updated 3rd party libs: CLapack 3.1.1.1 => 3.2.1, zlib 1.2.3 => 1.2.5, libpng 1.2.x => 1.4.3, libtiff 3.7.x => 3.9.4. fixed many 64-bit related VS2010 warnings
This commit is contained in:
343
3rdparty/lapack/dlasyf.c
vendored
343
3rdparty/lapack/dlasyf.c
vendored
@@ -1,111 +1,40 @@
|
||||
/* dlasyf.f -- translated by f2c (version 20061008).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "clapack.h"
|
||||
|
||||
/* Subroutine */ int dlasyf_(char *uplo, integer *n, integer *nb, integer *kb,
|
||||
|
||||
/* Table of constant values */
|
||||
|
||||
static integer c__1 = 1;
|
||||
static doublereal c_b8 = -1.;
|
||||
static doublereal c_b9 = 1.;
|
||||
|
||||
/* Subroutine */ int dlasyf_(char *uplo, integer *n, integer *nb, integer *kb,
|
||||
doublereal *a, integer *lda, integer *ipiv, doublereal *w, integer *
|
||||
ldw, integer *info)
|
||||
{
|
||||
/* -- LAPACK routine (version 3.1) --
|
||||
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
|
||||
November 2006
|
||||
|
||||
|
||||
Purpose
|
||||
=======
|
||||
|
||||
DLASYF computes a partial factorization of a real symmetric matrix A
|
||||
using the Bunch-Kaufman diagonal pivoting method. The partial
|
||||
factorization has the form:
|
||||
|
||||
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
|
||||
( 0 U22 ) ( 0 D ) ( U12' U22' )
|
||||
|
||||
A = ( L11 0 ) ( D 0 ) ( L11' L21' ) if UPLO = 'L'
|
||||
( L21 I ) ( 0 A22 ) ( 0 I )
|
||||
|
||||
where the order of D is at most NB. The actual order is returned in
|
||||
the argument KB, and is either NB or NB-1, or N if N <= NB.
|
||||
|
||||
DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code
|
||||
(calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
|
||||
A22 (if UPLO = 'L').
|
||||
|
||||
Arguments
|
||||
=========
|
||||
|
||||
UPLO (input) CHARACTER*1
|
||||
Specifies whether the upper or lower triangular part of the
|
||||
symmetric matrix A is stored:
|
||||
= 'U': Upper triangular
|
||||
= 'L': Lower triangular
|
||||
|
||||
N (input) INTEGER
|
||||
The order of the matrix A. N >= 0.
|
||||
|
||||
NB (input) INTEGER
|
||||
The maximum number of columns of the matrix A that should be
|
||||
factored. NB should be at least 2 to allow for 2-by-2 pivot
|
||||
blocks.
|
||||
|
||||
KB (output) INTEGER
|
||||
The number of columns of A that were actually factored.
|
||||
KB is either NB-1 or NB, or N if N <= NB.
|
||||
|
||||
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
|
||||
On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
||||
n-by-n upper triangular part of A contains the upper
|
||||
triangular part of the matrix A, and the strictly lower
|
||||
triangular part of A is not referenced. If UPLO = 'L', the
|
||||
leading n-by-n lower triangular part of A contains the lower
|
||||
triangular part of the matrix A, and the strictly upper
|
||||
triangular part of A is not referenced.
|
||||
On exit, A contains details of the partial factorization.
|
||||
|
||||
LDA (input) INTEGER
|
||||
The leading dimension of the array A. LDA >= max(1,N).
|
||||
|
||||
IPIV (output) INTEGER array, dimension (N)
|
||||
Details of the interchanges and the block structure of D.
|
||||
If UPLO = 'U', only the last KB elements of IPIV are set;
|
||||
if UPLO = 'L', only the first KB elements are set.
|
||||
|
||||
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
|
||||
interchanged and D(k,k) is a 1-by-1 diagonal block.
|
||||
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
|
||||
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
|
||||
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
|
||||
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
|
||||
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
|
||||
|
||||
W (workspace) DOUBLE PRECISION array, dimension (LDW,NB)
|
||||
|
||||
LDW (input) INTEGER
|
||||
The leading dimension of the array W. LDW >= max(1,N).
