Merge remote-tracking branch 'origin/2.4' into merge-2.4

Conflicts:
	modules/imgproc/src/opencl/integral_sqrsum.cl
	modules/nonfree/doc/feature_detection.rst
	modules/nonfree/include/opencv2/nonfree/ocl.hpp
	modules/nonfree/src/surf_ocl.cpp
	modules/nonfree/test/test_features2d.cpp
	modules/ocl/doc/image_processing.rst
	modules/ocl/include/opencv2/ocl/ocl.hpp
	modules/ocl/perf/perf_imgproc.cpp
	modules/ocl/perf/perf_match_template.cpp
	modules/ocl/src/haar.cpp
	modules/ocl/src/imgproc.cpp
	modules/ocl/src/match_template.cpp
	modules/ocl/src/opencl/haarobjectdetect.cl
	modules/ocl/src/opencl/haarobjectdetect_scaled2.cl
	modules/ocl/test/test_imgproc.cpp
This commit is contained in:
Roman Donchenko
2014-03-31 14:42:00 +04:00
13 changed files with 117 additions and 101 deletions

View File

@@ -5,7 +5,7 @@ Load, Modify, and Save an Image
.. note::
We assume that by now you know how to load an image using :imread:`imread <>` and to display it in a window (using :imshow:`imshow <>`). Read the :ref:`Display_Image` tutorial otherwise.
We assume that by now you know how to load an image using :readwriteimagevideo:`imread <imread>` and to display it in a window (using :user_interface:`imshow <imshow>`). Read the :ref:`Display_Image` tutorial otherwise.
Goals
======
@@ -14,9 +14,9 @@ In this tutorial you will learn how to:
.. container:: enumeratevisibleitemswithsquare
* Load an image using :imread:`imread <>`
* Transform an image from BGR to Grayscale format by using :cvt_color:`cvtColor <>`
* Save your transformed image in a file on disk (using :imwrite:`imwrite <>`)
* Load an image using :readwriteimagevideo:`imread <imread>`
* Transform an image from BGR to Grayscale format by using :miscellaneous_transformations:`cvtColor <cvtcolor>`
* Save your transformed image in a file on disk (using :readwriteimagevideo:`imwrite <imwrite>`)
Code
======
@@ -62,10 +62,7 @@ Here it is:
Explanation
============
#. We begin by:
* Creating a Mat object to store the image information
* Load an image using :imread:`imread <>`, located in the path given by *imageName*. Fort this example, assume you are loading a RGB image.
#. We begin by loading an image using :readwriteimagevideo:`imread <imread>`, located in the path given by *imageName*. For this example, assume you are loading a RGB image.
#. Now we are going to convert our image from BGR to Grayscale format. OpenCV has a really nice function to do this kind of transformations:
@@ -73,15 +70,15 @@ Explanation
cvtColor( image, gray_image, CV_BGR2GRAY );
As you can see, :cvt_color:`cvtColor <>` takes as arguments:
As you can see, :miscellaneous_transformations:`cvtColor <cvtcolor>` takes as arguments:
.. container:: enumeratevisibleitemswithsquare
* a source image (*image*)
* a destination image (*gray_image*), in which we will save the converted image.
* an additional parameter that indicates what kind of transformation will be performed. In this case we use **CV_BGR2GRAY** (because of :imread:`imread <>` has BGR default channel order in case of color images).
* an additional parameter that indicates what kind of transformation will be performed. In this case we use **CV_BGR2GRAY** (because of :readwriteimagevideo:`imread <imread>` has BGR default channel order in case of color images).
#. So now we have our new *gray_image* and want to save it on disk (otherwise it will get lost after the program ends). To save it, we will use a function analagous to :imread:`imread <>`: :imwrite:`imwrite <>`
#. So now we have our new *gray_image* and want to save it on disk (otherwise it will get lost after the program ends). To save it, we will use a function analagous to :readwriteimagevideo:`imread <imread>`: :readwriteimagevideo:`imwrite <imwrite>`
.. code-block:: cpp