split hough sources
This commit is contained in:
parent
1d79e13133
commit
f614e35443
138
modules/gpuimgproc/src/cuda/build_point_list.cu
Normal file
138
modules/gpuimgproc/src/cuda/build_point_list.cu
Normal file
@ -0,0 +1,138 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if !defined CUDA_DISABLER
|
||||
|
||||
#include "opencv2/core/cuda/common.hpp"
|
||||
#include "opencv2/core/cuda/emulation.hpp"
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough
|
||||
{
|
||||
__device__ int g_counter;
|
||||
|
||||
template <int PIXELS_PER_THREAD>
|
||||
__global__ void buildPointList(const PtrStepSzb src, unsigned int* list)
|
||||
{
|
||||
__shared__ unsigned int s_queues[4][32 * PIXELS_PER_THREAD];
|
||||
__shared__ int s_qsize[4];
|
||||
__shared__ int s_globStart[4];
|
||||
|
||||
const int x = blockIdx.x * blockDim.x * PIXELS_PER_THREAD + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
s_qsize[threadIdx.y] = 0;
|
||||
__syncthreads();
|
||||
|
||||
if (y < src.rows)
|
||||
{
|
||||
// fill the queue
|
||||
const uchar* srcRow = src.ptr(y);
|
||||
for (int i = 0, xx = x; i < PIXELS_PER_THREAD && xx < src.cols; ++i, xx += blockDim.x)
|
||||
{
|
||||
if (srcRow[xx])
|
||||
{
|
||||
const unsigned int val = (y << 16) | xx;
|
||||
const int qidx = Emulation::smem::atomicAdd(&s_qsize[threadIdx.y], 1);
|
||||
s_queues[threadIdx.y][qidx] = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// let one thread reserve the space required in the global list
|
||||
if (threadIdx.x == 0 && threadIdx.y == 0)
|
||||
{
|
||||
// find how many items are stored in each list
|
||||
int totalSize = 0;
|
||||
for (int i = 0; i < blockDim.y; ++i)
|
||||
{
|
||||
s_globStart[i] = totalSize;
|
||||
totalSize += s_qsize[i];
|
||||
}
|
||||
|
||||
// calculate the offset in the global list
|
||||
const int globalOffset = atomicAdd(&g_counter, totalSize);
|
||||
for (int i = 0; i < blockDim.y; ++i)
|
||||
s_globStart[i] += globalOffset;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// copy local queues to global queue
|
||||
const int qsize = s_qsize[threadIdx.y];
|
||||
int gidx = s_globStart[threadIdx.y] + threadIdx.x;
|
||||
for(int i = threadIdx.x; i < qsize; i += blockDim.x, gidx += blockDim.x)
|
||||
list[gidx] = s_queues[threadIdx.y][i];
|
||||
}
|
||||
|
||||
int buildPointList_gpu(PtrStepSzb src, unsigned int* list)
|
||||
{
|
||||
const int PIXELS_PER_THREAD = 16;
|
||||
|
||||
void* counterPtr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
|
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
|
||||
|
||||
const dim3 block(32, 4);
|
||||
const dim3 grid(divUp(src.cols, block.x * PIXELS_PER_THREAD), divUp(src.rows, block.y));
|
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(buildPointList<PIXELS_PER_THREAD>, cudaFuncCachePreferShared) );
|
||||
|
||||
buildPointList<PIXELS_PER_THREAD><<<grid, block>>>(src, list);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
int totalCount;
|
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
return totalCount;
|
||||
}
|
||||
}
|
||||
}}}
|
||||
|
||||
#endif /* CUDA_DISABLER */
|
1085
modules/gpuimgproc/src/cuda/generalized_hough.cu
Normal file
1085
modules/gpuimgproc/src/cuda/generalized_hough.cu
Normal file
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
255
modules/gpuimgproc/src/cuda/hough_circles.cu
Normal file
255
modules/gpuimgproc/src/cuda/hough_circles.cu
Normal file
@ -0,0 +1,255 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if !defined CUDA_DISABLER
|
||||
|
||||
#include "opencv2/core/cuda/common.hpp"
|
||||
#include "opencv2/core/cuda/emulation.hpp"
|
||||
#include "opencv2/core/cuda/dynamic_smem.hpp"
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough_circles
|
||||
{
|
||||
__device__ int g_counter;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// circlesAccumCenters
|
||||
|
||||
__global__ void circlesAccumCenters(const unsigned int* list, const int count, const PtrStepi dx, const PtrStepi dy,
|
||||
PtrStepi accum, const int width, const int height, const int minRadius, const int maxRadius, const float idp)
|
||||
{
|
||||
const int SHIFT = 10;
|
||||
const int ONE = 1 << SHIFT;
|
||||
|
||||
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (tid >= count)
|
||||
return;
|
||||
|
||||
const unsigned int val = list[tid];
|
||||
|
||||
const int x = (val & 0xFFFF);
|
||||
const int y = (val >> 16) & 0xFFFF;
|
||||
|
||||
const int vx = dx(y, x);
|
||||
const int vy = dy(y, x);
|
||||
|
||||
if (vx == 0 && vy == 0)
|
||||
return;
|
||||
|
||||
const float mag = ::sqrtf(vx * vx + vy * vy);
|
||||
|
||||
const int x0 = __float2int_rn((x * idp) * ONE);
|
||||
const int y0 = __float2int_rn((y * idp) * ONE);
|
||||
|
||||
int sx = __float2int_rn((vx * idp) * ONE / mag);
|
||||
int sy = __float2int_rn((vy * idp) * ONE / mag);
|
||||
|
||||
// Step from minRadius to maxRadius in both directions of the gradient
|
||||
for (int k1 = 0; k1 < 2; ++k1)
|
||||
{
|
||||
int x1 = x0 + minRadius * sx;
|
||||
int y1 = y0 + minRadius * sy;
|
||||
|
||||
for (int r = minRadius; r <= maxRadius; x1 += sx, y1 += sy, ++r)
|
||||
{
|
||||
const int x2 = x1 >> SHIFT;
|
||||
const int y2 = y1 >> SHIFT;
|
||||
|
||||
if (x2 < 0 || x2 >= width || y2 < 0 || y2 >= height)
|
||||
break;
|
||||
|
||||
::atomicAdd(accum.ptr(y2 + 1) + x2 + 1, 1);
|
||||
}
|
||||
|
||||
sx = -sx;
|
||||
sy = -sy;
|
||||
}
|
||||
}
|
||||
|
||||
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, PtrStepSzi accum, int minRadius, int maxRadius, float idp)
|
||||
{
|
||||
const dim3 block(256);
|
||||
const dim3 grid(divUp(count, block.x));
|
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(circlesAccumCenters, cudaFuncCachePreferL1) );
|
||||
|
||||
circlesAccumCenters<<<grid, block>>>(list, count, dx, dy, accum, accum.cols - 2, accum.rows - 2, minRadius, maxRadius, idp);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// buildCentersList
|
||||
|
||||
__global__ void buildCentersList(const PtrStepSzi accum, unsigned int* centers, const int threshold)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x < accum.cols - 2 && y < accum.rows - 2)
|
||||
{
|
||||
const int top = accum(y, x + 1);
|
||||
|
||||
const int left = accum(y + 1, x);
|
||||
const int cur = accum(y + 1, x + 1);
|
||||
const int right = accum(y + 1, x + 2);
|
||||
|
||||
const int bottom = accum(y + 2, x + 1);
|
||||
|
||||
if (cur > threshold && cur > top && cur >= bottom && cur > left && cur >= right)
|
||||
{
|
||||
const unsigned int val = (y << 16) | x;
|
||||
const int idx = ::atomicAdd(&g_counter, 1);
|
||||
centers[idx] = val;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int buildCentersList_gpu(PtrStepSzi accum, unsigned int* centers, int threshold)
|
||||
{
|
||||
void* counterPtr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
|
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
|
||||
|
||||
const dim3 block(32, 8);
|
||||
const dim3 grid(divUp(accum.cols - 2, block.x), divUp(accum.rows - 2, block.y));
|
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(buildCentersList, cudaFuncCachePreferL1) );
|
||||
|
||||
buildCentersList<<<grid, block>>>(accum, centers, threshold);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
int totalCount;
|
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
return totalCount;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// circlesAccumRadius
|
||||
|
||||
__global__ void circlesAccumRadius(const unsigned int* centers, const unsigned int* list, const int count,
|
||||
float3* circles, const int maxCircles, const float dp,
|
||||
const int minRadius, const int maxRadius, const int histSize, const int threshold)
|
||||
{
|
||||
int* smem = DynamicSharedMem<int>();
|
||||
|
||||
for (int i = threadIdx.x; i < histSize + 2; i += blockDim.x)
|
||||
smem[i] = 0;
|
||||
__syncthreads();
|
||||
|
||||
unsigned int val = centers[blockIdx.x];
|
||||
|
||||
float cx = (val & 0xFFFF);
|
||||
float cy = (val >> 16) & 0xFFFF;
|
||||
|
||||
cx = (cx + 0.5f) * dp;
|
||||
cy = (cy + 0.5f) * dp;
|
||||
|
||||
for (int i = threadIdx.x; i < count; i += blockDim.x)
|
||||
{
|
||||
val = list[i];
|
||||
|
||||
const int x = (val & 0xFFFF);
|
||||
const int y = (val >> 16) & 0xFFFF;
|
||||
|
||||
const float rad = ::sqrtf((cx - x) * (cx - x) + (cy - y) * (cy - y));
|
||||
if (rad >= minRadius && rad <= maxRadius)
|
||||
{
|
||||
const int r = __float2int_rn(rad - minRadius);
|
||||
|
||||
Emulation::smem::atomicAdd(&smem[r + 1], 1);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int i = threadIdx.x; i < histSize; i += blockDim.x)
|
||||
{
|
||||
const int curVotes = smem[i + 1];
|
||||
|
||||
if (curVotes >= threshold && curVotes > smem[i] && curVotes >= smem[i + 2])
|
||||
{
|
||||
const int ind = ::atomicAdd(&g_counter, 1);
|
