updated 3rd party libs: CLapack 3.1.1.1 => 3.2.1, zlib 1.2.3 => 1.2.5, libpng 1.2.x => 1.4.3, libtiff 3.7.x => 3.9.4. fixed many 64-bit related VS2010 warnings

This commit is contained in:
Vadim Pisarevsky
2010-07-16 12:54:53 +00:00
parent 0c9eca7922
commit f78a3b4cc1
465 changed files with 51856 additions and 41344 deletions

View File

@@ -1,111 +1,40 @@
/* dlasyf.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Subroutine */ int dlasyf_(char *uplo, integer *n, integer *nb, integer *kb,
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b8 = -1.;
static doublereal c_b9 = 1.;
/* Subroutine */ int dlasyf_(char *uplo, integer *n, integer *nb, integer *kb,
doublereal *a, integer *lda, integer *ipiv, doublereal *w, integer *
ldw, integer *info)
{
/* -- LAPACK routine (version 3.1) --
Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
Purpose
=======
DLASYF computes a partial factorization of a real symmetric matrix A
using the Bunch-Kaufman diagonal pivoting method. The partial
factorization has the form:
A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
( 0 U22 ) ( 0 D ) ( U12' U22' )
A = ( L11 0 ) ( D 0 ) ( L11' L21' ) if UPLO = 'L'
( L21 I ) ( 0 A22 ) ( 0 I )
where the order of D is at most NB. The actual order is returned in
the argument KB, and is either NB or NB-1, or N if N <= NB.
DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code
(calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
A22 (if UPLO = 'L').
Arguments
=========
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored:
= 'U': Upper triangular
= 'L': Lower triangular
N (input) INTEGER
The order of the matrix A. N >= 0.
NB (input) INTEGER
The maximum number of columns of the matrix A that should be
factored. NB should be at least 2 to allow for 2-by-2 pivot
blocks.
KB (output) INTEGER
The number of columns of A that were actually factored.
KB is either NB-1 or NB, or N if N <= NB.
A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, A contains details of the partial factorization.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
IPIV (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D.
If UPLO = 'U', only the last KB elements of IPIV are set;
if UPLO = 'L', only the first KB elements are set.
If IPIV(k) > 0, then rows and columns k and IPIV(k) were
interchanged and D(k,k) is a 1-by-1 diagonal block.
If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
W (workspace) DOUBLE PRECISION array, dimension (LDW,NB)
LDW (input) INTEGER
The leading dimension of the array W. LDW >= max(1,N).
INFO (output) INTEGER
= 0: successful exit
> 0: if INFO = k, D(k,k) is exactly zero. The factorization
has been completed, but the block diagonal matrix D is
exactly singular.
=====================================================================
Parameter adjustments */
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b8 = -1.;
static doublereal c_b9 = 1.;
/* System generated locals */
integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
doublereal d__1, d__2, d__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
static integer j, k;
static doublereal t, r1, d11, d21, d22;
static integer jb, jj, kk, jp, kp, kw, kkw, imax, jmax;
static doublereal alpha;
integer j, k;
doublereal t, r1, d11, d21, d22;
integer jb, jj, kk, jp, kp, kw, kkw, imax, jmax;
doublereal alpha;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *), dgemm_(char *, char *, integer *, integer *, integer *
, doublereal *, doublereal *, integer *, doublereal *, integer *,
@@ -116,12 +45,114 @@
doublereal *, doublereal *, integer *), dcopy_(integer *,
doublereal *, integer *, doublereal *, integer *), dswap_(integer
*, doublereal *, integer *, doublereal *, integer *);
static integer kstep;
static doublereal absakk;
integer kstep;
doublereal absakk;
extern integer idamax_(integer *, doublereal *, integer *);
static doublereal colmax, rowmax;
doublereal colmax, rowmax;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLASYF computes a partial factorization of a real symmetric matrix A */
/* using the Bunch-Kaufman diagonal pivoting method. The partial */
/* factorization has the form: */
/* A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: */
/* ( 0 U22 ) ( 0 D ) ( U12' U22' ) */
/* A = ( L11 0 ) ( D 0 ) ( L11' L21' ) if UPLO = 'L' */
/* ( L21 I ) ( 0 A22 ) ( 0 I ) */
/* where the order of D is at most NB. The actual order is returned in */
