Deleted all trailing whitespace.

This commit is contained in:
Roman Donchenko
2013-08-21 16:44:09 +04:00
parent 0d8cb2e319
commit f55740da70
193 changed files with 1685 additions and 1685 deletions

View File

@@ -67,7 +67,7 @@ The following loss functions are implemented for regression problems:
:math:`L(y,f(x)) = \left\{ \begin{array}{lr}
\delta\cdot\left(|y-f(x)|-\dfrac{\delta}{2}\right) & : |y-f(x)|>\delta\\
\dfrac{1}{2}\cdot(y-f(x))^2 & : |y-f(x)|\leq\delta \end{array} \right.`,
where :math:`\delta` is the :math:`\alpha`-quantile estimation of the
:math:`|y-f(x)|`. In the current implementation :math:`\alpha=0.2`.
@@ -129,9 +129,9 @@ CvGBTreesParams::CvGBTreesParams
:param weak_count: Count of boosting algorithm iterations. ``weak_count*K`` is the total
count of trees in the GBT model, where ``K`` is the output classes count
(equal to one in case of a regression).
:param shrinkage: Regularization parameter (see :ref:`Training GBT`).
:param subsample_portion: Portion of the whole training set used for each algorithm iteration.
Subset is generated randomly. For more information see
http://www.salfordsystems.com/doc/StochasticBoostingSS.pdf.
@@ -139,7 +139,7 @@ CvGBTreesParams::CvGBTreesParams
:param max_depth: Maximal depth of each decision tree in the ensemble (see :ocv:class:`CvDTree`).
:param use_surrogates: If ``true``, surrogate splits are built (see :ocv:class:`CvDTree`).
By default the following constructor is used:
.. code-block:: cpp
@@ -178,7 +178,7 @@ Trains a Gradient boosted tree model.
.. ocv:function:: bool CvGBTrees::train(CvMLData* data, CvGBTreesParams params=CvGBTreesParams(), bool update=false)
.. ocv:pyfunction:: cv2.GBTrees.train(trainData, tflag, responses[, varIdx[, sampleIdx[, varType[, missingDataMask[, params[, update]]]]]]) -> retval
The first train method follows the common template (see :ocv:func:`CvStatModel::train`).
Both ``tflag`` values (``CV_ROW_SAMPLE``, ``CV_COL_SAMPLE``) are supported.
``trainData`` must be of the ``CV_32F`` type. ``responses`` must be a matrix of type
@@ -188,7 +188,7 @@ list of indices (``CV_32S``) or a mask (``CV_8U`` or ``CV_8S``). ``update`` is
a dummy parameter.
The second form of :ocv:func:`CvGBTrees::train` function uses :ocv:class:`CvMLData` as a
data set container. ``update`` is still a dummy parameter.
data set container. ``update`` is still a dummy parameter.
All parameters specific to the GBT model are passed into the training function
as a :ocv:class:`CvGBTreesParams` structure.
@@ -207,42 +207,42 @@ Predicts a response for an input sample.
:param sample: Input feature vector that has the same format as every training set
element. If not all the variables were actually used during training,
``sample`` contains forged values at the appropriate places.
:param missing: Missing values mask, which is a dimensional matrix of the same size as
``sample`` having the ``CV_8U`` type. ``1`` corresponds to the missing value
in the same position in the ``sample`` vector. If there are no missing values
in the feature vector, an empty matrix can be passed instead of the missing mask.
:param weakResponses: Matrix used to obtain predictions of all the trees.
The matrix has :math:`K` rows,
where :math:`K` is the count of output classes (1 for the regression case).
The matrix has as many columns as the ``slice`` length.
:param slice: Parameter defining the part of the ensemble used for prediction.
If ``slice = Range::all()``, all trees are used. Use this parameter to
get predictions of the GBT models with different ensemble sizes learning
only one model.
:param k: Number of tree ensembles built in case of the classification problem
(see :ref:`Training GBT`). Use this
parameter to change the output to sum of the trees' predictions in the
``k``-th ensemble only. To get the total GBT model prediction, ``k`` value
must be -1. For regression problems, ``k`` is also equal to -1.
The method predicts the response corresponding to the given sample
(see :ref:`Predicting with GBT`).
The result is either the class label or the estimated function value. The
:ocv:func:`CvGBTrees::predict` method enables using the parallel version of the GBT model
prediction if the OpenCV is built with the TBB library. In this case, predictions
of single trees are computed in a parallel fashion.
of single trees are computed in a parallel fashion.
CvGBTrees::clear
----------------
Clears the model.
.. ocv:function:: void CvGBTrees::clear()
.. ocv:pyfunction:: cv2.GBTrees.clear() -> None
The function deletes the data set information and all the weak models and sets all internal
@@ -257,7 +257,7 @@ Calculates a training or testing error.
.. ocv:function:: float CvGBTrees::calc_error( CvMLData* _data, int type, std::vector<float> *resp = 0 )
:param _data: Data set.
:param type: Parameter defining the error that should be computed: train (``CV_TRAIN_ERROR``) or test
(``CV_TEST_ERROR``).

