv::cuda::ORB_CUDA::ORB_CUDA(int nFeatures, float scaleFactor, int nLevels, int
|
||||
makeRandomPattern(patchSize_, pattern_buf, npoints);
|
||||
}
|
||||
|
||||
CV_Assert(WTA_K_ == 2 || WTA_K_ == 3 || WTA_K_ == 4);
|
||||
|
||||
Mat h_pattern;
|
||||
|
||||
if (WTA_K_ == 2)
|
||||
{
|
||||
h_pattern.create(2, npoints, CV_32SC1);
|
||||
@ -468,23 +567,42 @@ cv::cuda::ORB_CUDA::ORB_CUDA(int nFeatures, float scaleFactor, int nLevels, int
|
||||
|
||||
pattern_.upload(h_pattern);
|
||||
|
||||
blurFilter = cuda::createGaussianFilter(CV_8UC1, -1, Size(7, 7), 2, 2, BORDER_REFLECT_101);
|
||||
blurFilter_ = cuda::createGaussianFilter(CV_8UC1, -1, Size(7, 7), 2, 2, BORDER_REFLECT_101);
|
||||
}
|
||||
|
||||
blurForDescriptor = false;
|
||||
}
|
||||
void ORB_Impl::detectAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints)
|
||||
{
|
||||
CV_Assert( useProvidedKeypoints == false );
|
||||
|
||||
namespace
|
||||
{
|
||||
inline float getScale(float scaleFactor, int firstLevel, int level)
|
||||
detectAndComputeAsync(_image, _mask, d_keypoints_, _descriptors, false, Stream::Null());
|
||||
convert(d_keypoints_, keypoints);
|
||||
}
|
||||
|
||||
void ORB_Impl::detectAndComputeAsync(InputArray _image, InputArray _mask, OutputArray _keypoints, OutputArray _descriptors, bool useProvidedKeypoints, Stream& stream)
|
||||
{
|
||||
CV_Assert( useProvidedKeypoints == false );
|
||||
|
||||
buildScalePyramids(_image, _mask);
|
||||
computeKeyPointsPyramid();
|
||||
if (_descriptors.needed())
|
||||
{
|
||||
computeDescriptors(_descriptors);
|
||||
}
|
||||
mergeKeyPoints(_keypoints);
|
||||
}
|
||||
|
||||
static float getScale(float scaleFactor, int firstLevel, int level)
|
||||
{
|
||||
return pow(scaleFactor, level - firstLevel);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::cuda::ORB_CUDA::buildScalePyramids(const GpuMat& image, const GpuMat& mask)
|
||||
{
|
||||
CV_Assert(image.type() == CV_8UC1);
|
||||
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()));
|
||||
void ORB_Impl::buildScalePyramids(InputArray _image, InputArray _mask)
|
||||
{
|
||||
const GpuMat image = _image.getGpuMat();
|
||||
const GpuMat mask = _mask.getGpuMat();
|
||||
|
||||
CV_Assert( image.type() == CV_8UC1 );
|
||||
CV_Assert( mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size()) );
|
||||
|
||||
imagePyr_.resize(nLevels_);
|
||||
maskPyr_.resize(nLevels_);
|
||||
@ -536,12 +654,10 @@ void cv::cuda::ORB_CUDA::buildScalePyramids(const GpuMat& image, const GpuMat& m
|
||||
|
||||
cuda::bitwise_and(maskPyr_[level], buf_, maskPyr_[level]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
//takes keypoints and culls them by the response
|
||||
void cull(GpuMat& keypoints, int& count, int n_points)
|
||||
// takes keypoints and culls them by the response
|
||||
static void cull(GpuMat& keypoints, int& count, int n_points)
|
||||
{
|
||||
using namespace cv::cuda::device::orb;
|
||||
|
||||
@ -557,10 +673,9 @@ namespace
|
||||
count = cull_gpu(keypoints.ptr<int>(cuda::FastFeatureDetector::LOCATION_ROW), keypoints.ptr<float>(cuda::FastFeatureDetector::RESPONSE_ROW), count, n_points);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cv::cuda::ORB_CUDA::computeKeyPointsPyramid()
|
||||
{
|
||||
void ORB_Impl::computeKeyPointsPyramid()
|
||||
