updated 3rd party libs: CLapack 3.1.1.1 => 3.2.1, zlib 1.2.3 => 1.2.5, libpng 1.2.x => 1.4.3, libtiff 3.7.x => 3.9.4. fixed many 64-bit related VS2010 warnings

This commit is contained in:
Vadim Pisarevsky
2010-07-16 12:54:53 +00:00
parent 0c9eca7922
commit f78a3b4cc1
465 changed files with 51856 additions and 41344 deletions

View File

@@ -1,160 +1,191 @@
/* dsytf2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int dsytf2_(char *uplo, integer *n, doublereal *a, integer *
lda, integer *ipiv, integer *info)
{
/* -- LAPACK routine (version 3.1) --
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
Purpose
=======
DSYTF2 computes the factorization of a real symmetric matrix A using
the Bunch-Kaufman diagonal pivoting method:
A = U*D*U' or A = L*D*L'
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, U' is the transpose of U, and D is symmetric and
block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L (see below for further details).
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -k, the k-th argument had an illegal value
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular, and division by zero will occur if it
is used to solve a system of equations.
Further Details
===============
09-29-06 - patch from
Bobby Cheng, MathWorks
Replace l.204 and l.372
IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
by
IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
01-01-96 - Based on modifications by
J. Lewis, Boeing Computer Services Company
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
1-96 - Based on modifications by J. Lewis, Boeing Computer Services
Company
If UPLO = 'U', then A = U*D*U', where
U = P(n)*U(n)* ... *P(k)U(k)* ...,
i.e., U is a product of terms P(k)*U(k), where k decreases from n to
1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I v 0 ) k-s
U(k) = ( 0 I 0 ) s
( 0 0 I ) n-k
k-s s n-k
If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
and A(k,k), and v overwrites A(1:k-2,k-1:k).
If UPLO = 'L', then A = L*D*L', where
L = P(1)*L(1)* ... *P(k)*L(k)* ...,
i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
that if the diagonal block D(k) is of order s (s = 1 or 2), then
( I 0 0 ) k-1
L(k) = ( 0 I 0 ) s
( 0 v I ) n-k-s+1
k-1 s n-k-s+1
If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
=====================================================================
Test the input parameters.
Parameter adjustments */
/* Table of constant values */
static integer c__1 = 1;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
doublereal d__1, d__2, d__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
static integer i__, j, k;
static doublereal t, r1, d11, d12, d21, d22;
static integer kk, kp;
static doublereal wk, wkm1, wkp1;
static integer imax, jmax;
integer i__, j, k;
doublereal t, r1, d11, d12, d21, d22;
integer kk, kp;
doublereal wk, wkm1, wkp1;
integer imax, jmax;
extern /* Subroutine */ int dsyr_(char *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *);
static doublereal alpha;
doublereal alpha;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int dswap_(integer *, doublereal *, integer *,
doublereal *, integer *);
static integer kstep;
static logical upper;
static doublereal absakk;
integer kstep;
logical upper;
doublereal absakk;
extern integer idamax_(integer *, doublereal *, integer *);
extern logical disnan_(doublereal *);
extern /* Subroutine */ int xerbla_(char *, integer *);
static doublereal colmax, rowmax;
doublereal colmax, rowmax;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DSYTF2 computes the factorization of a real symmetric matrix A using */
/* the Bunch-Kaufman diagonal pivoting method: */
/* A = U*D*U' or A = L*D*L' */
/* where U (or L) is a product of permutation and unit upper (lower) */
/* triangular matrices, U' is the transpose of U, and D is symmetric and */
/* block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies whether the upper or lower triangular part of the */
/* symmetric matrix A is stored: */
/* = 'U': Upper triangular */
/* = 'L': Lower triangular */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
/* n-by-n upper triangular part of A contains the upper */
/* triangular part of the matrix A, and the strictly lower */
