Drop old python samples and tests
This commit is contained in:
@@ -24,8 +24,3 @@ if __name__ == '__main__':
|
||||
|
||||
r = 1.0 * len(cv2_used) / len(cv2_callable)
|
||||
print '\ncv2 api coverage: %d / %d (%.1f%%)' % ( len(cv2_used), len(cv2_callable), r*100 )
|
||||
|
||||
print '\nold (cv) symbols:'
|
||||
for s in found:
|
||||
if s.startswith('cv.'):
|
||||
print s
|
||||
|
@@ -37,7 +37,7 @@ if __name__ == '__main__':
|
||||
img = np.zeros((sz, sz), np.uint8)
|
||||
track = np.cumsum(np.random.rand(500000, 2)-0.5, axis=0)
|
||||
track = np.int32(track*10 + (sz/2, sz/2))
|
||||
cv2.polylines(img, [track], 0, 255, 1, cv2.CV_AA)
|
||||
cv2.polylines(img, [track], 0, 255, 1, cv2.LINE_AA)
|
||||
|
||||
|
||||
small = img
|
||||
|
@@ -71,8 +71,8 @@ def mtx2rvec(R):
|
||||
return axis * np.arctan2(s, c)
|
||||
|
||||
def draw_str(dst, (x, y), s):
|
||||
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.CV_AA)
|
||||
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.CV_AA)
|
||||
cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.LINE_AA)
|
||||
cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA)
|
||||
|
||||
class Sketcher:
|
||||
def __init__(self, windowname, dests, colors_func):
|
||||
|
@@ -53,7 +53,7 @@ if __name__ == '__main__':
|
||||
vis = np.zeros((h, w, 3), np.uint8)
|
||||
levels = levels - 3
|
||||
cv2.drawContours( vis, contours, (-1, 3)[levels <= 0], (128,255,255),
|
||||
3, cv2.CV_AA, hierarchy, abs(levels) )
|
||||
3, cv2.LINE_AA, hierarchy, abs(levels) )
|
||||
cv2.imshow('contours', vis)
|
||||
update(3)
|
||||
cv2.createTrackbar( "levels+3", "contours", 3, 7, update )
|
||||
|
@@ -57,7 +57,7 @@ def motion_kernel(angle, d, sz=65):
|
||||
|
||||
def defocus_kernel(d, sz=65):
|
||||
kern = np.zeros((sz, sz), np.uint8)
|
||||
cv2.circle(kern, (sz, sz), d, 255, -1, cv2.CV_AA, shift=1)
|
||||
cv2.circle(kern, (sz, sz), d, 255, -1, cv2.LINE_AA, shift=1)
|
||||
kern = np.float32(kern) / 255.0
|
||||
return kern
|
||||
|
||||
@@ -69,7 +69,7 @@ if __name__ == '__main__':
|
||||
opts = dict(opts)
|
||||
try:
|
||||
fn = args[0]
|
||||
except:
|
||||
except:
|
||||
fn = 'data/licenseplate_motion.jpg'
|
||||
|
||||
win = 'deconvolution'
|
||||
@@ -78,7 +78,7 @@ if __name__ == '__main__':
|
||||
if img is None:
|
||||
print 'Failed to load fn1:', fn1
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
img = np.float32(img)/255.0
|
||||
cv2.imshow('input', img)
|
||||
|
||||
|
2
samples/python2/dft.py
Normal file → Executable file
2
samples/python2/dft.py
Normal file → Executable file
@@ -93,7 +93,7 @@ if __name__ == "__main__":
|
||||
shift_dft(log_spectrum, log_spectrum)
|
||||
|
||||
# normalize and display the results as rgb
|
||||
cv2.normalize(log_spectrum, log_spectrum, 0.0, 1.0, cv2.cv.CV_MINMAX)
|
||||
cv2.normalize(log_spectrum, log_spectrum, 0.0, 1.0, cv2.NORM_MINMAX)
|
||||
cv2.imshow("magnitude", log_spectrum)
|
||||
|
||||
cv2.waitKey(0)
|
||||
|
@@ -14,7 +14,6 @@ Keys:
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2.cv as cv
|
||||
|
||||
from common import make_cmap
|
||||
|
||||
@@ -30,7 +29,7 @@ if __name__ == '__main__':
|
||||
if img is None:
|
||||
print 'Failed to load fn:', fn
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
cm = make_cmap('jet')
|
||||
need_update = True
|
||||
voronoi = False
|
||||
@@ -40,7 +39,7 @@ if __name__ == '__main__':
|
||||
need_update = False
|
||||