{
|
||||
using namespace cv::cuda::device::orb;
|
||||
|
||||
int half_patch_size = patchSize_ / 2;
|
||||
@ -568,6 +683,8 @@ void cv::cuda::ORB_CUDA::computeKeyPointsPyramid()
|
||||
keyPointsPyr_.resize(nLevels_);
|
||||
keyPointsCount_.resize(nLevels_);
|
||||
|
||||
fastDetector_->setThreshold(fastThreshold_);
|
||||
|
||||
for (int level = 0; level < nLevels_; ++level)
|
||||
{
|
||||
fastDetector_->setMaxNumPoints(0.05 * imagePyr_[level].size().area());
|
||||
@ -600,10 +717,10 @@ void cv::cuda::ORB_CUDA::computeKeyPointsPyramid()
|
||||
// Compute orientation
|
||||
IC_Angle_gpu(imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2), keyPointsCount_[level], half_patch_size, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cv::cuda::ORB_CUDA::computeDescriptors(GpuMat& descriptors)
|
||||
{
|
||||
void ORB_Impl::computeDescriptors(OutputArray _descriptors)
|
||||
{
|
||||
using namespace cv::cuda::device::orb;
|
||||
|
||||
int nAllkeypoints = 0;
|
||||
@ -613,11 +730,12 @@ void cv::cuda::ORB_CUDA::computeDescriptors(GpuMat& descriptors)
|
||||
|
||||
if (nAllkeypoints == 0)
|
||||
{
|
||||
descriptors.release();
|
||||
_descriptors.release();
|
||||
return;
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(nAllkeypoints, descriptorSize(), CV_8UC1, descriptors);
|
||||
ensureSizeIsEnough(nAllkeypoints, descriptorSize(), CV_8UC1, _descriptors);
|
||||
GpuMat descriptors = _descriptors.getGpuMat();
|
||||
|
||||
int offset = 0;
|
||||
|
||||
@ -628,22 +746,22 @@ void cv::cuda::ORB_CUDA::computeDescriptors(GpuMat& descriptors)
|
||||
|
||||
GpuMat descRange = descriptors.rowRange(offset, offset + keyPointsCount_[level]);
|
||||
|
||||
if (blurForDescriptor)
|
||||
if (blurForDescriptor_)
|
||||
{
|
||||
// preprocess the resized image
|
||||
ensureSizeIsEnough(imagePyr_[level].size(), imagePyr_[level].type(), buf_);
|
||||
blurFilter->apply(imagePyr_[level], buf_);
|
||||
blurFilter_->apply(imagePyr_[level], buf_);
|
||||
}
|
||||
|
||||
computeOrbDescriptor_gpu(blurForDescriptor ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2),
|
||||
computeOrbDescriptor_gpu(blurForDescriptor_ ? buf_ : imagePyr_[level], keyPointsPyr_[level].ptr<short2>(0), keyPointsPyr_[level].ptr<float>(2),
|
||||
keyPointsCount_[level], pattern_.ptr<int>(0), pattern_.ptr<int>(1), descRange, descriptorSize(), WTA_K_, 0);
|
||||
|
||||
offset += keyPointsCount_[level];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cv::cuda::ORB_CUDA::mergeKeyPoints(GpuMat& keypoints)
|
||||
{
|
||||
void ORB_Impl::mergeKeyPoints(OutputArray _keypoints)
|
||||
{
|
||||
using namespace cv::cuda::device::orb;
|
||||
|
||||
int nAllkeypoints = 0;
|
||||
@ -653,11 +771,12 @@ void cv::cuda::ORB_CUDA::mergeKeyPoints(GpuMat& keypoints)
|
||||
|
||||
if (nAllkeypoints == 0)
|
||||
{
|
||||
keypoints.release();
|
||||
_keypoints.release();
|
||||
return;
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(ROWS_COUNT, nAllkeypoints, CV_32FC1, keypoints);
|
||||
ensureSizeIsEnough(ROWS_COUNT, nAllkeypoints, CV_32FC1, _keypoints);
|
||||
GpuMat& keypoints = _keypoints.getGpuMatRef();
|
||||
|
||||
int offset = 0;
|
||||
|
||||
@ -682,41 +801,41 @@ void cv::cuda::ORB_CUDA::mergeKeyPoints(GpuMat& keypoints)
|
||||
|
||||
