Added tutorial for features2d using homography to find a planar object (Based on the well known find_obj.cpp
This commit is contained in:
		@@ -366,7 +366,9 @@ extlinks = {'cvt_color': ('http://opencv.willowgarage.com/documentation/cpp/imgp
 | 
			
		||||
	    'descriptor_extractor': ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#descriptorextractor%s', None ),
 | 
			
		||||
	    'descriptor_extractor_compute' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#cv-descriptorextractor-compute%s', None ),
 | 
			
		||||
	    'surf_descriptor_extractor' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#surfdescriptorextractor%s', None ),
 | 
			
		||||
	    'draw_matches' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawmatches%s', None )		 		 
 | 
			
		||||
	    'draw_matches' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawmatches%s', None ),
 | 
			
		||||
	    'find_homography' : ('http://opencv.willowgarage.com/documentation/cpp/calib3d_camera_calibration_and_3d_reconstruction.html?#findHomography%s', None),
 | 
			
		||||
	    'perspective_transform' : ('http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?#perspectiveTransform%s', None )			 		 
 | 
			
		||||
           }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -0,0 +1,148 @@
 | 
			
		||||
.. _feature_homography:
 | 
			
		||||
 | 
			
		||||
Features2D + Homography to find a known object
 | 
			
		||||
**********************************************
 | 
			
		||||
 | 
			
		||||
Goal
 | 
			
		||||
=====
 | 
			
		||||
 | 
			
		||||
In this tutorial you will learn how to:
 | 
			
		||||
 | 
			
		||||
.. container:: enumeratevisibleitemswithsquare
 | 
			
		||||
 | 
			
		||||
   * Use the function :find_homography:`findHomography<>` to find the transform between matched keypoints.
 | 
			
		||||
   * Use the function :perspective_transform:`perspectiveTransform<>` to map the points.
 | 
			
		||||
     
 | 
			
		||||
 | 
			
		||||
Theory
 | 
			
		||||
======
 | 
			
		||||
 | 
			
		||||
Code
 | 
			
		||||
====
 | 
			
		||||
 | 
			
		||||
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_Homography.cpp>`_
 | 
			
		||||
 | 
			
		||||
.. code-block:: cpp 
 | 
			
		||||
 | 
			
		||||
   #include <stdio.h>
 | 
			
		||||
   #include <iostream>
 | 
			
		||||
   #include "opencv2/core/core.hpp"
 | 
			
		||||
   #include "opencv2/features2d/features2d.hpp"
 | 
			
		||||
   #include "opencv2/highgui/highgui.hpp"
 | 
			
		||||
   #include "opencv2/calib3d/calib3d.hpp"
 | 
			
		||||
 | 
			
		||||
   using namespace cv;
 | 
			
		||||
 | 
			
		||||
   void readme();
 | 
			
		||||
 | 
			
		||||
   /** @function main */
 | 
			
		||||
   int main( int argc, char** argv )
 | 
			
		||||
   {
 | 
			
		||||
     if( argc != 3 )
 | 
			
		||||
     { readme(); return -1; }
 | 
			
		||||
 | 
			
		||||
     Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
 | 
			
		||||
     Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
 | 
			
		||||
  
 | 
			
		||||
     if( !img_object.data || !img_scene.data )
 | 
			
		||||
     { std::cout<< " --(!) Error reading images " << std::endl; return -1; }
 | 
			
		||||
 | 
			
		||||
     //-- Step 1: Detect the keypoints using SURF Detector
 | 
			
		||||
     int minHessian = 400;
 | 
			
		||||
 | 
			
		||||
     SurfFeatureDetector detector( minHessian );
 | 
			
		||||
 | 
			
		||||
     std::vector<KeyPoint> keypoints_object, keypoints_scene;
 | 
			
		||||
 | 
			
		||||
     detector.detect( img_object, keypoints_object );
 | 
			
		||||
     detector.detect( img_scene, keypoints_scene );
 | 
			
		||||
 | 
			
		||||
     //-- Step 2: Calculate descriptors (feature vectors)
 | 
			
		||||
     SurfDescriptorExtractor extractor;
 | 
			
		||||
 | 
			
		||||
     Mat descriptors_object, descriptors_scene;
 | 
			
		||||
 | 
			
		||||
     extractor.compute( img_object, keypoints_object, descriptors_object );
 | 
			
