Added tutorial for features2d using homography to find a planar object (Based on the well known find_obj.cpp
This commit is contained in:
parent
cff30dd2bb
commit
f803fc259b
@ -366,7 +366,9 @@ extlinks = {'cvt_color': ('http://opencv.willowgarage.com/documentation/cpp/imgp
|
||||
'descriptor_extractor': ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#descriptorextractor%s', None ),
|
||||
'descriptor_extractor_compute' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#cv-descriptorextractor-compute%s', None ),
|
||||
'surf_descriptor_extractor' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#surfdescriptorextractor%s', None ),
|
||||
'draw_matches' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawmatches%s', None )
|
||||
'draw_matches' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawmatches%s', None ),
|
||||
'find_homography' : ('http://opencv.willowgarage.com/documentation/cpp/calib3d_camera_calibration_and_3d_reconstruction.html?#findHomography%s', None),
|
||||
'perspective_transform' : ('http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#perspectiveTransform%s', None )
|
||||
}
|
||||
|
||||
|
||||
|
@ -0,0 +1,148 @@
|
||||
.. _feature_homography:
|
||||
|
||||
Features2D + Homography to find a known object
|
||||
**********************************************
|
||||
|
||||
Goal
|
||||
=====
|
||||
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
* Use the function :find_homography:`findHomography<>` to find the transform between matched keypoints.
|
||||
* Use the function :perspective_transform:`perspectiveTransform<>` to map the points.
|
||||
|
||||
|
||||
Theory
|
||||
======
|
||||
|
||||
Code
|
||||
====
|
||||
|
||||
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_Homography.cpp>`_
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/features2d/features2d.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/calib3d/calib3d.hpp"
|
||||
|
||||
using namespace cv;
|
||||
|
||||
void readme();
|
||||
|
||||
/** @function main */
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
if( argc != 3 )
|
||||
{ readme(); return -1; }
|
||||
|
||||
Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
|
||||
Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
|
||||
|
||||
if( !img_object.data || !img_scene.data )
|
||||
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
|
||||
|
||||
//-- Step 1: Detect the keypoints using SURF Detector
|
||||
int minHessian = 400;
|
||||
|
||||
SurfFeatureDetector detector( minHessian );
|
||||
|
||||
std::vector<KeyPoint> keypoints_object, keypoints_scene;
|
||||
|
||||
detector.detect( img_object, keypoints_object );
|
||||
detector.detect( img_scene, keypoints_scene );
|
||||
|
||||
//-- Step 2: Calculate descriptors (feature vectors)
|
||||
SurfDescriptorExtractor extractor;
|
||||
|
||||
Mat descriptors_object, descriptors_scene;
|
||||
|
||||
extractor.compute( img_object, keypoints_object, descriptors_object );
|
||||
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
|
||||
|
||||
//-- Step 3: Matching descriptor vectors using FLANN matcher
|
||||
FlannBasedMatcher matcher;
|
||||
std::vector< DMatch > matches;
|
||||
matcher.match( descriptors_object, descriptors_scene, matches );
|
||||
|
||||
double max_dist = 0; double min_dist = 100;
|
||||
|
||||
//-- Quick calculation of max and min distances between keypoints
|
||||
for( int i = 0; i < descriptors_object.rows; i++ )
|
||||
{ double dist = matches[i].distance;
|
||||
if( dist < min_dist ) min_dist = dist;
|
||||
if( dist > max_dist ) max_dist = dist;
|
||||
}
|
||||
|
||||
printf("-- Max dist : %f \n", max_dist );
|
||||
printf("-- Min dist : %f \n", min_dist );
|
||||
|
||||
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
|
||||
std::vector< DMatch > good_matches;
|
||||
|
||||
for( int i = 0; i < descriptors_object.rows; i++ )
|
||||
{ if( matches[i].distance < 3*min_dist )
|
||||
{ good_matches.push_back( matches[i]); }