/* triangular part of A is not referenced. If UPLO = 'L', the */
/* leading n-by-n lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. */
/* On exit, the block diagonal matrix D and the multipliers used */
/* to obtain the factor U or L (see below for further details). */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* IPIV (output) INTEGER array, dimension (N) */
/* Details of the interchanges and the block structure of D. */
/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -k, the k-th argument had an illegal value */
/* > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
/* has been completed, but the block diagonal matrix D is */
/* exactly singular, and division by zero will occur if it */
/* is used to solve a system of equations. */
/* Further Details */
/* =============== */
/* 09-29-06 - patch from */
/* Bobby Cheng, MathWorks */
/* Replace l.204 and l.372 */
/* IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN */
/* by */
/* IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN */
/* 01-01-96 - Based on modifications by */
/* J. Lewis, Boeing Computer Services Company */
/* A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA */
/* 1-96 - Based on modifications by J. Lewis, Boeing Computer Services */
/* Company */
/* If UPLO = 'U', then A = U*D*U', where */
/* U = P(n)*U(n)* ... *P(k)U(k)* ..., */
/* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
/* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
/* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
/* ( I v 0 ) k-s */
/* U(k) = ( 0 I 0 ) s */
/* ( 0 0 I ) n-k */
/* k-s s n-k */
/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
/* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
/* and A(k,k), and v overwrites A(1:k-2,k-1:k). */
/* If UPLO = 'L', then A = L*D*L', where */
/* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
/* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
/* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
/* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
/* ( I 0 0 ) k-1 */
/* L(k) = ( 0 I 0 ) s */
/* ( 0 v I ) n-k-s+1 */
/* k-1 s n-k-s+1 */
/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
/* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
/* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
@@ -182,10 +213,10 @@
if (upper) {
/* Factorize A as U*D*U' using the upper triangle of A
/* Factorize A as U*D*U' using the upper triangle of A */
K is the main loop index, decreasing from N to 1 in steps of
1 or 2 */
/* K is the main loop index, decreasing from N to 1 in steps of */
/* 1 or 2 */
k = *n;
L10:
@@ -197,13 +228,13 @@ L10:
}
kstep = 1;
/* Determine rows and columns to be interchanged and whether
a 1-by-1 or 2-by-2 pivot block will be used */
/* Determine rows and columns to be interchanged and whether */
/* a 1-by-1 or 2-by-2 pivot block will be used */
absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
/* IMAX is the row-index of the largest off-diagonal element in
column K, and COLMAX is its absolute value */
/* IMAX is the row-index of the largest off-diagonal element in */
/* column K, and COLMAX is its absolute value */
if (k > 1) {
i__1 = k - 1;
@@ -229,8 +260,8 @@ L10:
kp = k;
} else {
/* JMAX is the column-index of the largest off-diagonal
element in row IMAX, and ROWMAX is its absolute value */
/* JMAX is the column-index of the largest off-diagonal */
/* element in row IMAX, and ROWMAX is its absolute value */
i__1 = k - imax;
jmax = imax + idamax_(&i__1, &a[imax + (imax + 1) * a_dim1],
@@ -253,14 +284,14 @@ L10:
} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >=
alpha * rowmax) {
/* interchange rows and columns K and IMAX, use 1-by-1
pivot block */
/* interchange rows and columns K and IMAX, use 1-by-1 */
/* pivot block */
kp = imax;
} else {
/* interchange rows and columns K-1 and IMAX, use 2-by-2
pivot block */
/* interchange rows and columns K-1 and IMAX, use 2-by-2 */
/* pivot block */
kp = imax;
kstep = 2;
@@ -270,8 +301,8 @@ L10:
kk = k - kstep + 1;
if (kp != kk) {
/* Interchange rows and columns KK and KP in the leading
submatrix A(1:k,1:k) */
/* Interchange rows and columns KK and KP in the leading */
/* submatrix A(1:k,1:k) */
i__1 = kp - 1;
dswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1],