		||||
     extractor.compute( img_scene, keypoints_scene, descriptors_scene );
 | 
			
		||||
 | 
			
		||||
     //-- Step 3: Matching descriptor vectors using FLANN matcher
 | 
			
		||||
     FlannBasedMatcher matcher;
 | 
			
		||||
     std::vector< DMatch > matches;
 | 
			
		||||
     matcher.match( descriptors_object, descriptors_scene, matches );
 | 
			
		||||
 | 
			
		||||
     double max_dist = 0; double min_dist = 100;
 | 
			
		||||
 | 
			
		||||
     //-- Quick calculation of max and min distances between keypoints
 | 
			
		||||
     for( int i = 0; i < descriptors_object.rows; i++ )
 | 
			
		||||
     { double dist = matches[i].distance;
 | 
			
		||||
       if( dist < min_dist ) min_dist = dist;
 | 
			
		||||
       if( dist > max_dist ) max_dist = dist;
 | 
			
		||||
     }
 | 
			
		||||
 | 
			
		||||
     printf("-- Max dist : %f \n", max_dist );
 | 
			
		||||
     printf("-- Min dist : %f \n", min_dist );
 | 
			
		||||
  
 | 
			
		||||
     //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
 | 
			
		||||
     std::vector< DMatch > good_matches;
 | 
			
		||||
 | 
			
		||||
     for( int i = 0; i < descriptors_object.rows; i++ )
 | 
			
		||||
     { if( matches[i].distance < 3*min_dist )
 | 
			
		||||
        { good_matches.push_back( matches[i]); }
 | 
			
		||||
     }  
 | 
			
		||||
 | 
			
		||||
     Mat img_matches;
 | 
			
		||||
     drawMatches( img_object, keypoints_object, img_scene, keypoints_scene, 
 | 
			
		||||
                  good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), 
 | 
			
		||||
                  vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); 
 | 
			
		||||
 | 
			
		||||
     //-- Localize the object 
 | 
			
		||||
     std::vector<Point2f> obj;
 | 
			
		||||
     std::vector<Point2f> scene;
 | 
			
		||||
 | 
			
		||||
     for( int i = 0; i < good_matches.size(); i++ )
 | 
			
		||||
     {
 | 
			
		||||
       //-- Get the keypoints from the good matches
 | 
			
		||||
       obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
 | 
			
		||||
       scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt ); 
 | 
			
		||||
     }
 | 
			
		||||
 | 
			
		||||
     Mat H = findHomography( obj, scene, CV_RANSAC );
 | 
			
		||||
 | 
			
		||||
     //-- Get the corners from the image_1 ( the object to be "detected" )
 | 
			
		||||
     std::vector<Point2f> obj_corners(4);
 | 
			
		||||
     obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
 | 
			
		||||
     obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
 | 
			
		||||
     std::vector<Point2f> scene_corners(4);
 | 
			
		||||
 | 
			
		||||
     perspectiveTransform( obj_corners, scene_corners, H);
 | 
			
		||||
 | 
			
		||||
     //-- Draw lines between the corners (the mapped object in the scene - image_2 )
 | 
			
		||||
     line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
 | 
			
		||||
     line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
 | 
			
		||||
     line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
 | 
			
		||||
     line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
 | 
			
		||||
 | 
			
		||||
     //-- Show detected matches
 | 
			
		||||
     imshow( "Good Matches & Object detection", img_matches );
 | 
			
		||||
 | 
			
		||||
     waitKey(0);
 | 
			
		||||
     return 0;
 | 
			
		||||
     }
 | 
			
		||||
 | 
			
		||||
     /** @function readme */
 | 
			
		||||
     void readme()
 | 
			
		||||
     { std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
 | 
			
		||||
 | 
			
		||||
Explanation
 | 
			
		||||
============
 | 
			
		||||
 | 
			
		||||
Result
 | 
			
		||||
======
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#. And here is the result for the detected object (highlighted in green)
 | 
			
		||||
 | 
			
		||||
   .. image:: images/Feature_Homography_Result.jpg
 | 
			
		||||
      :align: center  
 | 
			
		||||
      :height: 200pt 
 | 
			
		||||
 | 
			
		||||
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 90 KiB  | 
										
											Binary file not shown.
										
									
								
							| 
		 Before Width: | Height: | Size: 73 KiB After Width: | Height: | Size: 117 KiB  | 
										
											Binary file not shown.
										
