Fixed mingw build.
This commit is contained in:
@@ -213,13 +213,10 @@ static int icvFindStumpThreshold_##suffix(
|
||||
float* curval = NULL; \
|
||||
float curlerror = 0.0F; \
|
||||
float currerror = 0.0F; \
|
||||
float wposl; \
|
||||
float wposr; \
|
||||
\
|
||||
int i = 0; \
|
||||
int idx = 0; \
|
||||
\
|
||||
wposl = wposr = 0.0F; \
|
||||
if( *sumw == FLT_MAX ) \
|
||||
{ \
|
||||
/* calculate sums */ \
|
||||
@@ -298,8 +295,8 @@ static int icvFindStumpThreshold_##suffix(
|
||||
*/
|
||||
#define ICV_DEF_FIND_STUMP_THRESHOLD_MISC( suffix, type ) \
|
||||
ICV_DEF_FIND_STUMP_THRESHOLD( misc_##suffix, type, \
|
||||
wposl = 0.5F * ( wl + wyl ); \
|
||||
wposr = 0.5F * ( wr + wyr ); \
|
||||
float wposl = 0.5F * ( wl + wyl ); \
|
||||
float wposr = 0.5F * ( wr + wyr ); \
|
||||
curleft = 0.5F * ( 1.0F + curleft ); \
|
||||
curright = 0.5F * ( 1.0F + curright ); \
|
||||
curlerror = MIN( wposl, wl - wposl ); \
|
||||
@@ -311,8 +308,8 @@ static int icvFindStumpThreshold_##suffix(
|
||||
*/
|
||||
#define ICV_DEF_FIND_STUMP_THRESHOLD_GINI( suffix, type ) \
|
||||
ICV_DEF_FIND_STUMP_THRESHOLD( gini_##suffix, type, \
|
||||
wposl = 0.5F * ( wl + wyl ); \
|
||||
wposr = 0.5F * ( wr + wyr ); \
|
||||
float wposl = 0.5F * ( wl + wyl ); \
|
||||
float wposr = 0.5F * ( wr + wyr ); \
|
||||
curleft = 0.5F * ( 1.0F + curleft ); \
|
||||
curright = 0.5F * ( 1.0F + curright ); \
|
||||
curlerror = 2.0F * wposl * ( 1.0F - curleft ); \
|
||||
@@ -326,8 +323,8 @@ static int icvFindStumpThreshold_##suffix(
|
||||
*/
|
||||
#define ICV_DEF_FIND_STUMP_THRESHOLD_ENTROPY( suffix, type ) \
|
||||
ICV_DEF_FIND_STUMP_THRESHOLD( entropy_##suffix, type, \
|
||||
wposl = 0.5F * ( wl + wyl ); \
|
||||
wposr = 0.5F * ( wr + wyr ); \
|
||||
float wposl = 0.5F * ( wl + wyl ); \
|
||||
float wposr = 0.5F * ( wr + wyr ); \
|
||||
curleft = 0.5F * ( 1.0F + curleft ); \
|
||||
curright = 0.5F * ( 1.0F + curright ); \
|
||||
curlerror = currerror = 0.0F; \
|
||||
@@ -1560,7 +1557,7 @@ CvBoostTrainer* icvBoostStartTraining( CvMat* trainClasses,
|
||||
CV_MAT2VEC( *trainClasses, ydata, ystep, m );
|
||||
CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum );
|
||||
|
||||
assert( m == trainnum );
|
||||
CV_Assert( m == trainnum );
|
||||
|
||||
idxnum = 0;
|
||||
idxstep = 0;
|
||||
@@ -1640,8 +1637,8 @@ float icvBoostNextWeakClassifierDAB( CvMat* weakEvalVals,
|
||||
CV_MAT2VEC( *trainClasses, ydata, ystep, ynum );
|
||||
CV_MAT2VEC( *weights, wdata, wstep, wnum );
|
||||
|
||||
assert( m == ynum );
|
||||
assert( m == wnum );
|
||||
CV_Assert( m == ynum );
|
||||
CV_Assert( m == wnum );
|
||||
|
||||
sumw = 0.0F;
|
||||
err = 0.0F;
|
||||
@@ -1808,8 +1805,8 @@ CvBoostTrainer* icvBoostStartTrainingLB( CvMat* trainClasses,
|
||||
CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum );
|
||||
CV_MAT2VEC( *weights, wdata, wstep, wnum );
|
||||
|
||||
assert( m == trainnum );
|
||||
assert( m == wnum );
|
||||
CV_Assert( m == trainnum );
|
||||
CV_Assert( m == wnum );
|
||||
|
||||
|
||||
idxnum = 0;
|
||||
@@ -1889,9 +1886,9 @@ float icvBoostNextWeakClassifierLB( CvMat* weakEvalVals,
|
||||
CV_MAT2VEC( *weakTrainVals, traindata, trainstep, trainnum );
|
||||
CV_MAT2VEC( *weights, wdata, wstep, wnum );
|
||||
|
||||
assert( m == ynum );
|
||||
assert( m == wnum );
|
||||
assert( m == trainnum );
|
||||
CV_Assert( m == ynum );
|
||||
CV_Assert( m == wnum );
|
||||
CV_Assert( m == trainnum );
|
||||
//assert( m == trainer->count );
|
||||
|
||||
for( i = 0; i < trainer->count; i++ )
|
||||
@@ -1944,8 +1941,8 @@ float icvBoostNextWeakClassifierGAB( CvMat* weakEvalVals,
|
||||
CV_MAT2VEC( *trainClasses, ydata, ystep, ynum );
|
||||
CV_MAT2VEC( *weights, wdata, wstep, wnum );
|
||||
|
||||
assert( m == ynum );
|
||||
assert( m == wnum );
|
||||
CV_Assert( m == ynum );
|
||||
CV_Assert( m == wnum );
|
||||
|
||||
sumw = 0.0F;
|
||||
for( i = 0; i < trainer->count; i++ )
|
||||
|
@@ -525,9 +525,9 @@ float icvEvalTreeCascadeClassifierFilter( CvIntHaarClassifier* classifier, sum_t
|
||||
sum_type* tilted, float normfactor )
|
||||
{
|
||||
CvTreeCascadeNode* ptr;
|
||||
CvTreeCascadeClassifier* tree;
|
||||
//CvTreeCascadeClassifier* tree;
|
||||
|
||||
tree = (CvTreeCascadeClassifier*) classifier;
|
||||
//tree = (CvTreeCascadeClassifier*) classifier;
|
||||
|
||||
|
||||
|
||||
|
@@ -169,10 +169,11 @@ CvIntHaarFeatures* icvCreateIntHaarFeatures( CvSize winsize,
|
||||
int dx = 0;
|
||||
int dy = 0;
|
||||
|
||||
#if 0
|
||||
float factor = 1.0F;
|
||||
|
||||
factor = ((float) winsize.width) * winsize.height / (24 * 24);
|
||||
#if 0
|
||||
|
||||
s0 = (int) (s0 * factor);
|
||||
s1 = (int) (s1 * factor);
|
||||
s2 = (int) (s2 * factor);
|
||||
|
Reference in New Issue
Block a user