|
||||
}
|
||||
|
||||
Mat img_matches;
|
||||
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
|
||||
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
|
||||
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||||
|
||||
//-- Localize the object
|
||||
std::vector<Point2f> obj;
|
||||
std::vector<Point2f> scene;
|
||||
|
||||
for( int i = 0; i < good_matches.size(); i++ )
|
||||
{
|
||||
//-- Get the keypoints from the good matches
|
||||
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
|
||||
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
|
||||
}
|
||||
|
||||
Mat H = findHomography( obj, scene, CV_RANSAC );
|
||||
|
||||
//-- Get the corners from the image_1 ( the object to be "detected" )
|
||||
std::vector<Point2f> obj_corners(4);
|
||||
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
|
||||
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
|
||||
std::vector<Point2f> scene_corners(4);
|
||||
|
||||
perspectiveTransform( obj_corners, scene_corners, H);
|
||||
|
||||
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
|
||||
line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
|
||||
//-- Show detected matches
|
||||
imshow( "Good Matches & Object detection", img_matches );
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** @function readme */
|
||||
void readme()
|
||||
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
|
||||
|
||||
Explanation
|
||||
============
|
||||
|
||||
Result
|
||||
======
|
||||
|
||||
|
||||
#. And here is the result for the detected object (highlighted in green)
|
||||
|
||||
.. image:: images/Feature_Homography_Result.jpg
|
||||
:align: center
|
||||
:height: 200pt
|
||||
|
Binary file not shown.
After Width: | Height: | Size: 90 KiB |
Binary file not shown.
Before Width: | Height: | Size: 73 KiB After Width: | Height: | Size: 117 KiB |
Binary file not shown.
After Width: | Height: | Size: 51 KiB |
@ -140,7 +140,7 @@ Learn about how to use the feature points detectors, descriptors and matching f
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
.. |FeatureFlann| image:: images/Feature_Detection_Tutorial_Cover.jpg
|
||||
.. |FeatureFlann| image:: images/Feature_Flann_Matcher_Tutorial_Cover.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
@ -155,11 +155,11 @@ Learn about how to use the feature points detectors, descriptors and matching f
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
In this tutorial, you will use *features2d* to detect interest points.
|
||||
In this tutorial, you will use *features2d* and *calib3d* to detect an object in a scene.
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
.. |FeatureHomo| image:: images/Feature_Detection_Tutorial_Cover.jpg
|
||||
.. |FeatureHomo| image:: images/Feature_Homography_Tutorial_Cover.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
|
@ -24,10 +24,10 @@ int main( int argc, char** argv )
|
||||
if( argc != 3 )
|
||||
{ readme(); return -1; }
|
||||
|
||||
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
|
||||
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
|
||||
Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
|
||||
Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
|
||||
|
||||
if( !img_1.data || !img_2.data )
|
||||
if( !img_object.data || !img_scene.data )
|
||||
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
|
||||
|
||||
//-- Step 1: Detect the keypoints using SURF Detector
|
||||
@ -35,28 +35,28 @@ int main( int argc, char** argv )
|
||||
|
||||
SurfFeatureDetector detector( minHessian );
|
||||
|
||||
std::vector<KeyPoint> keypoints_1, keypoints_2;
|
||||
std::vector<KeyPoint> keypoints_object, keypoints_scene;
|
||||
|
||||
detector.detect( img_1, keypoints_1 );
|
||||
detector.detect( img_2, keypoints_2 );
|
||||
detector.detect( img_object, keypoints_object );
|
||||
detector.detect( img_scene, keypoints_scene );
|
||||
|
||||
//-- Step 2: Calculate descriptors (feature vectors)