thrs = cv2.getTrackbarPos('threshold', 'distrans')
|
||||
mark = cv2.Canny(img, thrs, 3*thrs)
|
||||
dist, labels = cv2.distanceTransformWithLabels(~mark, cv.CV_DIST_L2, 5)
|
||||
dist, labels = cv2.distanceTransformWithLabels(~mark, cv2.DIST_L2, 5)
|
||||
if voronoi:
|
||||
vis = cm[np.uint8(labels)]
|
||||
else:
|
||||
|
@@ -2,7 +2,6 @@
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2.cv as cv
|
||||
|
||||
# local modules
|
||||
from video import create_capture
|
||||
@@ -13,7 +12,7 @@ USAGE: facedetect.py [--cascade <cascade_fn>] [--nested-cascade <cascade_fn>] [<
|
||||
'''
|
||||
|
||||
def detect(img, cascade):
|
||||
rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), flags = cv.CV_HAAR_SCALE_IMAGE)
|
||||
rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30), flags = cv2.CASCADE_SCALE_IMAGE)
|
||||
if len(rects) == 0:
|
||||
return []
|
||||
rects[:,2:] += rects[:,:2]
|
||||
|
@@ -42,7 +42,7 @@ def sample_line(p1, p2, n, noise=0.0):
|
||||
t = np.random.rand(n,1)
|
||||
return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise
|
||||
|
||||
dist_func_names = it.cycle('CV_DIST_L2 CV_DIST_L1 CV_DIST_L12 CV_DIST_FAIR CV_DIST_WELSCH CV_DIST_HUBER'.split())
|
||||
dist_func_names = it.cycle('DIST_L2 DIST_L1 DIST_L12 DIST_FAIR DIST_WELSCH DIST_HUBER'.split())
|
||||
cur_func_name = dist_func_names.next()
|
||||
|
||||
def update(_=None):
|
||||
@@ -63,7 +63,7 @@ def update(_=None):
|
||||
cv2.circle(img, toint(p), 2, (255, 255, 255), -1)
|
||||
for p in outliers:
|
||||
cv2.circle(img, toint(p), 2, (64, 64, 255), -1)
|
||||
func = getattr(cv2.cv, cur_func_name)
|
||||
func = getattr(cv2, cur_func_name)
|
||||
vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01)
|
||||
cv2.line(img, (int(cx-vx*w), int(cy-vy*w)), (int(cx+vx*w), int(cy+vy*w)), (0, 0, 255))
|
||||
|
||||
|
@@ -23,7 +23,7 @@ def draw_gaussain(img, mean, cov, color):
|
||||
w, u, vt = cv2.SVDecomp(cov)
|
||||
ang = np.arctan2(u[1, 0], u[0, 0])*(180/np.pi)
|
||||
s1, s2 = np.sqrt(w)*3.0
|
||||
cv2.ellipse(img, (x, y), (s1, s2), ang, 0, 360, color, 1, cv2.CV_AA)
|
||||
cv2.ellipse(img, (x, y), (s1, s2), ang, 0, 360, color, 1, cv2.LINE_AA)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@@ -22,11 +22,11 @@ img = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
|
||||
img = cv2.medianBlur(img, 5)
|
||||
cimg = src.copy() # numpy function
|
||||
|
||||
circles = cv2.HoughCircles(img, cv2.cv.CV_HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)
|
||||
circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)
|
||||
a, b, c = circles.shape
|
||||
for i in range(b):
|
||||
cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv2.cv.CV_AA)
|
||||
cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv2.cv.CV_AA) # draw center of circle
|
||||
cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv2.LINE_AA)
|
||||
cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv2.LINE_AA) # draw center of circle
|
||||
|
||||
cv2.imshow("source", src)
|
||||
cv2.imshow("detected circles", cimg)
|
||||
|
@@ -10,31 +10,31 @@ import sys
|
||||
import math
|
||||
|
||||
try:
|
||||
fn = sys.argv[1]
|
||||
fn = sys.argv[1]
|
||||
except:
|
||||
fn = "../cpp/pic1.png"
|
||||
fn = "../cpp/pic1.png"
|
||||
print __doc__
|
||||
src = cv2.imread(fn)
|
||||
dst = cv2.Canny(src, 50, 200)
|
||||
cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)
|
||||
|
||||
