Deleted all trailing whitespace.
This commit is contained in:
@@ -5,9 +5,9 @@ Detection of planar objects
|
||||
|
||||
.. highlight:: cpp
|
||||
|
||||
The goal of this tutorial is to learn how to use *features2d* and *calib3d* modules for detecting known planar objects in scenes.
|
||||
The goal of this tutorial is to learn how to use *features2d* and *calib3d* modules for detecting known planar objects in scenes.
|
||||
|
||||
*Test data*: use images in your data folder, for instance, ``box.png`` and ``box_in_scene.png``.
|
||||
*Test data*: use images in your data folder, for instance, ``box.png`` and ``box_in_scene.png``.
|
||||
|
||||
#.
|
||||
Create a new console project. Read two input images. ::
|
||||
@@ -22,7 +22,7 @@ The goal of this tutorial is to learn how to use *features2d* and *calib3d* modu
|
||||
FastFeatureDetector detector(15);
|
||||
vector<KeyPoint> keypoints1;
|
||||
detector.detect(img1, keypoints1);
|
||||
|
||||
|
||||
... // do the same for the second image
|
||||
|
||||
#.
|
||||
@@ -32,7 +32,7 @@ The goal of this tutorial is to learn how to use *features2d* and *calib3d* modu
|
||||
SurfDescriptorExtractor extractor;
|
||||
Mat descriptors1;
|
||||
extractor.compute(img1, keypoints1, descriptors1);
|
||||
|
||||
|
||||
... // process keypoints from the second image as well
|
||||
|
||||
#.
|
||||
@@ -69,4 +69,4 @@ The goal of this tutorial is to learn how to use *features2d* and *calib3d* modu
|
||||
perspectiveTransform(Mat(points1), points1Projected, H);
|
||||
|
||||
#.
|
||||
Use ``drawMatches`` for drawing inliers.
|
||||
Use ``drawMatches`` for drawing inliers.
|
||||
|
@@ -5,166 +5,166 @@
|
||||
|
||||
Learn about how to use the feature points detectors, descriptors and matching framework found inside OpenCV.
|
||||
|
||||
.. include:: ../../definitions/tocDefinitions.rst
|
||||
.. include:: ../../definitions/tocDefinitions.rst
|
||||
|
||||
+
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|Harris| **Title:** :ref:`harris_detector`
|
||||
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
|
||||
Why is it a good idea to track corners? We learn to use the Harris method to detect corners
|
||||
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
|
||||
.. |Harris| image:: images/trackingmotion/Harris_Detector_Cover.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
|
||||
+
|
||||
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|ShiTomasi| **Title:** :ref:`good_features_to_track`
|
||||
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
|
||||
Where we use an improved method to detect corners more accuratelyI
|
||||
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
|
||||
.. |ShiTomasi| image:: images/trackingmotion/Shi_Tomasi_Detector_Cover.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
|
||||
+
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|GenericCorner| **Title:** :ref:`generic_corner_detector`
|
||||
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
|
||||
Here you will learn how to use OpenCV functions to make your personalized corner detector!
|
||||
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
|
||||
.. |GenericCorner| image:: images/trackingmotion/Generic_Corner_Detector_Cover.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
|
||||
+
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|Subpixel| **Title:** :ref:`corner_subpixeles`
|
||||
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
|
||||
Is pixel resolution enough? Here we learn a simple method to improve our accuracy.
|
||||
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
|
||||
.. |Subpixel| image:: images/trackingmotion/Corner_Subpixeles_Cover.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
+
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|FeatureDetect| **Title:** :ref:`feature_detection`
|
||||
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
|
||||
In this tutorial, you will use *features2d* to detect interest points.
|
||||
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
|
||||
.. |FeatureDetect| image:: images/Feature_Detection_Tutorial_Cover.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
|
||||
+
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|FeatureDescript| **Title:** :ref:`feature_description`
|
||||
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
|
||||
In this tutorial, you will use *features2d* to calculate feature vectors.
|
||||
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
|
||||
.. |FeatureDescript| image:: images/Feature_Description_Tutorial_Cover.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
+
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|FeatureFlann| **Title:** :ref:`feature_flann_matcher`
|
||||
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
|
||||
In this tutorial, you will use the FLANN library to make a fast matching.
|
||||
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
|
||||
.. |FeatureFlann| image:: images/Feature_Flann_Matcher_Tutorial_Cover.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
+
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
===================== ==============================================
|
||||
|FeatureHomo| **Title:** :ref:`feature_homography`
|
||||
|
||||
|
||||
*Compatibility:* > OpenCV 2.0
|
||||
|
||||
|
||||
*Author:* |Author_AnaH|
|
||||
|
||||
|
||||
In this tutorial, you will use *features2d* and *calib3d* to detect an object in a scene.
|
||||
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
|
||||
.. |FeatureHomo| image:: images/Feature_Homography_Tutorial_Cover.jpg
|
||||
:height: 90pt
|
||||
:width: 90pt
|
||||
|
||||
|
||||
+
|
||||
+
|
||||
.. tabularcolumns:: m{100pt} m{300pt}
|
||||
.. cssclass:: toctableopencv
|
||||
|
||||
@@ -175,7 +175,7 @@ Learn about how to use the feature points detectors, descriptors and matching f
|
||||
|
||||
*Author:* |Author_VictorE|
|
||||
|
||||
You will use *features2d* and *calib3d* modules for detecting known planar objects in scenes.
|
||||
You will use *features2d* and *calib3d* modules for detecting known planar objects in scenes.
|
||||
|
||||
===================== ==============================================
|
||||
|
||||
|
Reference in New Issue
Block a user