@@ -293,15 +324,15 @@ L10:
if (kstep == 1) {
/* 1-by-1 pivot block D(k): column k now holds
/* 1-by-1 pivot block D(k): column k now holds */
W(k) = U(k)*D(k)
/* W(k) = U(k)*D(k) */
where U(k) is the k-th column of U
/* where U(k) is the k-th column of U */
Perform a rank-1 update of A(1:k-1,1:k-1) as
/* Perform a rank-1 update of A(1:k-1,1:k-1) as */
A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
/* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
r1 = 1. / a[k + k * a_dim1];
i__1 = k - 1;
@@ -315,17 +346,17 @@ L10:
dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
} else {
/* 2-by-2 pivot block D(k): columns k and k-1 now hold
/* 2-by-2 pivot block D(k): columns k and k-1 now hold */
( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
/* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
where U(k) and U(k-1) are the k-th and (k-1)-th columns
of U
/* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
/* of U */
Perform a rank-2 update of A(1:k-2,1:k-2) as
/* Perform a rank-2 update of A(1:k-2,1:k-2) as */
A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )'
= A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
/* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */
/* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
if (k > 2) {
@@ -372,10 +403,10 @@ L10:
} else {
/* Factorize A as L*D*L' using the lower triangle of A
/* Factorize A as L*D*L' using the lower triangle of A */
K is the main loop index, increasing from 1 to N in steps of
1 or 2 */
/* K is the main loop index, increasing from 1 to N in steps of */
/* 1 or 2 */
k = 1;
L40:
@@ -387,13 +418,13 @@ L40:
}
kstep = 1;
/* Determine rows and columns to be interchanged and whether
a 1-by-1 or 2-by-2 pivot block will be used */
/* Determine rows and columns to be interchanged and whether */
/* a 1-by-1 or 2-by-2 pivot block will be used */
absakk = (d__1 = a[k + k * a_dim1], abs(d__1));
/* IMAX is the row-index of the largest off-diagonal element in
column K, and COLMAX is its absolute value */
/* IMAX is the row-index of the largest off-diagonal element in */
/* column K, and COLMAX is its absolute value */
if (k < *n) {
i__1 = *n - k;
@@ -419,8 +450,8 @@ L40:
kp = k;
} else {
/* JMAX is the column-index of the largest off-diagonal
element in row IMAX, and ROWMAX is its absolute value */
/* JMAX is the column-index of the largest off-diagonal */
/* element in row IMAX, and ROWMAX is its absolute value */
i__1 = imax - k;
jmax = k - 1 + idamax_(&i__1, &a[imax + k * a_dim1], lda);
@@ -443,14 +474,14 @@ L40:
} else if ((d__1 = a[imax + imax * a_dim1], abs(d__1)) >=
alpha * rowmax) {
/* interchange rows and columns K and IMAX, use 1-by-1
pivot block */
/* interchange rows and columns K and IMAX, use 1-by-1 */
/* pivot block */
kp = imax;
} else {
/* interchange rows and columns K+1 and IMAX, use 2-by-2
pivot block */
/* interchange rows and columns K+1 and IMAX, use 2-by-2 */
/* pivot block */
kp = imax;
kstep = 2;
@@ -460,8 +491,8 @@ L40:
kk = k + kstep - 1;
if (kp != kk) {
/* Interchange rows and columns KK and KP in the trailing
submatrix A(k:n,k:n) */
/* Interchange rows and columns KK and KP in the trailing */
/* submatrix A(k:n,k:n) */
if (kp < *n) {
i__1 = *n - kp;
@@ -485,17 +516,17 @@ L40:
if (kstep == 1) {
/* 1-by-1 pivot block D(k): column k now holds
/* 1-by-1 pivot block D(k): column k now holds */
W(k) = L(k)*D(k)
/* W(k) = L(k)*D(k) */
where L(k) is the k-th column of L */
/* where L(k) is the k-th column of L */
if (k < *n) {
/* Perform a rank-1 update of A(k+1:n,k+1:n) as
/* Perform a rank-1 update of A(k+1:n,k+1:n) as */
A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
/* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
d11 = 1. / a[k + k * a_dim1];
i__1 = *n - k;
@@ -514,12 +545,12 @@ L40:
if (k < *n - 1) {
/* Perform a rank-2 update of A(k+2:n,k+2:n) as
/* Perform a rank-2 update of A(k+2:n,k+2:n) as */
A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))'
/* A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))' */
where L(k) and L(k+1) are the k-th and (k+1)-th
columns of L */
/* where L(k) and L(k+1) are the k-th and (k+1)-th */
/* columns of L */
d21 = a[k + 1 + k * a_dim1];
d11 = a[k + 1 + (k + 1) * a_dim1] / d21;