View File

@@ -45,7 +45,7 @@ Trains the model.
:param updateBase: Specifies whether the model is trained from scratch (``update_base=false``), or it is updated using the new training data (``update_base=true``). In the latter case, the parameter ``maxK`` must not be larger than the original value.
The method trains the K-Nearest model. It follows the conventions of the generic :ocv:func:`CvStatModel::train` approach with the following limitations:
The method trains the K-Nearest model. It follows the conventions of the generic :ocv:func:`CvStatModel::train` approach with the following limitations:
* Only ``CV_ROW_SAMPLE`` data layout is supported.
* Input variables are all ordered.

View File

@@ -9,7 +9,7 @@ CvMLData
--------
.. ocv:class:: CvMLData
Class for loading the data from a ``.csv`` file.
Class for loading the data from a ``.csv`` file.
::
class CV_EXPORTS CvMLData
@@ -27,42 +27,42 @@ Class for loading the data from a ``.csv`` file.
void set_response_idx( int idx );
int get_response_idx() const;
void set_train_test_split( const CvTrainTestSplit * spl);
const CvMat* get_train_sample_idx() const;
const CvMat* get_test_sample_idx() const;
void mix_train_and_test_idx();
const CvMat* get_var_idx();
void change_var_idx( int vi, bool state );
const CvMat* get_var_types();
void set_var_types( const char* str );
int get_var_type( int var_idx ) const;
void change_var_type( int var_idx, int type);
void set_delimiter( char ch );
char get_delimiter() const;
void set_miss_ch( char ch );
char get_miss_ch() const;
const std::map<std::string, int>& get_class_labels_map() const;
protected:
...
protected:
...
};
CvMLData::read_csv
------------------
Reads the data set from a ``.csv``-like ``filename`` file and stores all read values in a matrix.
Reads the data set from a ``.csv``-like ``filename`` file and stores all read values in a matrix.
.. ocv:function:: int CvMLData::read_csv(const char* filename)
:param filename: The input file name
While reading the data, the method tries to define the type of variables (predictors and responses): ordered or categorical. If a value of the variable is not numerical (except for the label for a missing value), the type of the variable is set to ``CV_VAR_CATEGORICAL``. If all existing values of the variable are numerical, the type of the variable is set to ``CV_VAR_ORDERED``. So, the default definition of variables types works correctly for all cases except the case of a categorical variable with numerical class labels. In this case, the type ``CV_VAR_ORDERED`` is set. You should change the type to ``CV_VAR_CATEGORICAL`` using the method :ocv:func:`CvMLData::change_var_type`. For categorical variables, a common map is built to convert a string class label to the numerical class label. Use :ocv:func:`CvMLData::get_class_labels_map` to obtain this map.
While reading the data, the method tries to define the type of variables (predictors and responses): ordered or categorical. If a value of the variable is not numerical (except for the label for a missing value), the type of the variable is set to ``CV_VAR_CATEGORICAL``. If all existing values of the variable are numerical, the type of the variable is set to ``CV_VAR_ORDERED``. So, the default definition of variables types works correctly for all cases except the case of a categorical variable with numerical class labels. In this case, the type ``CV_VAR_ORDERED`` is set. You should change the type to ``CV_VAR_CATEGORICAL`` using the method :ocv:func:`CvMLData::change_var_type`. For categorical variables, a common map is built to convert a string class label to the numerical class label. Use :ocv:func:`CvMLData::get_class_labels_map` to obtain this map.
Also, when reading the data, the method constructs the mask of missing values. For example, values are equal to `'?'`.
@@ -72,7 +72,7 @@ Returns a pointer to the matrix of predictors and response values