/* the argument KB, and is either NB or NB-1, or N if N <= NB. */
/* DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code */
/* (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or */
/* A22 (if UPLO = 'L'). */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies whether the upper or lower triangular part of the */
/* symmetric matrix A is stored: */
/* = 'U': Upper triangular */
/* = 'L': Lower triangular */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* NB (input) INTEGER */
/* The maximum number of columns of the matrix A that should be */
/* factored. NB should be at least 2 to allow for 2-by-2 pivot */
/* blocks. */
/* KB (output) INTEGER */
/* The number of columns of A that were actually factored. */
/* KB is either NB-1 or NB, or N if N <= NB. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
/* n-by-n upper triangular part of A contains the upper */
/* triangular part of the matrix A, and the strictly lower */
/* triangular part of A is not referenced. If UPLO = 'L', the */
/* leading n-by-n lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. */
/* On exit, A contains details of the partial factorization. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* IPIV (output) INTEGER array, dimension (N) */
/* Details of the interchanges and the block structure of D. */
/* If UPLO = 'U', only the last KB elements of IPIV are set; */
/* if UPLO = 'L', only the first KB elements are set. */
/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
/* W (workspace) DOUBLE PRECISION array, dimension (LDW,NB) */
/* LDW (input) INTEGER */
/* The leading dimension of the array W. LDW >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
/* has been completed, but the block diagonal matrix D is */
/* exactly singular. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
@@ -139,13 +170,13 @@
if (lsame_(uplo, "U")) {
/* Factorize the trailing columns of A using the upper triangle
of A and working backwards, and compute the matrix W = U12*D
for use in updating A11
/* Factorize the trailing columns of A using the upper triangle */
/* of A and working backwards, and compute the matrix W = U12*D */
/* for use in updating A11 */
K is the main loop index, decreasing from N in steps of 1 or 2
/* K is the main loop index, decreasing from N in steps of 1 or 2 */
KW is the column of W which corresponds to column K of A */
/* KW is the column of W which corresponds to column K of A */
k = *n;
L10:
@@ -169,13 +200,13 @@ L10:
kstep = 1;
/* Determine rows and columns to be interchanged and whether
a 1-by-1 or 2-by-2 pivot block will be used */
/* Determine rows and columns to be interchanged and whether */
/* a 1-by-1 or 2-by-2 pivot block will be used */
absakk = (d__1 = w[k + kw * w_dim1], abs(d__1));
/* IMAX is the row-index of the largest off-diagonal element in
column K, and COLMAX is its absolute value */
/* IMAX is the row-index of the largest off-diagonal element in */
/* column K, and COLMAX is its absolute value */
if (k > 1) {
i__1 = k - 1;
@@ -215,8 +246,8 @@ L10:
ldw, &c_b9, &w[(kw - 1) * w_dim1 + 1], &c__1);
}
/* JMAX is the column-index of the largest off-diagonal
element in row IMAX, and ROWMAX is its absolute value */
/* JMAX is the column-index of the largest off-diagonal */
/* element in row IMAX, and ROWMAX is its absolute value */
i__1 = k - imax;
jmax = imax + idamax_(&i__1, &w[imax + 1 + (kw - 1) * w_dim1],
@@ -239,8 +270,8 @@ L10:
} else if ((d__1 = w[imax + (kw - 1) * w_dim1], abs(d__1)) >=
alpha * rowmax) {
/* interchange rows and columns K and IMAX, use 1-by-1
pivot block */
/* interchange rows and columns K and IMAX, use 1-by-1 */
/* pivot block */
kp = imax;
@@ -250,8 +281,8 @@ L10:
w_dim1 + 1], &c__1);
} else {
/* interchange rows and columns K-1 and IMAX, use 2-by-2
pivot block */
/* interchange rows and columns K-1 and IMAX, use 2-by-2 */
/* pivot block */
kp = imax;
kstep = 2;
@@ -286,13 +317,13 @@ L10:
if (kstep == 1) {
/* 1-by-1 pivot block D(k): column KW of W now holds
/* 1-by-1 pivot block D(k): column KW of W now holds */
W(k) = U(k)*D(k)
/* W(k) = U(k)*D(k) */
where U(k) is the k-th column of U
/* where U(k) is the k-th column of U */
Store U(k) in column k of A */
/* Store U(k) in column k of A */
dcopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
c__1);
@@ -301,13 +332,13 @@ L10:
dscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