# HoughLines()
|
||||
# lines = cv2.HoughLines(dst, 1, cv2.cv.CV_PI/180.0, 50, np.array([]), 0, 0)
|
||||
# lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
|
||||
# a,b,c = lines.shape
|
||||
# for i in range(b):
|
||||
# rho = lines[0][i][0]
|
||||
# theta = lines[0][i][1]
|
||||
# a = math.cos(theta)
|
||||
# b = math.sin(theta)
|
||||
# x0, y0 = a*rho, b*rho
|
||||
# pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
|
||||
# pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
|
||||
# cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.cv.CV_AA)
|
||||
# rho = lines[0][i][0]
|
||||
# theta = lines[0][i][1]
|
||||
# a = math.cos(theta)
|
||||
# b = math.sin(theta)
|
||||
# x0, y0 = a*rho, b*rho
|
||||
# pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
|
||||
# pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
|
||||
# cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)
|
||||
|
||||
lines = cv2.HoughLinesP(dst, 1, cv2.cv.CV_PI/180.0, 50, np.array([]), 50, 10)
|
||||
lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 50, np.array([]), 50, 10)
|
||||
a,b,c = lines.shape
|
||||
for i in range(b):
|
||||
cv2.line(cdst, (lines[0][i][0], lines[0][i][1]), (lines[0][i][2], lines[0][i][3]), (0, 0, 255), 3, cv2.cv.CV_AA)
|
||||
cv2.line(cdst, (lines[0][i][0], lines[0][i][1]), (lines[0][i][2], lines[0][i][3]), (0, 0, 255), 3, cv2.LINE_AA)
|
||||
|
||||
cv2.imshow("source", src)
|
||||
cv2.imshow("detected lines", cdst)
|
||||
|
@@ -9,7 +9,6 @@ Demonstrate using a mouse to interact with an image:
|
||||
ESC to exit
|
||||
'''
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
# built-in modules
|
||||
import os
|
||||
@@ -24,27 +23,27 @@ sel = (0,0,0,0)
|
||||
|
||||
def onmouse(event, x, y, flags, param):
|
||||
global drag_start, sel
|
||||
if event == cv.EVENT_LBUTTONDOWN:
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
drag_start = x, y
|
||||
sel = 0,0,0,0
|
||||
elif event == cv.EVENT_LBUTTONUP:
|
||||
elif event == cv2.EVENT_LBUTTONUP:
|
||||
if sel[2] > sel[0] and sel[3] > sel[1]:
|
||||
patch = gray[sel[1]:sel[3],sel[0]:sel[2]]
|
||||
result = cv.matchTemplate(gray,patch,cv.TM_CCOEFF_NORMED)
|
||||
result = cv2.matchTemplate(gray,patch,cv2.TM_CCOEFF_NORMED)
|
||||
result = np.abs(result)**3
|
||||
val, result = cv.threshold(result, 0.01, 0, cv.THRESH_TOZERO)
|
||||
result8 = cv.normalize(result,None,0,255,cv.NORM_MINMAX,cv.CV_8U)
|
||||
cv.imshow("result", result8)
|
||||
val, result = cv2.threshold(result, 0.01, 0, cv2.THRESH_TOZERO)
|
||||
result8 = cv2.normalize(result,None,0,255,cv2.NORM_MINMAX,cv2.CV_8U)
|
||||
cv2.imshow("result", result8)
|
||||
drag_start = None
|
||||
elif drag_start:
|
||||
#print flags
|
||||
if flags & cv.EVENT_FLAG_LBUTTON:
|
||||
if flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
minpos = min(drag_start[0], x), min(drag_start[1], y)
|
||||
maxpos = max(drag_start[0], x), max(drag_start[1], y)
|
||||
sel = minpos[0], minpos[1], maxpos[0], maxpos[1]
|
||||
img = cv.cvtColor(gray, cv.COLOR_GRAY2BGR)
|
||||
cv.rectangle(img, (sel[0], sel[1]), (sel[2], sel[3]), (0,255,255), 1)
|
||||
cv.imshow("gray", img)
|
||||
img = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)
|
||||
cv2.rectangle(img, (sel[0], sel[1]), (sel[2], sel[3]), (0,255,255), 1)
|
||||
cv2.imshow("gray", img)
|
||||
else:
|
||||
print "selection is complete"
|
||||
drag_start = None
|
||||