									
								
							| 
		 After Width: | Height: | Size: 51 KiB  | 
@@ -140,7 +140,7 @@ Learn about how to use the feature points  detectors, descriptors and matching f
 | 
			
		||||
  
 | 
			
		||||
  ===================== ==============================================
 | 
			
		||||
  
 | 
			
		||||
  .. |FeatureFlann| image:: images/Feature_Detection_Tutorial_Cover.jpg
 | 
			
		||||
  .. |FeatureFlann| image:: images/Feature_Flann_Matcher_Tutorial_Cover.jpg
 | 
			
		||||
                    :height: 90pt
 | 
			
		||||
                    :width:  90pt
 | 
			
		||||
 | 
			
		||||
@@ -155,11 +155,11 @@ Learn about how to use the feature points  detectors, descriptors and matching f
 | 
			
		||||
                        
 | 
			
		||||
                        *Author:* |Author_AnaH|
 | 
			
		||||
                        
 | 
			
		||||
                        In this tutorial, you will use *features2d* to detect interest points.
 | 
			
		||||
                        In this tutorial, you will use *features2d* and *calib3d* to detect an object in a scene.
 | 
			
		||||
  
 | 
			
		||||
  ===================== ==============================================
 | 
			
		||||
  
 | 
			
		||||
  .. |FeatureHomo| image:: images/Feature_Detection_Tutorial_Cover.jpg
 | 
			
		||||
  .. |FeatureHomo| image:: images/Feature_Homography_Tutorial_Cover.jpg
 | 
			
		||||
                   :height: 90pt
 | 
			
		||||
                   :width:  90pt
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -24,10 +24,10 @@ int main( int argc, char** argv )
 | 
			
		||||
  if( argc != 3 )
 | 
			
		||||
  { readme(); return -1; }
 | 
			
		||||
 | 
			
		||||
  Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
 | 
			
		||||
  Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
 | 
			
		||||
  Mat img_object = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
 | 
			
		||||
  Mat img_scene = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
 | 
			
		||||
  
 | 
			
		||||
  if( !img_1.data || !img_2.data )
 | 
			
		||||
  if( !img_object.data || !img_scene.data )
 | 
			
		||||
  { std::cout<< " --(!) Error reading images " << std::endl; return -1; }
 | 
			
		||||
 | 
			
		||||
  //-- Step 1: Detect the keypoints using SURF Detector
 | 
			
		||||
@@ -35,28 +35,28 @@ int main( int argc, char** argv )
 | 
			
		||||
 | 
			
		||||
  SurfFeatureDetector detector( minHessian );
 | 
			
		||||
 | 
			
		||||
  std::vector<KeyPoint> keypoints_1, keypoints_2;
 | 
			
		||||
  std::vector<KeyPoint> keypoints_object, keypoints_scene;
 | 
			
		||||
 | 
			
		||||
  detector.detect( img_1, keypoints_1 );
 | 
			
		||||
  detector.detect( img_2, keypoints_2 );
 | 
			
		||||
  detector.detect( img_object, keypoints_object );
 | 
			
		||||
  detector.detect( img_scene, keypoints_scene );
 | 
			
		||||
 | 
			
		||||
  //-- Step 2: Calculate descriptors (feature vectors)
 | 
			
		||||
  SurfDescriptorExtractor extractor;
 | 
			
		||||
 | 
			
		||||
  Mat descriptors_1, descriptors_2;
 | 
			
		||||
  Mat descriptors_object, descriptors_scene;
 | 
			
		||||
 | 
			
		||||
  extractor.compute( img_1, keypoints_1, descriptors_1 );
 | 
			
		||||
  extractor.compute( img_2, keypoints_2, descriptors_2 );
 | 
			
		||||
  extractor.compute( img_object, keypoints_object, descriptors_object );
 | 
			
		||||
  extractor.compute( img_scene, keypoints_scene, descriptors_scene );
 | 
			
		||||
 | 
			
		||||
  //-- Step 3: Matching descriptor vectors using FLANN matcher
 | 
			
		||||
  FlannBasedMatcher matcher;
 | 
			
		||||
  std::vector< DMatch > matches;
 | 
			
		||||
  matcher.match( descriptors_1, descriptors_2, matches );
 | 
			
		||||
  matcher.match( descriptors_object, descriptors_scene, matches );
 | 
			
		||||
 | 
			
		||||
  double max_dist = 0; double min_dist = 100;
 | 
			
		||||
 | 
			
		||||
  //-- Quick calculation of max and min distances between keypoints
 | 
			
		||||
  for( int i = 0; i < descriptors_1.rows; i++ )
 | 
			
		||||
  for( int i = 0; i < descriptors_object.rows; i++ )
 | 
			
		||||
  { double dist = matches[i].distance;
 | 
			
		||||
    if( dist < min_dist ) min_dist = dist;
 | 
			
		||||
    if( dist > max_dist ) max_dist = dist;
 | 
			
		||||
@@ -68,13 +68,13 @@ int main( int argc, char** argv )
 | 
			
		||||
  //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
 | 
			
		||||
  std::vector< DMatch > good_matches;
 | 
			
		||||
 | 
			
		||||
  for( int i = 0; i < descriptors_1.rows; i++ )
 | 
			
		||||
  for( int i = 0; i < descriptors_object.rows; i++ )
 | 
			
		||||
  { if( matches[i].distance < 3*min_dist )
 | 
			
		||||
    { good_matches.push_back( matches[i]); }
 | 
			
		||||
  }  
 | 
			
		||||
 | 
			
		||||
  Mat img_matches;
 | 
			
		||||
  drawMatches( img_1, keypoints_1, img_2, keypoints_2, 
 | 
			
		||||
  drawMatches( img_object, keypoints_object, img_scene, keypoints_scene, 
 | 
			