|
||||
SurfDescriptorExtractor extractor;
|
||||
|
||||
Mat descriptors_1, descriptors_2;
|
||||
Mat descriptors_object, descriptors_scene;
|
||||
|
||||
extractor.compute( img_1, keypoints_1, descriptors_1 );
|
||||
extractor.compute( img_2, keypoints_2, descriptors_2 );
|
||||
extractor.compute( img_object, keypoints_object, descriptors_object );
|
||||
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
|
||||
|
||||
//-- Step 3: Matching descriptor vectors using FLANN matcher
|
||||
FlannBasedMatcher matcher;
|
||||
std::vector< DMatch > matches;
|
||||
matcher.match( descriptors_1, descriptors_2, matches );
|
||||
matcher.match( descriptors_object, descriptors_scene, matches );
|
||||
|
||||
double max_dist = 0; double min_dist = 100;
|
||||
|
||||
//-- Quick calculation of max and min distances between keypoints
|
||||
for( int i = 0; i < descriptors_1.rows; i++ )
|
||||
for( int i = 0; i < descriptors_object.rows; i++ )
|
||||
{ double dist = matches[i].distance;
|
||||
if( dist < min_dist ) min_dist = dist;
|
||||
if( dist > max_dist ) max_dist = dist;
|
||||
@ -68,13 +68,13 @@ int main( int argc, char** argv )
|
||||
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
|
||||
std::vector< DMatch > good_matches;
|
||||
|
||||
for( int i = 0; i < descriptors_1.rows; i++ )
|
||||
for( int i = 0; i < descriptors_object.rows; i++ )
|
||||
{ if( matches[i].distance < 3*min_dist )
|
||||
{ good_matches.push_back( matches[i]); }
|
||||
}
|
||||
|
||||
Mat img_matches;
|
||||
drawMatches( img_1, keypoints_1, img_2, keypoints_2,
|
||||
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
|
||||
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
|
||||
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||||
|
||||
@ -86,33 +86,26 @@ int main( int argc, char** argv )
|
||||
for( int i = 0; i < good_matches.size(); i++ )
|
||||
{
|
||||
//-- Get the keypoints from the good matches
|
||||
obj.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
|
||||
scene.push_back( keypoints_2[ good_matches[i].trainIdx ].pt );
|
||||
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
|
||||
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
|
||||
}
|
||||
|
||||
Mat H = findHomography( obj, scene, CV_RANSAC );
|
||||
|
||||
//-- Get the corners from the image_1 ( the object to be "detected" )
|
||||
Point2f obj_corners[4] = { cvPoint(0,0), cvPoint( img_1.cols, 0 ), cvPoint( img_1.cols, img_1.rows ), cvPoint( 0, img_1.rows ) };
|
||||
Point scene_corners[4];
|
||||
std::vector<Point2f> obj_corners(4);
|
||||
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
|
||||
obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
|
||||
std::vector<Point2f> scene_corners(4);
|
||||
|
||||
//-- Map these corners in the scene ( image_2)
|
||||
for( int i = 0; i < 4; i++ )
|
||||
{
|
||||
double x = obj_corners[i].x;
|
||||
double y = obj_corners[i].y;
|
||||
perspectiveTransform( obj_corners, scene_corners, H);
|
||||
|
||||
double Z = 1./( H.at<double>(2,0)*x + H.at<double>(2,1)*y + H.at<double>(2,2) );
|
||||
double X = ( H.at<double>(0,0)*x + H.at<double>(0,1)*y + H.at<double>(0,2) )*Z;
|
||||
double Y = ( H.at<double>(1,0)*x + H.at<double>(1,1)*y + H.at<double>(1,2) )*Z;
|
||||
scene_corners[i] = cvPoint( cvRound(X) + img_1.cols, cvRound(Y) );
|
||||
}
|
||||
|
||||
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
|
||||
line( img_matches, scene_corners[0], scene_corners[1], Scalar(0, 255, 0), 2 );
|
||||
line( img_matches, scene_corners[1], scene_corners[2], Scalar( 0, 255, 0), 2 );
|
||||
line( img_matches, scene_corners[2], scene_corners[3], Scalar( 0, 255, 0), 2 );
|
||||
line( img_matches, scene_corners[3], scene_corners[0], Scalar( 0, 255, 0), 2 );
|
||||
line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
|
||||
//-- Show detected matches
|
||||
imshow( "Good Matches & Object detection", img_matches );
|
||||
|
Loading…
x
Reference in New Issue
Block a user