@@ -55,21 +54,21 @@ if __name__ == '__main__':
|
||||
args = parser.parse_args()
|
||||
path = args.input
|
||||
|
||||
cv.namedWindow("gray",1)
|
||||
cv.setMouseCallback("gray", onmouse)
|
||||
cv2.namedWindow("gray",1)
|
||||
cv2.setMouseCallback("gray", onmouse)
|
||||
'''Loop through all the images in the directory'''
|
||||
for infile in glob.glob( os.path.join(path, '*.*') ):
|
||||
ext = os.path.splitext(infile)[1][1:] #get the filename extenstion
|
||||
if ext == "png" or ext == "jpg" or ext == "bmp" or ext == "tiff" or ext == "pbm":
|
||||
print infile
|
||||
|
||||
img=cv.imread(infile,1)
|
||||
img=cv2.imread(infile,1)
|
||||
if img == None:
|
||||
continue
|
||||
sel = (0,0,0,0)
|
||||
drag_start = None
|
||||
gray=cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
cv.imshow("gray",gray)
|
||||
if (cv.waitKey() & 255) == 27:
|
||||
gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
cv2.imshow("gray",gray)
|
||||
if (cv2.waitKey() & 255) == 27:
|
||||
break
|
||||
cv.destroyAllWindows()
|
||||
cv2.destroyAllWindows()
|
||||
|
@@ -24,7 +24,7 @@ if __name__ == '__main__':
|
||||
if img is None:
|
||||
print 'Failed to load image file:', fn
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
h, w = img.shape[:2]
|
||||
|
||||
@@ -38,7 +38,7 @@ if __name__ == '__main__':
|
||||
points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)
|
||||
for x, y in points:
|
||||
vx, vy = np.int32(flow[y, x]*d)
|
||||
cv2.line(vis, (x-vx, y-vy), (x+vx, y+vy), (0, 0, 0), 1, cv2.CV_AA)
|
||||
cv2.line(vis, (x-vx, y-vy), (x+vx, y+vy), (0, 0, 0), 1, cv2.LINE_AA)
|
||||
cv2.imshow('input', img)
|
||||
cv2.imshow('flow', vis)
|
||||
cv2.waitKey()
|
||||
|
@@ -9,7 +9,6 @@ Inspired by http://www.jonathanmccabe.com/Cyclic_Symmetric_Multi-Scale_Turing_Pa
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2.cv as cv
|
||||
from common import draw_str
|
||||
import getopt, sys
|
||||
from itertools import count
|
||||
@@ -30,7 +29,7 @@ if __name__ == '__main__':
|
||||
out = None
|
||||
if '-o' in args:
|
||||
fn = args['-o']
|
||||
out = cv2.VideoWriter(args['-o'], cv.CV_FOURCC(*'DIB '), 30.0, (w, h), False)
|
||||
out = cv2.VideoWriter(args['-o'], cv2.VideoWriter_fourcc(*'DIB '), 30.0, (w, h), False)
|
||||
print 'writing %s ...' % fn
|
||||
|
||||
a = np.zeros((h, w), np.float32)
|
||||
|
@@ -105,7 +105,7 @@ class Chess(VideoSynthBase):
|
||||
img_quads = cv2.projectPoints(quads.reshape(-1, 3), self.rvec, self.tvec, self.K, self.dist_coef) [0]
|
||||
img_quads.shape = quads.shape[:2] + (2,)
|
||||
for q in img_quads:
|
||||
cv2.fillConvexPoly(img, np.int32(q*4), color, cv2.CV_AA, shift=2)
|
||||
cv2.fillConvexPoly(img, np.int32(q*4), color, cv2.LINE_AA, shift=2)
|
||||
|
||||
def render(self, dst):
|
||||
t = self.t
|
||||
@@ -159,8 +159,8 @@ def create_capture(source = 0, fallback = presets['chess']):
|
||||
cap = cv2.VideoCapture(source)
|
||||
if 'size' in params:
|
||||
w, h = map(int, params['size'].split('x'))
|
||||
cap.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, w)
|
||||
cap.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, h)
|
||||
cap.set(cv2.CAP_PROP_FRAME_WIDTH, w)
|
||||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, h)
|
||||
if cap is None or not cap.isOpened():
|
||||
print 'Warning: unable to open video source: ', source
|
||||
if fallback is not None:
|
||||
|
Reference in New Issue
Block a user