|
||||
|
||||
INFO (output) INTEGER
|
||||
= 0: successful exit
|
||||
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
|
||||
has been completed, but the block diagonal matrix D is
|
||||
exactly singular.
|
||||
|
||||
=====================================================================
|
||||
|
||||
|
||||
Parameter adjustments */
|
||||
/* Table of constant values */
|
||||
static integer c__1 = 1;
|
||||
static doublereal c_b8 = -1.;
|
||||
static doublereal c_b9 = 1.;
|
||||
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
|
||||
doublereal d__1, d__2, d__3;
|
||||
|
||||
/* Builtin functions */
|
||||
double sqrt(doublereal);
|
||||
|
||||
/* Local variables */
|
||||
static integer j, k;
|
||||
static doublereal t, r1, d11, d21, d22;
|
||||
static integer jb, jj, kk, jp, kp, kw, kkw, imax, jmax;
|
||||
static doublereal alpha;
|
||||
integer j, k;
|
||||
doublereal t, r1, d11, d21, d22;
|
||||
integer jb, jj, kk, jp, kp, kw, kkw, imax, jmax;
|
||||
doublereal alpha;
|
||||
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
||||
integer *), dgemm_(char *, char *, integer *, integer *, integer *
|
||||
, doublereal *, doublereal *, integer *, doublereal *, integer *,
|
||||
@@ -116,12 +45,114 @@
|
||||
doublereal *, doublereal *, integer *), dcopy_(integer *,
|
||||
doublereal *, integer *, doublereal *, integer *), dswap_(integer
|
||||
*, doublereal *, integer *, doublereal *, integer *);
|
||||
static integer kstep;
|
||||
static doublereal absakk;
|
||||
integer kstep;
|
||||
doublereal absakk;
|
||||
extern integer idamax_(integer *, doublereal *, integer *);
|
||||
static doublereal colmax, rowmax;
|
||||
doublereal colmax, rowmax;
|
||||
|
||||
|
||||
/* -- LAPACK routine (version 3.2) -- */
|
||||
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||||
/* November 2006 */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* DLASYF computes a partial factorization of a real symmetric matrix A */
|
||||
/* using the Bunch-Kaufman diagonal pivoting method. The partial */
|
||||
/* factorization has the form: */
|
||||
|
||||
/* A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
|
||||
/* ( 0 U22 ) ( 0 D ) ( U12' U22' ) */
|
||||
|
||||
/* A = ( L11 0 ) ( D 0 ) ( L11' L21' ) if UPLO = 'L' */
|
||||
/* ( L21 I ) ( 0 A22 ) ( 0 I ) */
|
||||
|
||||
/* where the order of D is at most NB. The actual order is returned in */
|
||||
/* the argument KB, and is either NB or NB-1, or N if N <= NB. */
|
||||
|
||||
/* DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code */
|
||||
/* (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or */
|
||||
/* A22 (if UPLO = 'L'). */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* UPLO (input) CHARACTER*1 */
|
||||
/* Specifies whether the upper or lower triangular part of the */
|
||||
/* symmetric matrix A is stored: */
|
||||
/* = 'U': Upper triangular */
|
||||
/* = 'L': Lower triangular */
|
||||
|
||||
/* N (input) INTEGER */
|
||||
/* The order of the matrix A. N >= 0. */
|
||||
|
||||
/* NB (input) INTEGER */
|
||||
/* The maximum number of columns of the matrix A that should be */
|
||||
/* factored. NB should be at least 2 to allow for 2-by-2 pivot */
|
||||
/* blocks. */
|
||||
|
||||
/* KB (output) INTEGER */
|
||||
/* The number of columns of A that were actually factored. */
|
||||
/* KB is either NB-1 or NB, or N if N <= NB. */
|
||||
|
||||
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
|
||||
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
|
||||
/* n-by-n upper triangular part of A contains the upper */
|
||||
/* triangular part of the matrix A, and the strictly lower */
|
||||
/* triangular part of A is not referenced. If UPLO = 'L', the */
|
||||
/* leading n-by-n lower triangular part of A contains the lower */
|
||||
/* triangular part of the matrix A, and the strictly upper */
|
||||
/* triangular part of A is not referenced. */
|
||||
/* On exit, A contains details of the partial factorization. */
|
||||
|
||||
/* LDA (input) INTEGER */
|
||||
/* The leading dimension of the array A. LDA >= max(1,N). */
|
||||
|
||||
/* IPIV (output) INTEGER array, dimension (N) */
|
||||
/* Details of the interchanges and the block structure of D. */
|
||||
/* If UPLO = 'U', only the last KB elements of IPIV are set; */
|
||||
/* if UPLO = 'L', only the first KB elements are set. */
|
||||
|
||||
/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
|
||||
/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
|
||||
/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
|
||||
/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
|
||||
/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
|
||||
/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
|
||||
/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
|
||||
|
||||
/* W (workspace) DOUBLE PRECISION array, dimension (LDW,NB) */
|
||||
|
||||
/* LDW (input) INTEGER */
|
||||
/* The leading dimension of the array W. LDW >= max(1,N). */
|
||||
|
||||
/* INFO (output) INTEGER */
|
||||
/* = 0: successful exit */
|
||||
/* > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
|
||||
/* has been completed, but the block diagonal matrix D is */
|
||||
/* exactly singular. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Executable Statements .. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
@@ -139,13 +170,13 @@
|
||||
|
||||
if (lsame_(uplo, "U")) {
|
||||
|
||||
/* Factorize the trailing columns of A using the upper triangle
|
||||
of A and working backwards, and compute the matrix W = U12*D
|
||||
for use in updating A11
|
||||
/* Factorize the trailing columns of A using the upper triangle */
|
||||
/* of A and working backwards, and compute the matrix W = U12*D */
|
||||
/* for use in updating A11 */
|
||||
|
||||
K is the main loop index, decreasing from N in steps of 1 or 2
|
||||
/* K is the main loop index, decreasing from N in steps of 1 or 2 */
|
||||
|
||||
KW is the column of W which corresponds to column K of A */
|
||||
/* KW is the column of W which corresponds to column K of A */
|
||||
|
||||
k = *n;
|
||||
L10:
|
||||
@@ -169,13 +200,13 @@ L10:
|
||||
|
||||
kstep = 1;
|
||||
|
||||
/* Determine rows and columns to be interchanged and whether
|
||||
a 1-by-1 or 2-by-2 pivot block will be used */
|
||||
/* Determine rows and columns to be interchanged and whether */
|
||||
/* a 1-by-1 or 2-by-2 pivot block will be used */
|
||||
|
||||
absakk = (d__1 = w[k + kw * w_dim1], abs(d__1));
|
||||
|
||||
/* IMAX is the row-index of the largest off-diagonal element in
|
||||
column K, and COLMAX is its absolute value */
|
||||
/* IMAX is the row-index of the largest off-diagonal element in */
|
||||
/* column K, and COLMAX is its absolute value */
|
||||
|
||||
if (k > 1) {
|
||||
i__1 = k - 1;
|
||||
@@ -215,8 +246,8 @@ L10:
|
||||
ldw, &c_b9, &w[(kw - 1) * w_dim1 + 1], &c__1);
|
||||
}
|
||||
|
||||
/* JMAX is the column-index of the largest off-diagonal
|
||||
element in row IMAX, and ROWMAX is its absolute value */
|
||||
/* JMAX is the column-index of the largest off-diagonal */
|
||||
/* element in row IMAX, and ROWMAX is its absolute value */
|
||||
|
||||
i__1 = k - imax;
|
||||
jmax = imax + idamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1],
|
||||
@@ -239,8 +270,8 @@ L10:
|
||||
} else if ((d__1 = w[imax + (kw - 1) * w_dim1], abs(d__1)) >=
|
||||
alpha * rowmax) {
|
||||
|
||||
/* interchange rows and columns K and IMAX, use 1-by-1
|
||||
pivot block */
|
||||
/* interchange rows and columns K and IMAX, use 1-by-1 */
|
||||
/* pivot block */
|
||||
|
||||
kp = imax;
|
||||
|
||||
@@ -250,8 +281,8 @@ L10:
|
||||
w_dim1 + 1], &c__1);
|
||||
} else {
|
||||
|
||||
/* interchange rows and columns K-1 and IMAX, use 2-by-2
|
||||
pivot block */
|
||||
/* interchange rows and columns K-1 and IMAX, use 2-by-2 */
|
||||
/* pivot block */
|
||||
|
||||
kp = imax;
|
||||
kstep = 2;
|
||||
@@ -286,13 +317,13 @@ L10:
|
||||
|
||||
if (kstep == 1) {
|
||||
|
||||
/* 1-by-1 pivot block D(k): column KW of W now holds
|
||||
/* 1-by-1 pivot block D(k): column KW of W now holds */
|
||||
|
||||
W(k) = U(k)*D(k)
|
||||
/* W(k) = U(k)*D(k) */
|
||||
|
||||
where U(k) is the k-th column of U
|
||||
/* where U(k) is the k-th column of U */
|
||||
|
||||
Store U(k) in column k of A */
|
||||
/* Store U(k) in column k of A */
|
||||
|
||||
dcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
|
||||
c__1);
|
||||
@@ -301,13 +332,13 @@ L10:
|
||||
dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
|
||||
} else {
|
||||
|
||||
/* 2-by-2 pivot block D(k): columns KW and KW-1 of W now
|
||||
hold
|
||||
/* 2-by-2 pivot block D(k): columns KW and KW-1 of W now */
|
||||
/* hold */
|
||||
|
||||
( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
|
||||
/* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
|
||||
|
||||
where U(k) and U(k-1) are the k-th and (k-1)-th columns
|
||||
of U */
|
||||
/* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
|
||||
/* of U */
|
||||
|
||||
if (k > 2) {
|
||||
|
||||
@@ -352,11 +383,11 @@ L10:
|
||||
|
||||
L30:
|
||||
|
||||
/* Update the upper triangle of A11 (= A(1:k,1:k)) as
|
||||
/* Update the upper triangle of A11 (= A(1:k,1:k)) as */
|
||||
|
||||
A11 := A11 - U12*D*U12' = A11 - U12*W'
|
||||
/* A11 := A11 - U12*D*U12' = A11 - U12*W' */
|
||||
|
||||
computing blocks of NB columns at a time */
|
||||
/* computing blocks of NB columns at a time */
|
||||
|
||||
i__1 = -(*nb);
|
||||
for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
|
||||
@@ -387,8 +418,8 @@ L30:
|
||||
/* L50: */
|
||||
}
|
||||
|
||||
/* Put U12 in standard form by partially undoing the interchanges
|
||||
in columns k+1:n */
|
||||
/* Put U12 in standard form by partially undoing the interchanges */
|
||||
/* in columns k+1:n */
|
||||
|
||||
j = k + 1;
|
||||
L60:
|
||||
@@ -413,11 +444,11 @@ L60:
|
||||
|
||||
} else {
|
||||
|
||||
/* Factorize the leading columns of A using the lower triangle
|
||||
of A and working forwards, and compute the matrix W = L21*D
|
||||
for use in updating A22
|
||||
/* Factorize the leading columns of A using the lower triangle */
|
||||
/* of A and working forwards, and compute the matrix W = L21*D */
|
||||
/* for use in updating A22 */
|
||||
|
||||
K is the main loop index, increasing from 1 in steps of 1 or 2 */
|
||||
/* K is the main loop index, increasing from 1 in steps of 1 or 2 */
|
||||
|
||||
k = 1;
|
||||
L70:
|
||||
@@ -439,13 +470,13 @@ L70:
|
||||
|
||||
kstep = 1;
|
||||
|
||||
/* Determine rows and columns to be interchanged and whether
|
||||
a 1-by-1 or 2-by-2 pivot block will be used */
|
||||
/* Determine rows and columns to be interchanged and whether */
|
||||
/* a 1-by-1 or 2-by-2 pivot block will be used */
|
||||
|
||||
absakk = (d__1 = w[k + k * w_dim1], abs(d__1));
|
||||
|
||||
/* IMAX is the row-index of the largest off-diagonal element in
|
||||
column K, and COLMAX is its absolute value */
|
||||
/* IMAX is the row-index of the largest off-diagonal element in */
|
||||
/* column K, and COLMAX is its absolute value */
|
||||
|
||||
if (k < *n) {
|
||||
i__1 = *n - k;
|
||||
@@ -485,8 +516,8 @@ L70:
|
||||
lda, &w[imax + w_dim1], ldw, &c_b9, &w[k + (k + 1) *
|
||||
w_dim1], &c__1);
|
||||
|
||||
/* JMAX is the column-index of the largest off-diagonal
|
||||
element in row IMAX, and ROWMAX is its absolute value */
|
||||
/* JMAX is the column-index of the largest off-diagonal */
|
||||
/* element in row IMAX, and ROWMAX is its absolute value */
|
||||
|
||||
i__1 = imax - k;
|
||||
jmax = k - 1 + idamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1)
|
||||
@@ -510,8 +541,8 @@ L70:
|
||||
} else if ((d__1 = w[imax + (k + 1) * w_dim1], abs(d__1)) >=
|
||||
alpha * rowmax) {
|
||||
|
||||
/* interchange rows and columns K and IMAX, use 1-by-1
|
||||
pivot block */
|
||||
/* interchange rows and columns K and IMAX, use 1-by-1 */
|
||||
/* pivot block */
|
||||
|
||||
kp = imax;
|
||||
|
||||
@@ -522,8 +553,8 @@ L70:
|
||||
w_dim1], &c__1);
|
||||
} else {
|
||||
|
||||
/* interchange rows and columns K+1 and IMAX, use 2-by-2
|
||||
pivot block */
|
||||
/* interchange rows and columns K+1 and IMAX, use 2-by-2 */
|
||||
/* pivot block */
|
||||
|
||||
kp = imax;
|
||||
kstep = 2;
|
||||
@@ -554,13 +585,13 @@ L70:
|
||||
|
||||
if (kstep == 1) {
|
||||
|
||||
/* 1-by-1 pivot block D(k): column k of W now holds
|
||||
/* 1-by-1 pivot block D(k): column k of W now holds */
|
||||
|
||||
W(k) = L(k)*D(k)
|
||||
/* W(k) = L(k)*D(k) */
|
||||
|
||||
where L(k) is the k-th column of L
|
||||
/* where L(k) is the k-th column of L */
|
||||
|
||||
Store L(k) in column k of A */
|
||||
/* Store L(k) in column k of A */
|
||||
|
||||
i__1 = *n - k + 1;
|
||||
dcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
|
||||
@@ -572,12 +603,12 @@ L70:
|
||||
}
|
||||
} else {
|
||||
|
||||
/* 2-by-2 pivot block D(k): columns k and k+1 of W now hold
|
||||
/* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
|
||||
|
||||
( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
|
||||
/* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
|
||||
|
||||
where L(k) and L(k+1) are the k-th and (k+1)-th columns
|
||||
of L */
|
||||
/* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
|
||||
/* of L */
|
||||
|
||||
if (k < *n - 1) {
|
||||
|
||||
@@ -622,11 +653,11 @@ L70:
|
||||
|
||||
L90:
|
||||
|
||||
/* Update the lower triangle of A22 (= A(k:n,k:n)) as
|
||||
/* Update the lower triangle of A22 (= A(k:n,k:n)) as */
|
||||
|
||||
A22 := A22 - L21*D*L21' = A22 - L21*W'
|
||||
/* A22 := A22 - L21*D*L21' = A22 - L21*W' */
|
||||
|
||||
computing blocks of NB columns at a time */
|
||||
/* computing blocks of NB columns at a time */
|
||||
|
||||
i__1 = *n;
|
||||
i__2 = *nb;
|
||||
@@ -659,8 +690,8 @@ L90:
|
||||
/* L110: */
|
||||
}
|
||||
|
||||
/* Put L21 in standard form by partially undoing the interchanges
|
||||
in columns 1:k-1 */
|
||||
/* Put L21 in standard form by partially undoing the interchanges */
|
||||
/* in columns 1:k-1 */
|
||||
|
||||
j = k - 1;
|
||||
L120:
|
||||
|
Reference in New Issue
Block a user