.. ocv:function:: const CvMat* CvMLData::get_values() const
The method returns a pointer to the matrix of predictor and response ``values`` or ``0`` if the data has not been loaded from the file yet.
The method returns a pointer to the matrix of predictor and response ``values`` or ``0`` if the data has not been loaded from the file yet.
The row count of this matrix equals the sample count. The column count equals predictors ``+ 1`` for the response (if exists) count. This means that each row of the matrix contains values of one sample predictor and response. The matrix type is ``CV_32FC1``.
@@ -82,7 +82,7 @@ Returns a pointer to the matrix of response values
.. ocv:function:: const CvMat* CvMLData::get_responses()
The method returns a pointer to the matrix of response values or throws an exception if the data has not been loaded from the file yet.
The method returns a pointer to the matrix of response values or throws an exception if the data has not been loaded from the file yet.
This is a single-column matrix of the type ``CV_32FC1``. Its row count is equal to the sample count, one column and .
@@ -92,7 +92,7 @@ Returns a pointer to the mask matrix of missing values
.. ocv:function:: const CvMat* CvMLData::get_missing() const
The method returns a pointer to the mask matrix of missing values or throws an exception if the data has not been loaded from the file yet.
The method returns a pointer to the mask matrix of missing values or throws an exception if the data has not been loaded from the file yet.
This matrix has the same size as the ``values`` matrix (see :ocv:func:`CvMLData::get_values`) and the type ``CV_8UC1``.
@@ -102,7 +102,7 @@ Specifies index of response column in the data matrix
.. ocv:function:: void CvMLData::set_response_idx( int idx )
The method sets the index of a response column in the ``values`` matrix (see :ocv:func:`CvMLData::get_values`) or throws an exception if the data has not been loaded from the file yet.
The method sets the index of a response column in the ``values`` matrix (see :ocv:func:`CvMLData::get_values`) or throws an exception if the data has not been loaded from the file yet.
The old response columns become predictors. If ``idx < 0``, there is no response.
@@ -115,15 +115,15 @@ Returns index of the response column in the loaded data matrix
The method returns the index of a response column in the ``values`` matrix (see :ocv:func:`CvMLData::get_values`) or throws an exception if the data has not been loaded from the file yet.
If ``idx < 0``, there is no response.
CvMLData::set_train_test_split
------------------------------
Divides the read data set into two disjoint training and test subsets.
Divides the read data set into two disjoint training and test subsets.
.. ocv:function:: void CvMLData::set_train_test_split( const CvTrainTestSplit * spl )
This method sets parameters for such a split using ``spl`` (see :ocv:class:`CvTrainTestSplit`) or throws an exception if the data has not been loaded from the file yet.
This method sets parameters for such a split using ``spl`` (see :ocv:class:`CvTrainTestSplit`) or throws an exception if the data has not been loaded from the file yet.
CvMLData::get_train_sample_idx
------------------------------
@@ -139,13 +139,13 @@ Returns the matrix of sample indices for a testing subset
.. ocv:function:: const CvMat* CvMLData::get_test_sample_idx() const
CvMLData::mix_train_and_test_idx
--------------------------------
Mixes the indices of training and test samples
.. ocv:function:: void CvMLData::mix_train_and_test_idx()
The method shuffles the indices of training and test samples preserving sizes of training and test subsets if the data split is set by :ocv:func:`CvMLData::get_values`. If the data has not been loaded from the file yet, an exception is thrown.
CvMLData::get_var_idx
@@ -153,8 +153,8 @@ CvMLData::get_var_idx