offset += keyPointsCount_[level];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cv::cuda::ORB_CUDA::downloadKeyPoints(const GpuMat &d_keypoints, std::vector<KeyPoint>& keypoints)
|
||||
{
|
||||
if (d_keypoints.empty())
|
||||
void ORB_Impl::convert(InputArray _gpu_keypoints, std::vector<KeyPoint>& keypoints)
|
||||
{
|
||||
if (_gpu_keypoints.empty())
|
||||
{
|
||||
keypoints.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
Mat h_keypoints(d_keypoints);
|
||||
|
||||
convertKeyPoints(h_keypoints, keypoints);
|
||||
}
|
||||
|
||||
void cv::cuda::ORB_CUDA::convertKeyPoints(const Mat &d_keypoints, std::vector<KeyPoint>& keypoints)
|
||||
{
|
||||
if (d_keypoints.empty())
|
||||
Mat h_keypoints;
|
||||
if (_gpu_keypoints.kind() == _InputArray::CUDA_GPU_MAT)
|
||||
{
|
||||
keypoints.clear();
|
||||
return;
|
||||
_gpu_keypoints.getGpuMat().download(h_keypoints);
|
||||
}
|
||||
else
|
||||
{
|
||||
h_keypoints = _gpu_keypoints.getMat();
|
||||
}
|
||||
|
||||
CV_Assert(d_keypoints.type() == CV_32FC1 && d_keypoints.rows == ROWS_COUNT);
|
||||
CV_Assert( h_keypoints.rows == ROWS_COUNT );
|
||||
CV_Assert( h_keypoints.type() == CV_32FC1 );
|
||||
|
||||
const float* x_ptr = d_keypoints.ptr<float>(X_ROW);
|
||||
const float* y_ptr = d_keypoints.ptr<float>(Y_ROW);
|
||||
const float* response_ptr = d_keypoints.ptr<float>(RESPONSE_ROW);
|
||||
const float* angle_ptr = d_keypoints.ptr<float>(ANGLE_ROW);
|
||||
const float* octave_ptr = d_keypoints.ptr<float>(OCTAVE_ROW);
|
||||
const float* size_ptr = d_keypoints.ptr<float>(SIZE_ROW);
|
||||
const int npoints = h_keypoints.cols;
|
||||
|
||||
keypoints.resize(d_keypoints.cols);
|
||||
keypoints.resize(npoints);
|
||||
|
||||
for (int i = 0; i < d_keypoints.cols; ++i)
|
||||
const float* x_ptr = h_keypoints.ptr<float>(X_ROW);
|
||||
const float* y_ptr = h_keypoints.ptr<float>(Y_ROW);
|
||||
const float* response_ptr = h_keypoints.ptr<float>(RESPONSE_ROW);
|
||||
const float* angle_ptr = h_keypoints.ptr<float>(ANGLE_ROW);
|
||||
const float* octave_ptr = h_keypoints.ptr<float>(OCTAVE_ROW);
|
||||
const float* size_ptr = h_keypoints.ptr<float>(SIZE_ROW);
|
||||
|
||||
for (int i = 0; i < npoints; ++i)
|
||||
{
|
||||
KeyPoint kp;
|
||||
|
||||
@ -729,45 +848,21 @@ void cv::cuda::ORB_CUDA::convertKeyPoints(const Mat &d_keypoints, std::vector<Ke
|
||||
|
||||
keypoints[i] = kp;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cv::cuda::ORB_CUDA::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints)
|
||||
Ptr<cv::cuda::ORB> cv::cuda::ORB::create(int nfeatures,
|
||||
float scaleFactor,
|
||||
int nlevels,
|
||||
int edgeThreshold,
|
||||
int firstLevel,
|
||||
int WTA_K,
|
||||
int scoreType,
|
||||
int patchSize,
|
||||
int fastThreshold,
|
||||
bool blurForDescriptor)
|
||||
{
|
||||
buildScalePyramids(image, mask);
|
||||
computeKeyPointsPyramid();
|
||||
mergeKeyPoints(keypoints);
|
||||
}
|
||||
|
||||
void cv::cuda::ORB_CUDA::operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors)
|
||||
{
|
||||
buildScalePyramids(image, mask);
|
||||
computeKeyPointsPyramid();
|
||||
computeDescriptors(descriptors);
|
||||
mergeKeyPoints(keypoints);
|
||||
}
|
||||
|
||||
void cv::cuda::ORB_CUDA::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints)
|
||||
{
|
||||
(*this)(image, mask, d_keypoints_);
|
||||
downloadKeyPoints(d_keypoints_, keypoints);
|
||||
}
|
||||
|
||||
void cv::cuda::ORB_CUDA::operator()(const GpuMat& image, const GpuMat& mask, std::vector<KeyPoint>& keypoints, GpuMat& descriptors)
|
||||
{
|
||||
(*this)(image, mask, d_keypoints_, descriptors);
|
||||
downloadKeyPoints(d_keypoints_, keypoints);
|
||||
}
|
||||
|
||||
void cv::cuda::ORB_CUDA::release()
|
||||
{
|
||||
imagePyr_.clear();
|
||||
maskPyr_.clear();
|
||||
|
||||
buf_.release();
|
||||
|
||||
keyPointsPyr_.clear();
|
||||
|
||||
d_keypoints_.release();
|
||||
return makePtr<ORB_Impl>(nfeatures, scaleFactor, nlevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize, fastThreshold, blurForDescriptor);
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
||||
|
@ -122,7 +122,7 @@ namespace
|
||||
IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool)
|
||||
}
|
||||
|
||||
CV_ENUM(ORB_ScoreType, ORB::HARRIS_SCORE, ORB::FAST_SCORE)
|
||||
CV_ENUM(ORB_ScoreType, cv::ORB::HARRIS_SCORE, cv::ORB::FAST_SCORE)
|
||||
|
||||
PARAM_TEST_CASE(ORB, cv::cuda::DeviceInfo, ORB_FeaturesCount, ORB_ScaleFactor, ORB_LevelsCount, ORB_EdgeThreshold, ORB_firstLevel, ORB_WTA_K, ORB_ScoreType, ORB_PatchSize, ORB_BlurForDescriptor)
|
||||
{
|
||||
@ -162,8 +162,9 @@ CUDA_TEST_P(ORB, Accuracy)
|
||||
cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1));
|
||||
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0));
|
||||
|
||||
cv::cuda::ORB_CUDA orb(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
|
||||
orb.blurForDescriptor = blurForDescriptor;
|
||||
cv::Ptr<cv::cuda::ORB> orb =
|
||||
cv::cuda::ORB::create(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel,
|
||||
WTA_K, scoreType, patchSize, 20, blurForDescriptor);
|
||||
|
||||
if (!supportFeature(devInfo, cv::cuda::GLOBAL_ATOMICS))
|
||||
{
|
||||
@ -171,7 +172,7 @@ CUDA_TEST_P(ORB, Accuracy)
|
||||
{
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
cv::cuda::GpuMat descriptors;
|
||||
orb(loadMat(image), loadMat(mask), keypoints, descriptors);
|
||||
orb->detectAndComputeAsync(loadMat(image), loadMat(mask), keypoints, descriptors);
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
@ -182,7 +183,7 @@ CUDA_TEST_P(ORB, Accuracy)
|
||||
{
|
||||
std::vector<cv::KeyPoint> keypoints;
|
||||
cv::cuda::GpuMat descriptors;
|
||||
orb(loadMat(image), loadMat(mask), keypoints, descriptors);
|
||||
orb->detectAndCompute(loadMat(image), loadMat(mask), keypoints, descriptors);
|
||||
|
||||
cv::Ptr<cv::ORB> orb_gold = cv::ORB::create(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize);
|
||||
|
||||
|
@ -350,15 +350,15 @@ TEST(ORB)
|
||||
orb->detectAndCompute(src, Mat(), keypoints, descriptors);
|
||||
CPU_OFF;
|
||||
|
||||
cuda::ORB_CUDA d_orb;
|
||||
Ptr<cuda::ORB> d_orb = cuda::ORB::create();
|
||||
cuda::GpuMat d_src(src);
|
||||
cuda::GpuMat d_keypoints;
|
||||
cuda::GpuMat d_descriptors;
|
||||
|
||||
d_orb(d_src, cuda::GpuMat(), d_keypoints, d_descriptors);
|
||||
d_orb->detectAndComputeAsync(d_src, cuda::GpuMat(), d_keypoints, d_descriptors);
|
||||
|
||||
CUDA_ON;
|
||||
d_orb(d_src, cuda::GpuMat(), d_keypoints, d_descriptors);
|
||||
d_orb->detectAndComputeAsync(d_src, cuda::GpuMat(), d_keypoints, d_descriptors);
|
||||
CUDA_OFF;
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user