		||||
               good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), 
 | 
			
		||||
               vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); 
 | 
			
		||||
 | 
			
		||||
@@ -86,33 +86,26 @@ int main( int argc, char** argv )
 | 
			
		||||
  for( int i = 0; i < good_matches.size(); i++ )
 | 
			
		||||
  {
 | 
			
		||||
    //-- Get the keypoints from the good matches
 | 
			
		||||
    obj.push_back( keypoints_1[ good_matches[i].queryIdx ].pt );
 | 
			
		||||
    scene.push_back( keypoints_2[ good_matches[i].trainIdx ].pt ); 
 | 
			
		||||
    obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
 | 
			
		||||
    scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt ); 
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  Mat H = findHomography( obj, scene, CV_RANSAC );
 | 
			
		||||
 | 
			
		||||
  //-- Get the corners from the image_1 ( the object to be "detected" )
 | 
			
		||||
  Point2f obj_corners[4] = { cvPoint(0,0), cvPoint( img_1.cols, 0 ), cvPoint( img_1.cols, img_1.rows ), cvPoint( 0, img_1.rows ) };
 | 
			
		||||
  Point scene_corners[4];
 | 
			
		||||
  std::vector<Point2f> obj_corners(4);
 | 
			
		||||
  obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( img_object.cols, 0 );
 | 
			
		||||
  obj_corners[2] = cvPoint( img_object.cols, img_object.rows ); obj_corners[3] = cvPoint( 0, img_object.rows );
 | 
			
		||||
  std::vector<Point2f> scene_corners(4);
 | 
			
		||||
 | 
			
		||||
  //-- Map these corners in the scene ( image_2)
 | 
			
		||||
  for( int i = 0; i < 4; i++ )
 | 
			
		||||
  {
 | 
			
		||||
    double x = obj_corners[i].x; 
 | 
			
		||||
    double y = obj_corners[i].y;
 | 
			
		||||
  perspectiveTransform( obj_corners, scene_corners, H);
 | 
			
		||||
 | 
			
		||||
    double Z = 1./( H.at<double>(2,0)*x + H.at<double>(2,1)*y + H.at<double>(2,2) );
 | 
			
		||||
    double X = ( H.at<double>(0,0)*x + H.at<double>(0,1)*y + H.at<double>(0,2) )*Z;
 | 
			
		||||
    double Y = ( H.at<double>(1,0)*x + H.at<double>(1,1)*y + H.at<double>(1,2) )*Z;
 | 
			
		||||
    scene_corners[i] = cvPoint( cvRound(X) + img_1.cols, cvRound(Y) );
 | 
			
		||||
  }  
 | 
			
		||||
   
 | 
			
		||||
  //-- Draw lines between the corners (the mapped object in the scene - image_2 )
 | 
			
		||||
  line( img_matches, scene_corners[0], scene_corners[1], Scalar(0, 255, 0), 2 );
 | 
			
		||||
  line( img_matches, scene_corners[1], scene_corners[2], Scalar( 0, 255, 0), 2 );
 | 
			
		||||
  line( img_matches, scene_corners[2], scene_corners[3], Scalar( 0, 255, 0), 2 );
 | 
			
		||||
  line( img_matches, scene_corners[3], scene_corners[0], Scalar( 0, 255, 0), 2 );
 | 
			
		||||
  line( img_matches, scene_corners[0] + Point2f( img_object.cols, 0), scene_corners[1] + Point2f( img_object.cols, 0), Scalar(0, 255, 0), 4 );
 | 
			
		||||
  line( img_matches, scene_corners[1] + Point2f( img_object.cols, 0), scene_corners[2] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
 | 
			
		||||
  line( img_matches, scene_corners[2] + Point2f( img_object.cols, 0), scene_corners[3] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
 | 
			
		||||
  line( img_matches, scene_corners[3] + Point2f( img_object.cols, 0), scene_corners[0] + Point2f( img_object.cols, 0), Scalar( 0, 255, 0), 4 );
 | 
			
		||||
 | 
			
		||||
  //-- Show detected matches
 | 
			
		||||
  imshow( "Good Matches & Object detection", img_matches );
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user