Returns the indices of the active variables in the data matrix
.. ocv:function:: const CvMat* CvMLData::get_var_idx()
The method returns the indices of variables (columns) used in the ``values`` matrix (see :ocv:func:`CvMLData::get_values`).
The method returns the indices of variables (columns) used in the ``values`` matrix (see :ocv:func:`CvMLData::get_values`).
It returns ``0`` if the used subset is not set. It throws an exception if the data has not been loaded from the file yet. Returned matrix is a single-row matrix of the type ``CV_32SC1``. Its column count is equal to the size of the used variable subset.
@@ -165,22 +165,22 @@ Enables or disables particular variable in the loaded data
.. ocv:function:: void CvMLData::change_var_idx( int vi, bool state )
By default, after reading the data set all variables in the ``values`` matrix (see :ocv:func:`CvMLData::get_values`) are used. But you may want to use only a subset of variables and include/exclude (depending on ``state`` value) a variable with the ``vi`` index from the used subset. If the data has not been loaded from the file yet, an exception is thrown.
CvMLData::get_var_types
-----------------------
Returns a matrix of the variable types.
Returns a matrix of the variable types.
.. ocv:function:: const CvMat* CvMLData::get_var_types()
The function returns a single-row matrix of the type ``CV_8UC1``, where each element is set to either ``CV_VAR_ORDERED`` or ``CV_VAR_CATEGORICAL``. The number of columns is equal to the number of variables. If data has not been loaded from file yet an exception is thrown.
CvMLData::set_var_types
-----------------------
Sets the variables types in the loaded data.
.. ocv:function:: void CvMLData::set_var_types( const char* str )
In the string, a variable type is followed by a list of variables indices. For example: ``"ord[0-17],cat[18]"``, ``"ord[0,2,4,10-12], cat[1,3,5-9,13,14]"``, ``"cat"`` (all variables are categorical), ``"ord"`` (all variables are ordered).
In the string, a variable type is followed by a list of variables indices. For example: ``"ord[0-17],cat[18]"``, ``"ord[0,2,4,10-12], cat[1,3,5-9,13,14]"``, ``"cat"`` (all variables are categorical), ``"ord"`` (all variables are ordered).
CvMLData::get_var_type
----------------------
@@ -189,15 +189,15 @@ Returns type of the specified variable
.. ocv:function:: int CvMLData::get_var_type( int var_idx ) const
The method returns the type of a variable by the index ``var_idx`` ( ``CV_VAR_ORDERED`` or ``CV_VAR_CATEGORICAL``).
CvMLData::change_var_type
-------------------------
Changes type of the specified variable
.. ocv:function:: void CvMLData::change_var_type( int var_idx, int type)
The method changes type of variable with index ``var_idx`` from existing type to ``type`` ( ``CV_VAR_ORDERED`` or ``CV_VAR_CATEGORICAL``).
CvMLData::set_delimiter
-----------------------
Sets the delimiter in the file used to separate input numbers
@@ -260,6 +260,6 @@ Structure setting the split of a data set read by :ocv:class:`CvMLData`.
There are two ways to construct a split:
* Set the training sample count (subset size) ``train_sample_count``. Other existing samples are located in a test subset.
* Set the training sample count (subset size) ``train_sample_count``. Other existing samples are located in a test subset.
* Set a training sample portion in ``[0,..1]``. The flag ``mix`` is used to mix training and test samples indices when the split is set. Otherwise, the data set is split in the storing order: the first part of samples of a given size is a training subset, the second part is a test subset.

View File

@@ -116,7 +116,7 @@ bool CvKNearest::train( const CvMat* _train_data, const CvMat* _responses,
if( !responses )
CV_ERROR( CV_StsNoMem, "Could not allocate memory for responses" );
if( _update_base && _dims != var_count )
CV_ERROR( CV_StsBadArg, "The newly added data have different dimensionality" );