||||
if (ind < maxCircles)
|
||||
circles[ind] = make_float3(cx, cy, i + minRadius);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count,
|
||||
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20)
|
||||
{
|
||||
void* counterPtr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
|
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
|
||||
|
||||
const dim3 block(has20 ? 1024 : 512);
|
||||
const dim3 grid(centersCount);
|
||||
|
||||
const int histSize = maxRadius - minRadius + 1;
|
||||
size_t smemSize = (histSize + 2) * sizeof(int);
|
||||
|
||||
circlesAccumRadius<<<grid, block, smemSize>>>(centers, list, count, circles, maxCircles, dp, minRadius, maxRadius, histSize, threshold);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
int totalCount;
|
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
totalCount = ::min(totalCount, maxCircles);
|
||||
|
||||
return totalCount;
|
||||
}
|
||||
}
|
||||
}}}
|
||||
|
||||
|
||||
#endif /* CUDA_DISABLER */
|
212
modules/gpuimgproc/src/cuda/hough_lines.cu
Normal file
212
modules/gpuimgproc/src/cuda/hough_lines.cu
Normal file
@ -0,0 +1,212 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if !defined CUDA_DISABLER
|
||||
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/sort.h>
|
||||
|
||||
#include "opencv2/core/cuda/common.hpp"
|
||||
#include "opencv2/core/cuda/emulation.hpp"
|
||||
#include "opencv2/core/cuda/dynamic_smem.hpp"
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough_lines
|
||||
{
|
||||
__device__ int g_counter;
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// linesAccum
|
||||
|
||||
__global__ void linesAccumGlobal(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho)
|
||||
{
|
||||
const int n = blockIdx.x;
|
||||
const float ang = n * theta;
|
||||
|
||||
float sinVal;
|
||||
float cosVal;
|
||||
sincosf(ang, &sinVal, &cosVal);
|
||||
sinVal *= irho;
|
||||
cosVal *= irho;
|
||||
|
||||
const int shift = (numrho - 1) / 2;
|
||||
|
||||
int* accumRow = accum.ptr(n + 1);
|
||||
for (int i = threadIdx.x; i < count; i += blockDim.x)
|
||||
{
|
||||
const unsigned int val = list[i];
|
||||
|
||||
const int x = (val & 0xFFFF);
|
||||
const int y = (val >> 16) & 0xFFFF;
|
||||
|
||||
int r = __float2int_rn(x * cosVal + y * sinVal);
|
||||
r += shift;
|
||||
|
||||
::atomicAdd(accumRow + r + 1, 1);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void linesAccumShared(const unsigned int* list, const int count, PtrStepi accum, const float irho, const float theta, const int numrho)
|
||||
{
|
||||
int* smem = DynamicSharedMem<int>();
|
||||
|
||||
for (int i = threadIdx.x; i < numrho + 1; i += blockDim.x)
|
||||
smem[i] = 0;
|
||||
|
||||
__syncthreads();
|
||||
|
||||
const int n = blockIdx.x;
|
||||
const float ang = n * theta;
|
||||
|
||||
float sinVal;
|
||||
float cosVal;
|
||||
sincosf(ang, &sinVal, &cosVal);
|
||||
sinVal *= irho;
|
||||
cosVal *= irho;
|
||||
|
||||
const int shift = (numrho - 1) / 2;
|
||||
|
||||
for (int i = threadIdx.x; i < count; i += blockDim.x)
|
||||
{
|
||||
const unsigned int val = list[i];
|
||||
|
||||
const int x = (val & 0xFFFF);
|
||||
const int y = (val >> 16) & 0xFFFF;
|
||||
|
||||
int r = __float2int_rn(x * cosVal + y * sinVal);
|
||||
r += shift;
|
||||
|
||||
Emulation::smem::atomicAdd(&smem[r + 1], 1);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
int* accumRow = accum.ptr(n + 1);
|
||||
for (int i = threadIdx.x; i < numrho + 1; i += blockDim.x)
|
||||
accumRow[i] = smem[i];
|
||||
}
|
||||
|
||||
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20)
|
||||
{
|
||||
const dim3 block(has20 ? 1024 : 512);
|
||||
const dim3 grid(accum.rows - 2);
|
||||
|
||||
size_t smemSize = (accum.cols - 1) * sizeof(int);
|
||||
|
||||
if (smemSize < sharedMemPerBlock - 1000)
|
||||
linesAccumShared<<<grid, block, smemSize>>>(list, count, accum, 1.0f / rho, theta, accum.cols - 2);
|
||||
else
|
||||
linesAccumGlobal<<<grid, block>>>(list, count, accum, 1.0f / rho, theta, accum.cols - 2);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////
|
||||
// linesGetResult
|
||||
|
||||
__global__ void linesGetResult(const PtrStepSzi accum, float2* out, int* votes, const int maxSize, const float rho, const float theta, const int threshold, const int numrho)
|
||||
{
|
||||
const int r = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int n = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (r >= accum.cols - 2 || n >= accum.rows - 2)
|
||||
return;
|
||||
|
||||
const int curVotes = accum(n + 1, r + 1);
|
||||
|
||||
if (curVotes > threshold &&
|
||||
curVotes > accum(n + 1, r) &&
|
||||
curVotes >= accum(n + 1, r + 2) &&
|
||||
curVotes > accum(n, r + 1) &&
|
||||
curVotes >= accum(n + 2, r + 1))
|
||||
{
|
||||
const float radius = (r - (numrho - 1) * 0.5f) * rho;
|
||||
const float angle = n * theta;
|
||||
|
||||
const int ind = ::atomicAdd(&g_counter, 1);
|
||||
if (ind < maxSize)
|
||||
{
|
||||
out[ind] = make_float2(radius, angle);
|
||||
votes[ind] = curVotes;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int linesGetResult_gpu(PtrStepSzi accum, float2* out, int* votes, int maxSize, float rho, float theta, int threshold, bool doSort)
|
||||
{
|
||||
void* counterPtr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
|
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
|
||||
|
||||
const dim3 block(32, 8);
|
||||
const dim3 grid(divUp(accum.cols - 2, block.x), divUp(accum.rows - 2, block.y));
|
||||
|
||||
cudaSafeCall( cudaFuncSetCacheConfig(linesGetResult, cudaFuncCachePreferL1) );
|
||||
|
||||
linesGetResult<<<grid, block>>>(accum, out, votes, maxSize, rho, theta, threshold, accum.cols - 2);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
int totalCount;
|
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
totalCount = ::min(totalCount, maxSize);
|
||||
|
||||
if (doSort && totalCount > 0)
|
||||
{
|
||||
thrust::device_ptr<float2> outPtr(out);
|
||||
thrust::device_ptr<int> votesPtr(votes);
|
||||
thrust::sort_by_key(votesPtr, votesPtr + totalCount, outPtr, thrust::greater<int>());
|
||||
}
|
||||
|
||||
return totalCount;
|
||||
}
|
||||
}
|
||||
}}}
|
||||
|
||||
|
||||
#endif /* CUDA_DISABLER */
|
249
modules/gpuimgproc/src/cuda/hough_segments.cu
Normal file
249
modules/gpuimgproc/src/cuda/hough_segments.cu
Normal file
@ -0,0 +1,249 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if !defined CUDA_DISABLER
|
||||
|
||||
#include "opencv2/core/cuda/common.hpp"
|
||||
#include "opencv2/core/cuda/vec_math.hpp"
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough_segments
|
||||
{
|
||||
__device__ int g_counter;
|
||||
|
||||
texture<uchar, cudaTextureType2D, cudaReadModeElementType> tex_mask(false, cudaFilterModePoint, cudaAddressModeClamp);
|
||||
|
||||
__global__ void houghLinesProbabilistic(const PtrStepSzi accum,
|
||||
int4* out, const int maxSize,
|
||||
const float rho, const float theta,
|
||||
const int lineGap, const int lineLength,
|
||||
const int rows, const int cols)
|
||||
{
|
||||
const int r = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int n = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (r >= accum.cols - 2 || n >= accum.rows - 2)
|
||||
return;
|
||||
|
||||
const int curVotes = accum(n + 1, r + 1);
|
||||
|
||||
if (curVotes >= lineLength &&
|
||||
curVotes > accum(n, r) &&
|
||||
curVotes > accum(n, r + 1) &&
|
||||
curVotes > accum(n, r + 2) &&
|
||||
curVotes > accum(n + 1, r) &&
|
||||
curVotes > accum(n + 1, r + 2) &&
|
||||
curVotes > accum(n + 2, r) &&
|
||||
curVotes > accum(n + 2, r + 1) &&
|
||||
curVotes > accum(n + 2, r + 2))
|
||||
{
|
||||
const float radius = (r - (accum.cols - 2 - 1) * 0.5f) * rho;
|
||||
const float angle = n * theta;
|
||||
|
||||
float cosa;
|
||||
float sina;
|
||||
sincosf(angle, &sina, &cosa);
|
||||
|
||||
float2 p0 = make_float2(cosa * radius, sina * radius);
|
||||
float2 dir = make_float2(-sina, cosa);
|
||||
|
||||
float2 pb[4] = {make_float2(-1, -1), make_float2(-1, -1), make_float2(-1, -1), make_float2(-1, -1)};
|
||||
float a;
|
||||
|
||||
if (dir.x != 0)
|
||||
{
|
||||
a = -p0.x / dir.x;
|
||||
pb[0].x = 0;
|
||||
pb[0].y = p0.y + a * dir.y;
|
||||
|
||||
a = (cols - 1 - p0.x) / dir.x;
|
||||
pb[1].x = cols - 1;
|
||||
pb[1].y = p0.y + a * dir.y;
|
||||
}
|
||||
if (dir.y != 0)
|
||||
{
|
||||
a = -p0.y / dir.y;
|
||||
pb[2].x = p0.x + a * dir.x;
|
||||
pb[2].y = 0;
|
||||
|
||||
a = (rows - 1 - p0.y) / dir.y;
|
||||
pb[3].x = p0.x + a * dir.x;
|
||||
pb[3].y = rows - 1;
|
||||
}
|
||||
|
||||
if (pb[0].x == 0 && (pb[0].y >= 0 && pb[0].y < rows))
|
||||
{
|
||||
p0 = pb[0];
|
||||
if (dir.x < 0)
|
||||
dir = -dir;
|
||||
}
|
||||
else if (pb[1].x == cols - 1 && (pb[0].y >= 0 && pb[0].y < rows))
|
||||
{
|
||||
p0 = pb[1];
|
||||
if (dir.x > 0)
|
||||
dir = -dir;
|
||||
}
|
||||
else if (pb[2].y == 0 && (pb[2].x >= 0 && pb[2].x < cols))
|
||||
{
|
||||
p0 = pb[2];
|
||||
if (dir.y < 0)
|
||||
dir = -dir;
|
||||
}
|
||||
else if (pb[3].y == rows - 1 && (pb[3].x >= 0 && pb[3].x < cols))
|
||||
{
|
||||
p0 = pb[3];
|
||||
if (dir.y > 0)
|
||||
dir = -dir;
|
||||
}
|
||||
|
||||
float2 d;
|
||||
if (::fabsf(dir.x) > ::fabsf(dir.y))
|
||||
{
|
||||
d.x = dir.x > 0 ? 1 : -1;
|
||||
d.y = dir.y / ::fabsf(dir.x);
|
||||
}
|
||||
else
|
||||
{
|
||||
d.x = dir.x / ::fabsf(dir.y);
|
||||
d.y = dir.y > 0 ? 1 : -1;
|
||||
}
|
||||
|
||||
float2 line_end[2];
|
||||
int gap;
|
||||
bool inLine = false;
|
||||
|
||||
float2 p1 = p0;
|
||||
if (p1.x < 0 || p1.x >= cols || p1.y < 0 || p1.y >= rows)
|
||||
return;
|
||||
|
||||
for (;;)
|
||||
{
|
||||
if (tex2D(tex_mask, p1.x, p1.y))
|
||||
{
|
||||
gap = 0;
|
||||
|
||||
if (!inLine)
|
||||
{
|
||||
line_end[0] = p1;
|
||||
line_end[1] = p1;
|
||||
inLine = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
line_end[1] = p1;
|
||||
}
|
||||
}
|
||||
else if (inLine)
|
||||
{
|
||||
if (++gap > lineGap)
|
||||
{
|
||||
bool good_line = ::abs(line_end[1].x - line_end[0].x) >= lineLength ||
|
||||
::abs(line_end[1].y - line_end[0].y) >= lineLength;
|
||||
|
||||
if (good_line)
|
||||
{
|
||||
const int ind = ::atomicAdd(&g_counter, 1);
|
||||
if (ind < maxSize)
|
||||
out[ind] = make_int4(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y);
|
||||
}
|
||||
|
||||
gap = 0;
|
||||
inLine = false;
|
||||
}
|
||||
}
|
||||
|
||||
p1 = p1 + d;
|
||||
if (p1.x < 0 || p1.x >= cols || p1.y < 0 || p1.y >= rows)
|
||||
{
|
||||
if (inLine)
|
||||
{
|
||||
bool good_line = ::abs(line_end[1].x - line_end[0].x) >= lineLength ||
|
||||
::abs(line_end[1].y - line_end[0].y) >= lineLength;
|
||||
|
||||
if (good_line)
|
||||
{
|
||||
const int ind = ::atomicAdd(&g_counter, 1);
|
||||
if (ind < maxSize)
|
||||
out[ind] = make_int4(line_end[0].x, line_end[0].y, line_end[1].x, line_end[1].y);
|
||||
}
|
||||
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int houghLinesProbabilistic_gpu(PtrStepSzb mask, PtrStepSzi accum, int4* out, int maxSize, float rho, float theta, int lineGap, int lineLength)
|
||||
{
|
||||
void* counterPtr;
|
||||
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
|
||||
|
||||
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
|
||||
|
||||
const dim3 block(32, 8);
|
||||
const dim3 grid(divUp(accum.cols - 2, block.x), divUp(accum.rows - 2, block.y));
|
||||
|
||||
bindTexture(&tex_mask, mask);
|
||||
|
||||
houghLinesProbabilistic<<<grid, block>>>(accum,
|
||||
out, maxSize,
|
||||
rho, theta,
|
||||
lineGap, lineLength,
|
||||
mask.rows, mask.cols);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
int totalCount;
|
||||
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
totalCount = ::min(totalCount, maxSize);
|
||||
|
||||
return totalCount;
|
||||
}
|
||||
}
|
||||
}}}
|
||||
|
||||
|
||||
#endif /* CUDA_DISABLER */
|
@ -45,539 +45,15 @@
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||||
|
||||
Ptr<gpu::HoughLinesDetector> cv::gpu::createHoughLinesDetector(float, float, int, bool, int) { throw_no_cuda(); return Ptr<HoughLinesDetector>(); }
|
||||
|
||||
Ptr<gpu::HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float, float, int, int, int) { throw_no_cuda(); return Ptr<HoughSegmentDetector>(); }
|
||||
|
||||
Ptr<gpu::HoughCirclesDetector> cv::gpu::createHoughCirclesDetector(float, float, int, int, int, int, int) { throw_no_cuda(); return Ptr<HoughCirclesDetector>(); }
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || !defined(HAVE_OPENCV_GPUARITHM)
|
||||
|
||||
Ptr<gpu::GeneralizedHough> cv::gpu::GeneralizedHough::create(int) { throw_no_cuda(); return Ptr<GeneralizedHough>(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
#include "opencv2/core/utility.hpp"
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough
|
||||
{
|
||||
int buildPointList_gpu(PtrStepSzb src, unsigned int* list);
|
||||
}
|
||||
}}}
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// HoughLinesDetector
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough
|
||||
{
|
||||
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20);
|
||||
int linesGetResult_gpu(PtrStepSzi accum, float2* out, int* votes, int maxSize, float rho, float theta, int threshold, bool doSort);
|
||||
}
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
class HoughLinesDetectorImpl : public HoughLinesDetector
|
||||
{
|
||||
public:
|
||||
HoughLinesDetectorImpl(float rho, float theta, int threshold, bool doSort, int maxLines) :
|
||||
rho_(rho), theta_(theta), threshold_(threshold), doSort_(doSort), maxLines_(maxLines)
|
||||
{
|
||||
}
|
||||
|
||||
void detect(InputArray src, OutputArray lines);
|
||||
void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
|
||||
|
||||
void setRho(float rho) { rho_ = rho; }
|
||||
float getRho() const { return rho_; }
|
||||
|
||||
void setTheta(float theta) { theta_ = theta; }
|
||||
float getTheta() const { return theta_; }
|
||||
|
||||
void setThreshold(int threshold) { threshold_ = threshold; }
|
||||
int getThreshold() const { return threshold_; }
|
||||
|
||||
void setDoSort(bool doSort) { doSort_ = doSort; }
|
||||
bool getDoSort() const { return doSort_; }
|
||||
|
||||
void setMaxLines(int maxLines) { maxLines_ = maxLines; }
|
||||
int getMaxLines() const { return maxLines_; }
|
||||
|
||||
void write(FileStorage& fs) const
|
||||
{
|
||||
fs << "name" << "HoughLinesDetector_GPU"
|
||||
<< "rho" << rho_
|
||||
<< "theta" << theta_
|
||||
<< "threshold" << threshold_
|
||||
<< "doSort" << doSort_
|
||||
<< "maxLines" << maxLines_;
|
||||
}
|
||||
|
||||
void read(const FileNode& fn)
|
||||
{
|
||||
CV_Assert( String(fn["name"]) == "HoughLinesDetector_GPU" );
|
||||
rho_ = (float)fn["rho"];
|
||||
theta_ = (float)fn["theta"];
|
||||
threshold_ = (int)fn["threshold"];
|
||||
doSort_ = (int)fn["doSort"] != 0;
|
||||
maxLines_ = (int)fn["maxLines"];
|
||||
}
|
||||
|
||||
private:
|
||||
float rho_;
|
||||
float theta_;
|
||||
int threshold_;
|
||||
bool doSort_;
|
||||
int maxLines_;
|
||||
|
||||
GpuMat accum_;
|
||||
GpuMat list_;
|
||||
GpuMat result_;
|
||||
};
|
||||
|
||||
void HoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines)
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
|
||||
GpuMat src = _src.getGpuMat();
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
||||
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
||||
|
||||
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_);
|
||||
unsigned int* srcPoints = list_.ptr<unsigned int>();
|
||||
|
||||
const int pointsCount = buildPointList_gpu(src, srcPoints);
|
||||
if (pointsCount == 0)
|
||||
{
|
||||
lines.release();
|
||||
return;
|
||||
}
|
||||
|
||||
const int numangle = cvRound(CV_PI / theta_);
|
||||
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_);
|
||||
CV_Assert( numangle > 0 && numrho > 0 );
|
||||
|
||||
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_);
|
||||
accum_.setTo(Scalar::all(0));
|
||||
|
||||
DeviceInfo devInfo;
|
||||
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
|
||||
|
||||
ensureSizeIsEnough(2, maxLines_, CV_32FC2, result_);
|
||||
|
||||
int linesCount = linesGetResult_gpu(accum_, result_.ptr<float2>(0), result_.ptr<int>(1), maxLines_, rho_, theta_, threshold_, doSort_);
|
||||
|
||||
if (linesCount == 0)
|
||||
{
|
||||
lines.release();
|
||||
return;
|
||||
}
|
||||
|
||||
result_.cols = linesCount;
|
||||
result_.copyTo(lines);
|
||||
}
|
||||
|
||||
void HoughLinesDetectorImpl::downloadResults(InputArray _d_lines, OutputArray h_lines, OutputArray h_votes)
|
||||
{
|
||||
GpuMat d_lines = _d_lines.getGpuMat();
|
||||
|
||||
if (d_lines.empty())
|
||||
{
|
||||
h_lines.release();
|
||||
if (h_votes.needed())
|
||||
h_votes.release();
|
||||
return;
|
||||
}
|
||||
|
||||
CV_Assert( d_lines.rows == 2 && d_lines.type() == CV_32FC2 );
|
||||
|
||||
d_lines.row(0).download(h_lines);
|
||||
|
||||
if (h_votes.needed())
|
||||
{
|
||||
GpuMat d_votes(1, d_lines.cols, CV_32SC1, d_lines.ptr<int>(1));
|
||||
d_votes.download(h_votes);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ptr<HoughLinesDetector> cv::gpu::createHoughLinesDetector(float rho, float theta, int threshold, bool doSort, int maxLines)
|
||||
{
|
||||
return new HoughLinesDetectorImpl(rho, theta, threshold, doSort, maxLines);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// HoughLinesP
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough
|
||||
{
|
||||
int houghLinesProbabilistic_gpu(PtrStepSzb mask, PtrStepSzi accum, int4* out, int maxSize, float rho, float theta, int lineGap, int lineLength);
|
||||
}
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
class PHoughLinesDetectorImpl : public HoughSegmentDetector
|
||||
{
|
||||
public:
|
||||
PHoughLinesDetectorImpl(float rho, float theta, int minLineLength, int maxLineGap, int maxLines) :
|
||||
rho_(rho), theta_(theta), minLineLength_(minLineLength), maxLineGap_(maxLineGap), maxLines_(maxLines)
|
||||
{
|
||||
}
|
||||
|
||||
void detect(InputArray src, OutputArray lines);
|
||||
|
||||
void setRho(float rho) { rho_ = rho; }
|
||||
float getRho() const { return rho_; }
|
||||
|
||||
void setTheta(float theta) { theta_ = theta; }
|
||||
float getTheta() const { return theta_; }
|
||||
|
||||
void setMinLineLength(int minLineLength) { minLineLength_ = minLineLength; }
|
||||
int getMinLineLength() const { return minLineLength_; }
|
||||
|
||||
void setMaxLineGap(int maxLineGap) { maxLineGap_ = maxLineGap; }
|
||||
int getMaxLineGap() const { return maxLineGap_; }
|
||||
|
||||
void setMaxLines(int maxLines) { maxLines_ = maxLines; }
|
||||
int getMaxLines() const { return maxLines_; }
|
||||
|
||||
void write(FileStorage& fs) const
|
||||
{
|
||||
fs << "name" << "PHoughLinesDetector_GPU"
|
||||
<< "rho" << rho_
|
||||
<< "theta" << theta_
|
||||
<< "minLineLength" << minLineLength_
|
||||
<< "maxLineGap" << maxLineGap_
|
||||
<< "maxLines" << maxLines_;
|
||||
}
|
||||
|
||||
void read(const FileNode& fn)
|
||||
{
|
||||
CV_Assert( String(fn["name"]) == "PHoughLinesDetector_GPU" );
|
||||
rho_ = (float)fn["rho"];
|
||||
theta_ = (float)fn["theta"];
|
||||
minLineLength_ = (int)fn["minLineLength"];
|
||||
maxLineGap_ = (int)fn["maxLineGap"];
|
||||
maxLines_ = (int)fn["maxLines"];
|
||||
}
|
||||
|
||||
private:
|
||||
float rho_;
|
||||
float theta_;
|
||||
int minLineLength_;
|
||||
int maxLineGap_;
|
||||
int maxLines_;
|
||||
|
||||
GpuMat accum_;
|
||||
GpuMat list_;
|
||||
GpuMat result_;
|
||||
};
|
||||
|
||||
void PHoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines)
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
|
||||
GpuMat src = _src.getGpuMat();
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
||||
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
||||
|
||||
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_);
|
||||
unsigned int* srcPoints = list_.ptr<unsigned int>();
|
||||
|
||||
const int pointsCount = buildPointList_gpu(src, srcPoints);
|
||||
if (pointsCount == 0)
|
||||
{
|
||||
lines.release();
|
||||
return;
|
||||
}
|
||||
|
||||
const int numangle = cvRound(CV_PI / theta_);
|
||||
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_);
|
||||
CV_Assert( numangle > 0 && numrho > 0 );
|
||||
|
||||
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_);
|
||||
accum_.setTo(Scalar::all(0));
|
||||
|
||||
DeviceInfo devInfo;
|
||||
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
|
||||
|
||||
ensureSizeIsEnough(1, maxLines_, CV_32SC4, result_);
|
||||
|
||||
int linesCount = houghLinesProbabilistic_gpu(src, accum_, result_.ptr<int4>(), maxLines_, rho_, theta_, maxLineGap_, minLineLength_);
|
||||
|
||||
if (linesCount == 0)
|
||||
{
|
||||
lines.release();
|
||||
return;
|
||||
}
|
||||
|
||||
result_.cols = linesCount;
|
||||
result_.copyTo(lines);
|
||||
}
|
||||
}
|
||||
|
||||
Ptr<HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines)
|
||||
{
|
||||
return new PHoughLinesDetectorImpl(rho, theta, minLineLength, maxLineGap, maxLines);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// HoughCircles
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough
|
||||
{
|
||||
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, PtrStepSzi accum, int minRadius, int maxRadius, float idp);
|
||||
int buildCentersList_gpu(PtrStepSzi accum, unsigned int* centers, int threshold);
|
||||
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count,
|
||||
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20);
|
||||
}
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
class HoughCirclesDetectorImpl : public HoughCirclesDetector
|
||||
{
|
||||
public:
|
||||
HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles);
|
||||
|
||||
void detect(InputArray src, OutputArray circles);
|
||||
|
||||
void setDp(float dp) { dp_ = dp; }
|
||||
float getDp() const { return dp_; }
|
||||
|
||||
void setMinDist(float minDist) { minDist_ = minDist; }
|
||||
float getMinDist() const { return minDist_; }
|
||||
|
||||
void setCannyThreshold(int cannyThreshold) { cannyThreshold_ = cannyThreshold; }
|
||||
int getCannyThreshold() const { return cannyThreshold_; }
|
||||
|
||||
void setVotesThreshold(int votesThreshold) { votesThreshold_ = votesThreshold; }
|
||||
int getVotesThreshold() const { return votesThreshold_; }
|
||||
|
||||
void setMinRadius(int minRadius) { minRadius_ = minRadius; }
|
||||
int getMinRadius() const { return minRadius_; }
|
||||
|
||||
void setMaxRadius(int maxRadius) { maxRadius_ = maxRadius; }
|
||||
int getMaxRadius() const { return maxRadius_; }
|
||||
|
||||
void setMaxCircles(int maxCircles) { maxCircles_ = maxCircles; }
|
||||
int getMaxCircles() const { return maxCircles_; }
|
||||
|
||||
void write(FileStorage& fs) const
|
||||
{
|
||||
fs << "name" << "HoughCirclesDetector_GPU"
|
||||
<< "dp" << dp_
|
||||
<< "minDist" << minDist_
|
||||
<< "cannyThreshold" << cannyThreshold_
|
||||
<< "votesThreshold" << votesThreshold_
|
||||
<< "minRadius" << minRadius_
|
||||
<< "maxRadius" << maxRadius_
|
||||
<< "maxCircles" << maxCircles_;
|
||||
}
|
||||
|
||||
void read(const FileNode& fn)
|
||||
{
|
||||
CV_Assert( String(fn["name"]) == "HoughCirclesDetector_GPU" );
|
||||
dp_ = (float)fn["dp"];
|
||||
minDist_ = (float)fn["minDist"];
|
||||
cannyThreshold_ = (int)fn["cannyThreshold"];
|
||||
votesThreshold_ = (int)fn["votesThreshold"];
|
||||
minRadius_ = (int)fn["minRadius"];
|
||||
maxRadius_ = (int)fn["maxRadius"];
|
||||
maxCircles_ = (int)fn["maxCircles"];
|
||||
}
|
||||
|
||||
private:
|
||||
float dp_;
|
||||
float minDist_;
|
||||
int cannyThreshold_;
|
||||
int votesThreshold_;
|
||||
int minRadius_;
|
||||
int maxRadius_;
|
||||
int maxCircles_;
|
||||
|
||||
GpuMat dx_, dy_;
|
||||
GpuMat edges_;
|
||||
GpuMat accum_;
|
||||
GpuMat list_;
|
||||
GpuMat result_;
|
||||
Ptr<gpu::Filter> filterDx_;
|
||||
Ptr<gpu::Filter> filterDy_;
|
||||
Ptr<gpu::CannyEdgeDetector> canny_;
|
||||
};
|
||||
|
||||
HoughCirclesDetectorImpl::HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold,
|
||||
int minRadius, int maxRadius, int maxCircles) :
|
||||
dp_(dp), minDist_(minDist), cannyThreshold_(cannyThreshold), votesThreshold_(votesThreshold),
|
||||
minRadius_(minRadius), maxRadius_(maxRadius), maxCircles_(maxCircles)
|
||||
{
|
||||
canny_ = gpu::createCannyEdgeDetector(std::max(cannyThreshold_ / 2, 1), cannyThreshold_);
|
||||
|
||||
filterDx_ = gpu::createSobelFilter(CV_8UC1, CV_32S, 1, 0);
|
||||
filterDy_ = gpu::createSobelFilter(CV_8UC1, CV_32S, 0, 1);
|
||||
}
|
||||
|
||||
void HoughCirclesDetectorImpl::detect(InputArray _src, OutputArray circles)
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
|
||||
GpuMat src = _src.getGpuMat();
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
||||
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
||||
CV_Assert( dp_ > 0 );
|
||||
CV_Assert( minRadius_ > 0 && maxRadius_ > minRadius_ );
|
||||
CV_Assert( cannyThreshold_ > 0 );
|
||||
CV_Assert( votesThreshold_ > 0 );
|
||||
CV_Assert( maxCircles_ > 0 );
|
||||
|
||||
const float idp = 1.0f / dp_;
|
||||
|
||||
filterDx_->apply(src, dx_);
|
||||
filterDy_->apply(src, dy_);
|
||||
|
||||
canny_->setLowThreshold(std::max(cannyThreshold_ / 2, 1));
|
||||
canny_->setHighThreshold(cannyThreshold_);
|
||||
|
||||
canny_->detect(dx_, dy_, edges_);
|
||||
|
||||
ensureSizeIsEnough(2, src.size().area(), CV_32SC1, list_);
|
||||
unsigned int* srcPoints = list_.ptr<unsigned int>(0);
|
||||
unsigned int* centers = list_.ptr<unsigned int>(1);
|
||||
|
||||
const int pointsCount = buildPointList_gpu(edges_, srcPoints);
|
||||
if (pointsCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, accum_);
|
||||
accum_.setTo(Scalar::all(0));
|
||||
|
||||
circlesAccumCenters_gpu(srcPoints, pointsCount, dx_, dy_, accum_, minRadius_, maxRadius_, idp);
|
||||
|
||||
int centersCount = buildCentersList_gpu(accum_, centers, votesThreshold_);
|
||||
if (centersCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
|
||||
if (minDist_ > 1)
|
||||
{
|
||||
AutoBuffer<ushort2> oldBuf_(centersCount);
|
||||
AutoBuffer<ushort2> newBuf_(centersCount);
|
||||
int newCount = 0;
|
||||
|
||||
ushort2* oldBuf = oldBuf_;
|
||||
ushort2* newBuf = newBuf_;
|
||||
|
||||
cudaSafeCall( cudaMemcpy(oldBuf, centers, centersCount * sizeof(ushort2), cudaMemcpyDeviceToHost) );
|
||||
|
||||
const int cellSize = cvRound(minDist_);
|
||||
const int gridWidth = (src.cols + cellSize - 1) / cellSize;
|
||||
const int gridHeight = (src.rows + cellSize - 1) / cellSize;
|
||||
|
||||
std::vector< std::vector<ushort2> > grid(gridWidth * gridHeight);
|
||||
|
||||
const float minDist2 = minDist_ * minDist_;
|
||||
|
||||
for (int i = 0; i < centersCount; ++i)
|
||||
{
|
||||
ushort2 p = oldBuf[i];
|
||||
|
||||
bool good = true;
|
||||
|
||||
int xCell = static_cast<int>(p.x / cellSize);
|
||||
int yCell = static_cast<int>(p.y / cellSize);
|
||||
|
||||
int x1 = xCell - 1;
|
||||
int y1 = yCell - 1;
|
||||
int x2 = xCell + 1;
|
||||
int y2 = yCell + 1;
|
||||
|
||||
// boundary check
|
||||
x1 = std::max(0, x1);
|
||||
y1 = std::max(0, y1);
|
||||
x2 = std::min(gridWidth - 1, x2);
|
||||
y2 = std::min(gridHeight - 1, y2);
|
||||
|
||||
for (int yy = y1; yy <= y2; ++yy)
|
||||
{
|
||||
for (int xx = x1; xx <= x2; ++xx)
|
||||
{
|
||||
std::vector<ushort2>& m = grid[yy * gridWidth + xx];
|
||||
|
||||
for(size_t j = 0; j < m.size(); ++j)
|
||||
{
|
||||
float dx = (float)(p.x - m[j].x);
|
||||
float dy = (float)(p.y - m[j].y);
|
||||
|
||||
if (dx * dx + dy * dy < minDist2)
|
||||
{
|
||||
good = false;
|
||||
goto break_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
break_out:
|
||||
|
||||
if(good)
|
||||
{
|
||||
grid[yCell * gridWidth + xCell].push_back(p);
|
||||
|
||||
newBuf[newCount++] = p;
|
||||
}
|
||||
}
|
||||
|
||||
cudaSafeCall( cudaMemcpy(centers, newBuf, newCount * sizeof(unsigned int), cudaMemcpyHostToDevice) );
|
||||
centersCount = newCount;
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(1, maxCircles_, CV_32FC3, result_);
|
||||
|
||||
int circlesCount = circlesAccumRadius_gpu(centers, centersCount, srcPoints, pointsCount, result_.ptr<float3>(), maxCircles_,
|
||||
dp_, minRadius_, maxRadius_, votesThreshold_, deviceSupports(FEATURE_SET_COMPUTE_20));
|
||||
|
||||
if (circlesCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
|
||||
result_.cols = circlesCount;
|
||||
result_.copyTo(circles);
|
||||
}
|
||||
}
|
||||
|
||||
Ptr<HoughCirclesDetector> cv::gpu::createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
|
||||
{
|
||||
return new HoughCirclesDetectorImpl(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////
|
||||
// GeneralizedHough
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough
|
||||
namespace ght
|
||||
{
|
||||
template <typename T>
|
||||
int buildEdgePointList_gpu(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
|
||||
@ -585,52 +61,52 @@ namespace cv { namespace gpu { namespace cudev
|
||||
PtrStepSz<short2> r_table, int* r_sizes,
|
||||
short2 templCenter, int levels);
|
||||
|
||||
void GHT_Ballard_Pos_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
|
||||
PtrStepSz<short2> r_table, const int* r_sizes,
|
||||
PtrStepSzi hist,
|
||||
float dp, int levels);
|
||||
int GHT_Ballard_Pos_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int maxSize, float dp, int threshold);
|
||||
void Ballard_Pos_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
|
||||
PtrStepSz<short2> r_table, const int* r_sizes,
|
||||
PtrStepSzi hist,
|
||||
float dp, int levels);
|
||||
int Ballard_Pos_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int maxSize, float dp, int threshold);
|
||||
|
||||
void GHT_Ballard_PosScale_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
|
||||
PtrStepSz<short2> r_table, const int* r_sizes,
|
||||
PtrStepi hist, int rows, int cols,
|
||||
float minScale, float scaleStep, int scaleRange,
|
||||
float dp, int levels);
|
||||
int GHT_Ballard_PosScale_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int scaleRange, float4* out, int3* votes, int maxSize,
|
||||
float minScale, float scaleStep, float dp, int threshold);
|
||||
void Ballard_PosScale_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
|
||||
PtrStepSz<short2> r_table, const int* r_sizes,
|
||||
PtrStepi hist, int rows, int cols,
|
||||
float minScale, float scaleStep, int scaleRange,
|
||||
float dp, int levels);
|
||||
int Ballard_PosScale_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int scaleRange, float4* out, int3* votes, int maxSize,
|
||||
float minScale, float scaleStep, float dp, int threshold);
|
||||
|
||||
void GHT_Ballard_PosRotation_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
|
||||
PtrStepSz<short2> r_table, const int* r_sizes,
|
||||
PtrStepi hist, int rows, int cols,
|
||||
float minAngle, float angleStep, int angleRange,
|
||||
float dp, int levels);
|
||||
int GHT_Ballard_PosRotation_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int angleRange, float4* out, int3* votes, int maxSize,
|
||||
float minAngle, float angleStep, float dp, int threshold);
|
||||
void Ballard_PosRotation_calcHist_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
|
||||
PtrStepSz<short2> r_table, const int* r_sizes,
|
||||
PtrStepi hist, int rows, int cols,
|
||||
float minAngle, float angleStep, int angleRange,
|
||||
float dp, int levels);
|
||||
int Ballard_PosRotation_findPosInHist_gpu(PtrStepi hist, int rows, int cols, int angleRange, float4* out, int3* votes, int maxSize,
|
||||
float minAngle, float angleStep, float dp, int threshold);
|
||||
|
||||
void GHT_Guil_Full_setTemplFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
|
||||
void GHT_Guil_Full_setImageFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
|
||||
void GHT_Guil_Full_buildTemplFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
|
||||
int* sizes, int maxSize,
|
||||
float xi, float angleEpsilon, int levels,
|
||||
float2 center, float maxDist);
|
||||
void GHT_Guil_Full_buildImageFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
|
||||
int* sizes, int maxSize,
|
||||
float xi, float angleEpsilon, int levels,
|
||||
float2 center, float maxDist);
|
||||
void GHT_Guil_Full_calcOHist_gpu(const int* templSizes, const int* imageSizes, int* OHist,
|
||||
float minAngle, float maxAngle, float angleStep, int angleRange,
|
||||
int levels, int tMaxSize);
|
||||
void GHT_Guil_Full_calcSHist_gpu(const int* templSizes, const int* imageSizes, int* SHist,
|
||||
float angle, float angleEpsilon,
|
||||
float minScale, float maxScale, float iScaleStep, int scaleRange,
|
||||
int levels, int tMaxSize);
|
||||
void GHT_Guil_Full_calcPHist_gpu(const int* templSizes, const int* imageSizes, PtrStepSzi PHist,
|
||||
float angle, float angleEpsilon, float scale,
|
||||
float dp,
|
||||
int levels, int tMaxSize);
|
||||
int GHT_Guil_Full_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int curSize, int maxSize,
|
||||
float angle, int angleVotes, float scale, int scaleVotes,
|
||||
float dp, int threshold);
|
||||
void Guil_Full_setTemplFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
|
||||
void Guil_Full_setImageFeatures(PtrStepb p1_pos, PtrStepb p1_theta, PtrStepb p2_pos, PtrStepb d12, PtrStepb r1, PtrStepb r2);
|
||||
void Guil_Full_buildTemplFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
|
||||
int* sizes, int maxSize,
|
||||
float xi, float angleEpsilon, int levels,
|
||||
float2 center, float maxDist);
|
||||
void Guil_Full_buildImageFeatureList_gpu(const unsigned int* coordList, const float* thetaList, int pointsCount,
|
||||
int* sizes, int maxSize,
|
||||
float xi, float angleEpsilon, int levels,
|
||||
float2 center, float maxDist);
|
||||
void Guil_Full_calcOHist_gpu(const int* templSizes, const int* imageSizes, int* OHist,
|
||||
float minAngle, float maxAngle, float angleStep, int angleRange,
|
||||
int levels, int tMaxSize);
|
||||
void Guil_Full_calcSHist_gpu(const int* templSizes, const int* imageSizes, int* SHist,
|
||||
float angle, float angleEpsilon,
|
||||
float minScale, float maxScale, float iScaleStep, int scaleRange,
|
||||
int levels, int tMaxSize);
|
||||
void Guil_Full_calcPHist_gpu(const int* templSizes, const int* imageSizes, PtrStepSzi PHist,
|
||||
float angle, float angleEpsilon, float scale,
|
||||
float dp,
|
||||
int levels, int tMaxSize);
|
||||
int Guil_Full_findPosInHist_gpu(PtrStepSzi hist, float4* out, int3* votes, int curSize, int maxSize,
|
||||
float angle, int angleVotes, float scale, int scaleVotes,
|
||||
float dp, int threshold);
|
||||
}
|
||||
}}}
|
||||
|
||||
@ -889,7 +365,7 @@ namespace
|
||||
|
||||
void GHT_Pos::buildEdgePointList(const GpuMat& edges, const GpuMat& dx, const GpuMat& dy)
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
typedef int (*func_t)(PtrStepSzb edges, PtrStepSzb dx, PtrStepSzb dy, unsigned int* coordList, float* thetaList);
|
||||
static const func_t funcs[] =
|
||||
@ -1077,7 +553,7 @@ namespace
|
||||
|
||||
void GHT_Ballard_Pos::processTempl()
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
CV_Assert(levels > 0);
|
||||
|
||||
@ -1103,7 +579,7 @@ namespace
|
||||
|
||||
void GHT_Ballard_Pos::calcHist()
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1));
|
||||
CV_Assert(dp > 0.0);
|
||||
@ -1117,22 +593,22 @@ namespace
|
||||
|
||||
if (edgePointList.cols > 0)
|
||||
{
|
||||
GHT_Ballard_Pos_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
|
||||
r_table, r_sizes.ptr<int>(),
|
||||
hist,
|
||||
(float)dp, levels);
|
||||
Ballard_Pos_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
|
||||
r_table, r_sizes.ptr<int>(),
|
||||
hist,
|
||||
(float)dp, levels);
|
||||
}
|
||||
}
|
||||
|
||||
void GHT_Ballard_Pos::findPosInHist()
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
CV_Assert(votesThreshold > 0);
|
||||
|
||||
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
|
||||
|
||||
posCount = GHT_Ballard_Pos_findPosInHist_gpu(hist, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)dp, votesThreshold);
|
||||
posCount = Ballard_Pos_findPosInHist_gpu(hist, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)dp, votesThreshold);
|
||||
}
|
||||
|
||||
/////////////////////////////////////
|
||||
@ -1181,7 +657,7 @@ namespace
|
||||
|
||||
void GHT_Ballard_PosScale::calcHist()
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1));
|
||||
CV_Assert(dp > 0.0);
|
||||
@ -1200,16 +676,16 @@ namespace
|
||||
|
||||
if (edgePointList.cols > 0)
|
||||
{
|
||||
GHT_Ballard_PosScale_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
|
||||
r_table, r_sizes.ptr<int>(),
|
||||
hist, rows, cols,
|
||||
(float)minScale, (float)scaleStep, scaleRange, (float)dp, levels);
|
||||
Ballard_PosScale_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
|
||||
r_table, r_sizes.ptr<int>(),
|
||||
hist, rows, cols,
|
||||
(float)minScale, (float)scaleStep, scaleRange, (float)dp, levels);
|
||||
}
|
||||
}
|
||||
|
||||
void GHT_Ballard_PosScale::findPosInHist()
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
CV_Assert(votesThreshold > 0);
|
||||
|
||||
@ -1220,7 +696,7 @@ namespace
|
||||
|
||||
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
|
||||
|
||||
posCount = GHT_Ballard_PosScale_findPosInHist_gpu(hist, rows, cols, scaleRange, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)minScale, (float)scaleStep, (float)dp, votesThreshold);
|
||||
posCount = Ballard_PosScale_findPosInHist_gpu(hist, rows, cols, scaleRange, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)minScale, (float)scaleStep, (float)dp, votesThreshold);
|
||||
}
|
||||
|
||||
/////////////////////////////////////
|
||||
@ -1269,7 +745,7 @@ namespace
|
||||
|
||||
void GHT_Ballard_PosRotation::calcHist()
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
CV_Assert(levels > 0 && r_table.rows == (levels + 1) && r_sizes.cols == (levels + 1));
|
||||
CV_Assert(dp > 0.0);
|
||||
@ -1288,16 +764,16 @@ namespace
|
||||
|
||||
if (edgePointList.cols > 0)
|
||||
{
|
||||
GHT_Ballard_PosRotation_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
|
||||
r_table, r_sizes.ptr<int>(),
|
||||
hist, rows, cols,
|
||||
(float)minAngle, (float)angleStep, angleRange, (float)dp, levels);
|
||||
Ballard_PosRotation_calcHist_gpu(edgePointList.ptr<unsigned int>(0), edgePointList.ptr<float>(1), edgePointList.cols,
|
||||
r_table, r_sizes.ptr<int>(),
|
||||
hist, rows, cols,
|
||||
(float)minAngle, (float)angleStep, angleRange, (float)dp, levels);
|
||||
}
|
||||
}
|
||||
|
||||
void GHT_Ballard_PosRotation::findPosInHist()
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
CV_Assert(votesThreshold > 0);
|
||||
|
||||
@ -1308,7 +784,7 @@ namespace
|
||||
|
||||
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
|
||||
|
||||
posCount = GHT_Ballard_PosRotation_findPosInHist_gpu(hist, rows, cols, angleRange, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)minAngle, (float)angleStep, (float)dp, votesThreshold);
|
||||
posCount = Ballard_PosRotation_findPosInHist_gpu(hist, rows, cols, angleRange, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1), maxSize, (float)minAngle, (float)angleStep, (float)dp, votesThreshold);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////
|
||||
@ -1476,10 +952,10 @@ namespace
|
||||
|
||||
void GHT_Guil_Full::processTempl()
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
buildFeatureList(templEdges, templDx, templDy, templFeatures,
|
||||
GHT_Guil_Full_setTemplFeatures, GHT_Guil_Full_buildTemplFeatureList_gpu,
|
||||
Guil_Full_setTemplFeatures, Guil_Full_buildTemplFeatureList_gpu,
|
||||
true, templCenter);
|
||||
|
||||
h_buf.resize(templFeatures.sizes.cols);
|
||||
@ -1489,7 +965,7 @@ namespace
|
||||
|
||||
void GHT_Guil_Full::processImage()
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
CV_Assert(levels > 0);
|
||||
CV_Assert(templFeatures.sizes.cols == levels + 1);
|
||||
@ -1518,7 +994,7 @@ namespace
|
||||
ensureSizeIsEnough(2, maxSize, CV_32FC4, outBuf);
|
||||
|
||||
buildFeatureList(imageEdges, imageDx, imageDy, imageFeatures,
|
||||
GHT_Guil_Full_setImageFeatures, GHT_Guil_Full_buildImageFeatureList_gpu,
|
||||
Guil_Full_setImageFeatures, Guil_Full_buildImageFeatureList_gpu,
|
||||
false);
|
||||
|
||||
calcOrientation();
|
||||
@ -1601,14 +1077,14 @@ namespace
|
||||
|
||||
void GHT_Guil_Full::calcOrientation()
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
const double iAngleStep = 1.0 / angleStep;
|
||||
const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep);
|
||||
|
||||
hist.setTo(Scalar::all(0));
|
||||
GHT_Guil_Full_calcOHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0),
|
||||
hist.ptr<int>(), (float)minAngle, (float)maxAngle, (float)angleStep, angleRange, levels, templFeatures.maxSize);
|
||||
Guil_Full_calcOHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0), hist.ptr<int>(),
|
||||
(float)minAngle, (float)maxAngle, (float)angleStep, angleRange, levels, templFeatures.maxSize);
|
||||
cudaSafeCall( cudaMemcpy(&h_buf[0], hist.data, h_buf.size() * sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
angles.clear();
|
||||
@ -1625,14 +1101,15 @@ namespace
|
||||
|
||||
void GHT_Guil_Full::calcScale(double angle)
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
const double iScaleStep = 1.0 / scaleStep;
|
||||
const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep);
|
||||
|
||||
hist.setTo(Scalar::all(0));
|
||||
GHT_Guil_Full_calcSHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0),
|
||||
hist.ptr<int>(), (float)angle, (float)angleEpsilon, (float)minScale, (float)maxScale, (float)iScaleStep, scaleRange, levels, templFeatures.maxSize);
|
||||
Guil_Full_calcSHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0), hist.ptr<int>(),
|
||||
(float)angle, (float)angleEpsilon, (float)minScale, (float)maxScale,
|
||||
(float)iScaleStep, scaleRange, levels, templFeatures.maxSize);
|
||||
cudaSafeCall( cudaMemcpy(&h_buf[0], hist.data, h_buf.size() * sizeof(int), cudaMemcpyDeviceToHost) );
|
||||
|
||||
scales.clear();
|
||||
@ -1649,14 +1126,15 @@ namespace
|
||||
|
||||
void GHT_Guil_Full::calcPosition(double angle, int angleVotes, double scale, int scaleVotes)
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::ght;
|
||||
|
||||
hist.setTo(Scalar::all(0));
|
||||
GHT_Guil_Full_calcPHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0),
|
||||
hist,(float) (float)angle, (float)angleEpsilon, (float)scale, (float)dp, levels, templFeatures.maxSize);
|
||||
Guil_Full_calcPHist_gpu(templFeatures.sizes.ptr<int>(), imageFeatures.sizes.ptr<int>(0), hist,
|
||||
(float)angle, (float)angleEpsilon, (float)scale, (float)dp, levels, templFeatures.maxSize);
|
||||
|
||||
posCount = GHT_Guil_Full_findPosInHist_gpu(hist, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1),
|
||||
posCount, maxSize, (float)angle, angleVotes, (float)scale, scaleVotes, (float)dp, posThresh);
|
||||
posCount = Guil_Full_findPosInHist_gpu(hist, outBuf.ptr<float4>(0), outBuf.ptr<int3>(1),
|
||||
posCount, maxSize, (float)angle, angleVotes,
|
||||
(float)scale, scaleVotes, (float)dp, posThresh);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1679,10 +1157,11 @@ Ptr<gpu::GeneralizedHough> cv::gpu::GeneralizedHough::create(int method)
|
||||
case (cv::GeneralizedHough::GHT_POSITION | cv::GeneralizedHough::GHT_SCALE | cv::GeneralizedHough::GHT_ROTATION):
|
||||
CV_Assert( !GHT_Guil_Full_info_auto.name().empty() );
|
||||
return new GHT_Guil_Full();
|
||||
}
|
||||
|
||||
CV_Error(Error::StsBadArg, "Unsupported method");
|
||||
return Ptr<GeneralizedHough>();
|
||||
default:
|
||||
CV_Error(Error::StsBadArg, "Unsupported method");
|
||||
return Ptr<GeneralizedHough>();
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
297
modules/gpuimgproc/src/hough_circles.cpp
Normal file
297
modules/gpuimgproc/src/hough_circles.cpp
Normal file
@ -0,0 +1,297 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||||
|
||||
Ptr<gpu::HoughCirclesDetector> cv::gpu::createHoughCirclesDetector(float, float, int, int, int, int, int) { throw_no_cuda(); return Ptr<HoughCirclesDetector>(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough
|
||||
{
|
||||
int buildPointList_gpu(PtrStepSzb src, unsigned int* list);
|
||||
}
|
||||
|
||||
namespace hough_circles
|
||||
{
|
||||
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, PtrStepSzi accum, int minRadius, int maxRadius, float idp);
|
||||
int buildCentersList_gpu(PtrStepSzi accum, unsigned int* centers, int threshold);
|
||||
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count,
|
||||
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20);
|
||||
}
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
class HoughCirclesDetectorImpl : public HoughCirclesDetector
|
||||
{
|
||||
public:
|
||||
HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles);
|
||||
|
||||
void detect(InputArray src, OutputArray circles);
|
||||
|
||||
void setDp(float dp) { dp_ = dp; }
|
||||
float getDp() const { return dp_; }
|
||||
|
||||
void setMinDist(float minDist) { minDist_ = minDist; }
|
||||
float getMinDist() const { return minDist_; }
|
||||
|
||||
void setCannyThreshold(int cannyThreshold) { cannyThreshold_ = cannyThreshold; }
|
||||
int getCannyThreshold() const { return cannyThreshold_; }
|
||||
|
||||
void setVotesThreshold(int votesThreshold) { votesThreshold_ = votesThreshold; }
|
||||
int getVotesThreshold() const { return votesThreshold_; }
|
||||
|
||||
void setMinRadius(int minRadius) { minRadius_ = minRadius; }
|
||||
int getMinRadius() const { return minRadius_; }
|
||||
|
||||
void setMaxRadius(int maxRadius) { maxRadius_ = maxRadius; }
|
||||
int getMaxRadius() const { return maxRadius_; }
|
||||
|
||||
void setMaxCircles(int maxCircles) { maxCircles_ = maxCircles; }
|
||||
int getMaxCircles() const { return maxCircles_; }
|
||||
|
||||
void write(FileStorage& fs) const
|
||||
{
|
||||
fs << "name" << "HoughCirclesDetector_GPU"
|
||||
<< "dp" << dp_
|
||||
<< "minDist" << minDist_
|
||||
<< "cannyThreshold" << cannyThreshold_
|
||||
<< "votesThreshold" << votesThreshold_
|
||||
<< "minRadius" << minRadius_
|
||||
<< "maxRadius" << maxRadius_
|
||||
<< "maxCircles" << maxCircles_;
|
||||
}
|
||||
|
||||
void read(const FileNode& fn)
|
||||
{
|
||||
CV_Assert( String(fn["name"]) == "HoughCirclesDetector_GPU" );
|
||||
dp_ = (float)fn["dp"];
|
||||
minDist_ = (float)fn["minDist"];
|
||||
cannyThreshold_ = (int)fn["cannyThreshold"];
|
||||
votesThreshold_ = (int)fn["votesThreshold"];
|
||||
minRadius_ = (int)fn["minRadius"];
|
||||
maxRadius_ = (int)fn["maxRadius"];
|
||||
maxCircles_ = (int)fn["maxCircles"];
|
||||
}
|
||||
|
||||
private:
|
||||
float dp_;
|
||||
float minDist_;
|
||||
int cannyThreshold_;
|
||||
int votesThreshold_;
|
||||
int minRadius_;
|
||||
int maxRadius_;
|
||||
int maxCircles_;
|
||||
|
||||
GpuMat dx_, dy_;
|
||||
GpuMat edges_;
|
||||
GpuMat accum_;
|
||||
GpuMat list_;
|
||||
GpuMat result_;
|
||||
Ptr<gpu::Filter> filterDx_;
|
||||
Ptr<gpu::Filter> filterDy_;
|
||||
Ptr<gpu::CannyEdgeDetector> canny_;
|
||||
};
|
||||
|
||||
HoughCirclesDetectorImpl::HoughCirclesDetectorImpl(float dp, float minDist, int cannyThreshold, int votesThreshold,
|
||||
int minRadius, int maxRadius, int maxCircles) :
|
||||
dp_(dp), minDist_(minDist), cannyThreshold_(cannyThreshold), votesThreshold_(votesThreshold),
|
||||
minRadius_(minRadius), maxRadius_(maxRadius), maxCircles_(maxCircles)
|
||||
{
|
||||
canny_ = gpu::createCannyEdgeDetector(std::max(cannyThreshold_ / 2, 1), cannyThreshold_);
|
||||
|
||||
filterDx_ = gpu::createSobelFilter(CV_8UC1, CV_32S, 1, 0);
|
||||
filterDy_ = gpu::createSobelFilter(CV_8UC1, CV_32S, 0, 1);
|
||||
}
|
||||
|
||||
void HoughCirclesDetectorImpl::detect(InputArray _src, OutputArray circles)
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::hough_circles;
|
||||
|
||||
GpuMat src = _src.getGpuMat();
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
||||
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
||||
CV_Assert( dp_ > 0 );
|
||||
CV_Assert( minRadius_ > 0 && maxRadius_ > minRadius_ );
|
||||
CV_Assert( cannyThreshold_ > 0 );
|
||||
CV_Assert( votesThreshold_ > 0 );
|
||||
CV_Assert( maxCircles_ > 0 );
|
||||
|
||||
const float idp = 1.0f / dp_;
|
||||
|
||||
filterDx_->apply(src, dx_);
|
||||
filterDy_->apply(src, dy_);
|
||||
|
||||
canny_->setLowThreshold(std::max(cannyThreshold_ / 2, 1));
|
||||
canny_->setHighThreshold(cannyThreshold_);
|
||||
|
||||
canny_->detect(dx_, dy_, edges_);
|
||||
|
||||
ensureSizeIsEnough(2, src.size().area(), CV_32SC1, list_);
|
||||
unsigned int* srcPoints = list_.ptr<unsigned int>(0);
|
||||
unsigned int* centers = list_.ptr<unsigned int>(1);
|
||||
|
||||
const int pointsCount = buildPointList_gpu(edges_, srcPoints);
|
||||
if (pointsCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, accum_);
|
||||
accum_.setTo(Scalar::all(0));
|
||||
|
||||
circlesAccumCenters_gpu(srcPoints, pointsCount, dx_, dy_, accum_, minRadius_, maxRadius_, idp);
|
||||
|
||||
int centersCount = buildCentersList_gpu(accum_, centers, votesThreshold_);
|
||||
if (centersCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
|
||||
if (minDist_ > 1)
|
||||
{
|
||||
AutoBuffer<ushort2> oldBuf_(centersCount);
|
||||
AutoBuffer<ushort2> newBuf_(centersCount);
|
||||
int newCount = 0;
|
||||
|
||||
ushort2* oldBuf = oldBuf_;
|
||||
ushort2* newBuf = newBuf_;
|
||||
|
||||
cudaSafeCall( cudaMemcpy(oldBuf, centers, centersCount * sizeof(ushort2), cudaMemcpyDeviceToHost) );
|
||||
|
||||
const int cellSize = cvRound(minDist_);
|
||||
const int gridWidth = (src.cols + cellSize - 1) / cellSize;
|
||||
const int gridHeight = (src.rows + cellSize - 1) / cellSize;
|
||||
|
||||
std::vector< std::vector<ushort2> > grid(gridWidth * gridHeight);
|
||||
|
||||
const float minDist2 = minDist_ * minDist_;
|
||||
|
||||
for (int i = 0; i < centersCount; ++i)
|
||||
{
|
||||
ushort2 p = oldBuf[i];
|
||||
|
||||
bool good = true;
|
||||
|
||||
int xCell = static_cast<int>(p.x / cellSize);
|
||||
int yCell = static_cast<int>(p.y / cellSize);
|
||||
|
||||
int x1 = xCell - 1;
|
||||
int y1 = yCell - 1;
|
||||
int x2 = xCell + 1;
|
||||
int y2 = yCell + 1;
|
||||
|
||||
// boundary check
|
||||
x1 = std::max(0, x1);
|
||||
y1 = std::max(0, y1);
|
||||
x2 = std::min(gridWidth - 1, x2);
|
||||
y2 = std::min(gridHeight - 1, y2);
|
||||
|
||||
for (int yy = y1; yy <= y2; ++yy)
|
||||
{
|
||||
for (int xx = x1; xx <= x2; ++xx)
|
||||
{
|
||||
std::vector<ushort2>& m = grid[yy * gridWidth + xx];
|
||||
|
||||
for(size_t j = 0; j < m.size(); ++j)
|
||||
{
|
||||
float dx = (float)(p.x - m[j].x);
|
||||
float dy = (float)(p.y - m[j].y);
|
||||
|
||||
if (dx * dx + dy * dy < minDist2)
|
||||
{
|
||||
good = false;
|
||||
goto break_out;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
break_out:
|
||||
|
||||
if(good)
|
||||
{
|
||||
grid[yCell * gridWidth + xCell].push_back(p);
|
||||
|
||||
newBuf[newCount++] = p;
|
||||
}
|
||||
}
|
||||
|
||||
cudaSafeCall( cudaMemcpy(centers, newBuf, newCount * sizeof(unsigned int), cudaMemcpyHostToDevice) );
|
||||
centersCount = newCount;
|
||||
}
|
||||
|
||||
ensureSizeIsEnough(1, maxCircles_, CV_32FC3, result_);
|
||||
|
||||
int circlesCount = circlesAccumRadius_gpu(centers, centersCount, srcPoints, pointsCount, result_.ptr<float3>(), maxCircles_,
|
||||
dp_, minRadius_, maxRadius_, votesThreshold_, deviceSupports(FEATURE_SET_COMPUTE_20));
|
||||
|
||||
if (circlesCount == 0)
|
||||
{
|
||||
circles.release();
|
||||
return;
|
||||
}
|
||||
|
||||
result_.cols = circlesCount;
|
||||
result_.copyTo(circles);
|
||||
}
|
||||
}
|
||||
|
||||
Ptr<HoughCirclesDetector> cv::gpu::createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
|
||||
{
|
||||
return new HoughCirclesDetectorImpl(dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
202
modules/gpuimgproc/src/hough_lines.cpp
Normal file
202
modules/gpuimgproc/src/hough_lines.cpp
Normal file
@ -0,0 +1,202 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||||
|
||||
Ptr<gpu::HoughLinesDetector> cv::gpu::createHoughLinesDetector(float, float, int, bool, int) { throw_no_cuda(); return Ptr<HoughLinesDetector>(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough
|
||||
{
|
||||
int buildPointList_gpu(PtrStepSzb src, unsigned int* list);
|
||||
}
|
||||
|
||||
namespace hough_lines
|
||||
{
|
||||
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20);
|
||||
int linesGetResult_gpu(PtrStepSzi accum, float2* out, int* votes, int maxSize, float rho, float theta, int threshold, bool doSort);
|
||||
}
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
class HoughLinesDetectorImpl : public HoughLinesDetector
|
||||
{
|
||||
public:
|
||||
HoughLinesDetectorImpl(float rho, float theta, int threshold, bool doSort, int maxLines) :
|
||||
rho_(rho), theta_(theta), threshold_(threshold), doSort_(doSort), maxLines_(maxLines)
|
||||
{
|
||||
}
|
||||
|
||||
void detect(InputArray src, OutputArray lines);
|
||||
void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
|
||||
|
||||
void setRho(float rho) { rho_ = rho; }
|
||||
float getRho() const { return rho_; }
|
||||
|
||||
void setTheta(float theta) { theta_ = theta; }
|
||||
float getTheta() const { return theta_; }
|
||||
|
||||
void setThreshold(int threshold) { threshold_ = threshold; }
|
||||
int getThreshold() const { return threshold_; }
|
||||
|
||||
void setDoSort(bool doSort) { doSort_ = doSort; }
|
||||
bool getDoSort() const { return doSort_; }
|
||||
|
||||
void setMaxLines(int maxLines) { maxLines_ = maxLines; }
|
||||
int getMaxLines() const { return maxLines_; }
|
||||
|
||||
void write(FileStorage& fs) const
|
||||
{
|
||||
fs << "name" << "HoughLinesDetector_GPU"
|
||||
<< "rho" << rho_
|
||||
<< "theta" << theta_
|
||||
<< "threshold" << threshold_
|
||||
<< "doSort" << doSort_
|
||||
<< "maxLines" << maxLines_;
|
||||
}
|
||||
|
||||
void read(const FileNode& fn)
|
||||
{
|
||||
CV_Assert( String(fn["name"]) == "HoughLinesDetector_GPU" );
|
||||
rho_ = (float)fn["rho"];
|
||||
theta_ = (float)fn["theta"];
|
||||
threshold_ = (int)fn["threshold"];
|
||||
doSort_ = (int)fn["doSort"] != 0;
|
||||
maxLines_ = (int)fn["maxLines"];
|
||||
}
|
||||
|
||||
private:
|
||||
float rho_;
|
||||
float theta_;
|
||||
int threshold_;
|
||||
bool doSort_;
|
||||
int maxLines_;
|
||||
|
||||
GpuMat accum_;
|
||||
GpuMat list_;
|
||||
GpuMat result_;
|
||||
};
|
||||
|
||||
void HoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines)
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::hough_lines;
|
||||
|
||||
GpuMat src = _src.getGpuMat();
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
||||
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
||||
|
||||
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_);
|
||||
unsigned int* srcPoints = list_.ptr<unsigned int>();
|
||||
|
||||
const int pointsCount = buildPointList_gpu(src, srcPoints);
|
||||
if (pointsCount == 0)
|
||||
{
|
||||
lines.release();
|
||||
return;
|
||||
}
|
||||
|
||||
const int numangle = cvRound(CV_PI / theta_);
|
||||
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_);
|
||||
CV_Assert( numangle > 0 && numrho > 0 );
|
||||
|
||||
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_);
|
||||
accum_.setTo(Scalar::all(0));
|
||||
|
||||
DeviceInfo devInfo;
|
||||
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
|
||||
|
||||
ensureSizeIsEnough(2, maxLines_, CV_32FC2, result_);
|
||||
|
||||
int linesCount = linesGetResult_gpu(accum_, result_.ptr<float2>(0), result_.ptr<int>(1), maxLines_, rho_, theta_, threshold_, doSort_);
|
||||
|
||||
if (linesCount == 0)
|
||||
{
|
||||
lines.release();
|
||||
return;
|
||||
}
|
||||
|
||||
result_.cols = linesCount;
|
||||
result_.copyTo(lines);
|
||||
}
|
||||
|
||||
void HoughLinesDetectorImpl::downloadResults(InputArray _d_lines, OutputArray h_lines, OutputArray h_votes)
|
||||
{
|
||||
GpuMat d_lines = _d_lines.getGpuMat();
|
||||
|
||||
if (d_lines.empty())
|
||||
{
|
||||
h_lines.release();
|
||||
if (h_votes.needed())
|
||||
h_votes.release();
|
||||
return;
|
||||
}
|
||||
|
||||
CV_Assert( d_lines.rows == 2 && d_lines.type() == CV_32FC2 );
|
||||
|
||||
d_lines.row(0).download(h_lines);
|
||||
|
||||
if (h_votes.needed())
|
||||
{
|
||||
GpuMat d_votes(1, d_lines.cols, CV_32SC1, d_lines.ptr<int>(1));
|
||||
d_votes.download(h_votes);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ptr<HoughLinesDetector> cv::gpu::createHoughLinesDetector(float rho, float theta, int threshold, bool doSort, int maxLines)
|
||||
{
|
||||
return new HoughLinesDetectorImpl(rho, theta, threshold, doSort, maxLines);
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
183
modules/gpuimgproc/src/hough_segments.cpp
Normal file
183
modules/gpuimgproc/src/hough_segments.cpp
Normal file
@ -0,0 +1,183 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||||
|
||||
Ptr<gpu::HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float, float, int, int, int) { throw_no_cuda(); return Ptr<HoughSegmentDetector>(); }
|
||||
|
||||
#else /* !defined (HAVE_CUDA) */
|
||||
|
||||
namespace cv { namespace gpu { namespace cudev
|
||||
{
|
||||
namespace hough
|
||||
{
|
||||
int buildPointList_gpu(PtrStepSzb src, unsigned int* list);
|
||||
}
|
||||
|
||||
namespace hough_lines
|
||||
{
|
||||
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20);
|
||||
}
|
||||
|
||||
namespace hough_segments
|
||||
{
|
||||
int houghLinesProbabilistic_gpu(PtrStepSzb mask, PtrStepSzi accum, int4* out, int maxSize, float rho, float theta, int lineGap, int lineLength);
|
||||
}
|
||||
}}}
|
||||
|
||||
namespace
|
||||
{
|
||||
class HoughSegmentDetectorImpl : public HoughSegmentDetector
|
||||
{
|
||||
public:
|
||||
HoughSegmentDetectorImpl(float rho, float theta, int minLineLength, int maxLineGap, int maxLines) :
|
||||
rho_(rho), theta_(theta), minLineLength_(minLineLength), maxLineGap_(maxLineGap), maxLines_(maxLines)
|
||||
{
|
||||
}
|
||||
|
||||
void detect(InputArray src, OutputArray lines);
|
||||
|
||||
void setRho(float rho) { rho_ = rho; }
|
||||
float getRho() const { return rho_; }
|
||||
|
||||
void setTheta(float theta) { theta_ = theta; }
|
||||
float getTheta() const { return theta_; }
|
||||
|
||||
void setMinLineLength(int minLineLength) { minLineLength_ = minLineLength; }
|
||||
int getMinLineLength() const { return minLineLength_; }
|
||||
|
||||
void setMaxLineGap(int maxLineGap) { maxLineGap_ = maxLineGap; }
|
||||
int getMaxLineGap() const { return maxLineGap_; }
|
||||
|
||||
void setMaxLines(int maxLines) { maxLines_ = maxLines; }
|
||||
int getMaxLines() const { return maxLines_; }
|
||||
|
||||
void write(FileStorage& fs) const
|
||||
{
|
||||
fs << "name" << "PHoughLinesDetector_GPU"
|
||||
<< "rho" << rho_
|
||||
<< "theta" << theta_
|
||||
<< "minLineLength" << minLineLength_
|
||||
<< "maxLineGap" << maxLineGap_
|
||||
<< "maxLines" << maxLines_;
|
||||
}
|
||||
|
||||
void read(const FileNode& fn)
|
||||
{
|
||||
CV_Assert( String(fn["name"]) == "PHoughLinesDetector_GPU" );
|
||||
rho_ = (float)fn["rho"];
|
||||
theta_ = (float)fn["theta"];
|
||||
minLineLength_ = (int)fn["minLineLength"];
|
||||
maxLineGap_ = (int)fn["maxLineGap"];
|
||||
maxLines_ = (int)fn["maxLines"];
|
||||
}
|
||||
|
||||
private:
|
||||
float rho_;
|
||||
float theta_;
|
||||
int minLineLength_;
|
||||
int maxLineGap_;
|
||||
int maxLines_;
|
||||
|
||||
GpuMat accum_;
|
||||
GpuMat list_;
|
||||
GpuMat result_;
|
||||
};
|
||||
|
||||
void HoughSegmentDetectorImpl::detect(InputArray _src, OutputArray lines)
|
||||
{
|
||||
using namespace cv::gpu::cudev::hough;
|
||||
using namespace cv::gpu::cudev::hough_lines;
|
||||
using namespace cv::gpu::cudev::hough_segments;
|
||||
|
||||
GpuMat src = _src.getGpuMat();
|
||||
|
||||
CV_Assert( src.type() == CV_8UC1 );
|
||||
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
||||
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
||||
|
||||
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_);
|
||||
unsigned int* srcPoints = list_.ptr<unsigned int>();
|
||||
|
||||
const int pointsCount = buildPointList_gpu(src, srcPoints);
|
||||
if (pointsCount == 0)
|
||||
{
|
||||
lines.release();
|
||||
return;
|
||||
}
|
||||
|
||||
const int numangle = cvRound(CV_PI / theta_);
|
||||
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_);
|
||||
CV_Assert( numangle > 0 && numrho > 0 );
|
||||
|
||||
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_);
|
||||
accum_.setTo(Scalar::all(0));
|
||||
|
||||
DeviceInfo devInfo;
|
||||
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
|
||||
|
||||
ensureSizeIsEnough(1, maxLines_, CV_32SC4, result_);
|
||||
|
||||
int linesCount = houghLinesProbabilistic_gpu(src, accum_, result_.ptr<int4>(), maxLines_, rho_, theta_, maxLineGap_, minLineLength_);
|
||||
|
||||
if (linesCount == 0)
|
||||
{
|
||||
lines.release();
|
||||
return;
|
||||
}
|
||||
|
||||
result_.cols = linesCount;
|
||||
result_.copyTo(lines);
|
||||
}
|
||||
}
|
||||
|
||||
Ptr<HoughSegmentDetector> cv::gpu::createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines)
|
||||
{
|
||||
return new HoughSegmentDetectorImpl(rho, theta, minLineLength, maxLineGap, maxLines);
|
||||
}
|
||||
|
||||
#endif /* !defined (HAVE_CUDA) */
|
@ -46,6 +46,7 @@
|
||||
#include "opencv2/gpuimgproc.hpp"
|
||||
#include "opencv2/gpufilters.hpp"
|
||||
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/core/private.hpp"
|
||||
#include "opencv2/core/private.gpu.hpp"
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user