} else {
/* 2-by-2 pivot block D(k): columns KW and KW-1 of W now
hold
/* 2-by-2 pivot block D(k): columns KW and KW-1 of W now */
/* hold */
( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
/* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
where U(k) and U(k-1) are the k-th and (k-1)-th columns
of U */
/* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
/* of U */
if (k > 2) {
@@ -352,11 +383,11 @@ L10:
L30:
/* Update the upper triangle of A11 (= A(1:k,1:k)) as
/* Update the upper triangle of A11 (= A(1:k,1:k)) as */
A11 := A11 - U12*D*U12' = A11 - U12*W'
/* A11 := A11 - U12*D*U12' = A11 - U12*W' */
computing blocks of NB columns at a time */
/* computing blocks of NB columns at a time */
i__1 = -(*nb);
for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j +=
@@ -387,8 +418,8 @@ L30:
/* L50: */
}
/* Put U12 in standard form by partially undoing the interchanges
in columns k+1:n */
/* Put U12 in standard form by partially undoing the interchanges */
/* in columns k+1:n */
j = k + 1;
L60:
@@ -413,11 +444,11 @@ L60:
} else {
/* Factorize the leading columns of A using the lower triangle
of A and working forwards, and compute the matrix W = L21*D
for use in updating A22
/* Factorize the leading columns of A using the lower triangle */
/* of A and working forwards, and compute the matrix W = L21*D */
/* for use in updating A22 */
K is the main loop index, increasing from 1 in steps of 1 or 2 */
/* K is the main loop index, increasing from 1 in steps of 1 or 2 */
k = 1;
L70:
@@ -439,13 +470,13 @@ L70:
kstep = 1;
/* Determine rows and columns to be interchanged and whether
a 1-by-1 or 2-by-2 pivot block will be used */
/* Determine rows and columns to be interchanged and whether */
/* a 1-by-1 or 2-by-2 pivot block will be used */
absakk = (d__1 = w[k + k * w_dim1], abs(d__1));
/* IMAX is the row-index of the largest off-diagonal element in
column K, and COLMAX is its absolute value */
/* IMAX is the row-index of the largest off-diagonal element in */
/* column K, and COLMAX is its absolute value */
if (k < *n) {
i__1 = *n - k;
@@ -485,8 +516,8 @@ L70:
lda, &w[imax + w_dim1], ldw, &c_b9, &w[k + (k + 1) *
w_dim1], &c__1);
/* JMAX is the column-index of the largest off-diagonal
element in row IMAX, and ROWMAX is its absolute value */
/* JMAX is the column-index of the largest off-diagonal */
/* element in row IMAX, and ROWMAX is its absolute value */
i__1 = imax - k;
jmax = k - 1 + idamax_(&i__1, &w[k + (k + 1) * w_dim1], &c__1)
@@ -510,8 +541,8 @@ L70:
} else if ((d__1 = w[imax + (k + 1) * w_dim1], abs(d__1)) >=
alpha * rowmax) {
/* interchange rows and columns K and IMAX, use 1-by-1
pivot block */
/* interchange rows and columns K and IMAX, use 1-by-1 */
/* pivot block */
kp = imax;
@@ -522,8 +553,8 @@ L70:
w_dim1], &c__1);
} else {
/* interchange rows and columns K+1 and IMAX, use 2-by-2
pivot block */
/* interchange rows and columns K+1 and IMAX, use 2-by-2 */
/* pivot block */
kp = imax;
kstep = 2;
@@ -554,13 +585,13 @@ L70:
if (kstep == 1) {
/* 1-by-1 pivot block D(k): column k of W now holds
/* 1-by-1 pivot block D(k): column k of W now holds */
W(k) = L(k)*D(k)
/* W(k) = L(k)*D(k) */
where L(k) is the k-th column of L
/* where L(k) is the k-th column of L */
Store L(k) in column k of A */
/* Store L(k) in column k of A */
i__1 = *n - k + 1;
dcopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
@@ -572,12 +603,12 @@ L70:
}
} else {
/* 2-by-2 pivot block D(k): columns k and k+1 of W now hold
/* 2-by-2 pivot block D(k): columns k and k+1 of W now hold */
( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
/* ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
where L(k) and L(k+1) are the k-th and (k+1)-th columns
of L */
/* where L(k) and L(k+1) are the k-th and (k+1)-th columns */
/* of L */
if (k < *n - 1) {
@@ -622,11 +653,11 @@ L70:
L90:
/* Update the lower triangle of A22 (= A(k:n,k:n)) as
/* Update the lower triangle of A22 (= A(k:n,k:n)) as */
A22 := A22 - L21*D*L21' = A22 - L21*W'
/* A22 := A22 - L21*D*L21' = A22 - L21*W' */
computing blocks of NB columns at a time */
/* computing blocks of NB columns at a time */
i__1 = *n;
i__2 = *nb;
@@ -659,8 +690,8 @@ L90:
/* L110: */
}
/* Put L21 in standard form by partially undoing the interchanges
in columns 1:k-1 */
/* Put L21 in standard form by partially undoing the interchanges */
/* in columns 1:k-1 */
j = k - 1;
L120: