extended python interface for KalmanFilter

This commit is contained in:
Juan Carlos Niebles 2014-09-17 18:45:48 -05:00
parent 458bde5e24
commit f610c88103
2 changed files with 120 additions and 0 deletions

View File

@ -129,6 +129,23 @@ public:
//! updates the predicted state from the measurement
CV_WRAP const Mat& correct( const Mat& measurement );
//! sets predicted state
CV_WRAP void setStatePre( const Mat& state ) { statePre = state; }
//! sets corrected state
CV_WRAP void setStatePost( const Mat& state ) { statePost = state; }
//! sets transition matrix
CV_WRAP void setTransitionMatrix( const Mat& transition ) { transitionMatrix = transition; }
//! sets control matrix
CV_WRAP void setControlMatrix( const Mat& control ) { controlMatrix = control; }
//! sets measurement matrix
CV_WRAP void setMeasurementMatrix( const Mat& measurement ) { measurementMatrix = measurement; }
//! sets process noise covariance matrix
CV_WRAP void setProcessNoiseCov( const Mat& noise ) { processNoiseCov = noise; }
//! sets measurement noise covariance matrix
CV_WRAP void setMeasurementNoiseCov( const Mat& noise ) { measurementNoiseCov = noise; }
//! sets posteriori error covariance
CV_WRAP void setErrorCovPost( const Mat& error ) { errorCovPost = error; }
Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
Mat transitionMatrix; //!< state transition matrix (A)

103
samples/python2/kalman.py Executable file
View File

@ -0,0 +1,103 @@
#!/usr/bin/python
"""
Tracking of rotating point.
Rotation speed is constant.
Both state and measurements vectors are 1D (a point angle),
Measurement is the real point angle + gaussian noise.
The real and the estimated points are connected with yellow line segment,
the real and the measured points are connected with red line segment.
(if Kalman filter works correctly,
the yellow segment should be shorter than the red one).
Pressing any key (except ESC) will reset the tracking with a different speed.
Pressing ESC will stop the program.
"""
import urllib2
import cv2
from math import cos, sin, sqrt
import sys
import numpy as np
if __name__ == "__main__":
img_height = 500
img_width = 500
img = np.array((img_height, img_width, 3), np.uint8)
kalman = cv2.KalmanFilter(2, 1, 0)
state = np.zeros((2, 1)) # (phi, delta_phi)
process_noise = np.zeros((2, 1))
measurement = np.zeros((1, 1))
code = -1L
cv2.namedWindow("Kalman")
while True:
state = 0.1 * np.random.randn(2, 1)
transition_matrix = np.array([[1., 1.], [0., 1.]])
kalman.setTransitionMatrix(transition_matrix)
measurement_matrix = 1. * np.ones((1, 2))
kalman.setMeasurementMatrix(measurement_matrix)
process_noise_cov = 1e-5
kalman.setProcessNoiseCov(process_noise_cov * np.eye(2))
measurement_noise_cov = 1e-1
kalman.setMeasurementNoiseCov(measurement_noise_cov * np.ones((1, 1)))
kalman.setErrorCovPost(1. * np.ones((2, 2)))
kalman.setStatePost(0.1 * np.random.randn(2, 1))
while True:
def calc_point(angle):
return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int),
np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int))
state_angle = state[0, 0]
state_pt = calc_point(state_angle)
prediction = kalman.predict()
predict_angle = prediction[0, 0]
predict_pt = calc_point(predict_angle)
measurement = measurement_noise_cov * np.random.randn(1, 1)
# generate measurement
measurement = np.dot(measurement_matrix, state) + measurement
measurement_angle = measurement[0, 0]
measurement_pt = calc_point(measurement_angle)
# plot points
def draw_cross(center, color, d):
cv2.line(img, (center[0] - d, center[1] - d),
(center[0] + d, center[1] + d), color, 1, cv2.LINE_AA, 0)
cv2.line(img, (center[0] + d, center[1] - d),
(center[0] - d, center[1] + d), color, 1, cv2.LINE_AA, 0)
img = np.zeros((img_height, img_width, 3), np.uint8)
draw_cross(np.int32(state_pt), (255, 255, 255), 3)
draw_cross(np.int32(measurement_pt), (0, 0, 255), 3)
draw_cross(np.int32(predict_pt), (0, 255, 0), 3)
cv2.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv2.LINE_AA, 0)
cv2.line(img, state_pt, predict_pt, (0, 255, 255), 3, cv2.LINE_AA, 0)
kalman.correct(measurement)
process_noise = process_noise_cov * np.random.randn(2, 1)
state = np.dot(transition_matrix, state) + process_noise
cv2.imshow("Kalman", img)
code = cv2.waitKey(100) % 0x100
if code != -1:
break
if code in [27, ord('q'), ord('Q')]:
break
cv2.destroyWindow("Kalman")