Fixed cmake and build issues when using Visual Studio 2015

This commit is contained in:
Maksim Shabunin 2015-10-26 16:55:42 +03:00
parent 4552ca98c4
commit f49936a849
59 changed files with 520 additions and 460 deletions

View File

@ -93,6 +93,7 @@ ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4018 /wd4100 /wd4127 /wd4311 /wd4701 /wd
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4244) # vs2008 ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4244) # vs2008
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4267 /wd4305 /wd4306) # vs2008 Win64 ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4267 /wd4305 /wd4306) # vs2008 Win64
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4703) # vs2012 ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4703) # vs2012
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4456 /wd4457 /wd4312) # vs2015
ocv_warnings_disable(CMAKE_C_FLAGS /wd4267 /wd4244 /wd4018) ocv_warnings_disable(CMAKE_C_FLAGS /wd4267 /wd4244 /wd4018)

View File

@ -42,6 +42,7 @@ ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4018 /wd4099 /wd4100 /wd4101 /wd4127 /wd
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4334) # vs2005 Win64 ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4334) # vs2005 Win64
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4244) # vs2008 ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4244) # vs2008
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4267) # vs2008 Win64 ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4267) # vs2008 Win64
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4456 /wd4457 /wd4312) # vs2015
if(UNIX AND (CMAKE_COMPILER_IS_GNUCXX OR CV_ICC)) if(UNIX AND (CMAKE_COMPILER_IS_GNUCXX OR CV_ICC))
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fPIC") set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fPIC")

View File

@ -14,8 +14,6 @@ if(WIN32)
link_directories(${CMAKE_CURRENT_BINARY_DIR}) link_directories(${CMAKE_CURRENT_BINARY_DIR})
endif() endif()
link_libraries(${OPENCV_HAARTRAINING_DEPS} opencv_haartraining_engine)
# ----------------------------------------------------------- # -----------------------------------------------------------
# Library # Library
# ----------------------------------------------------------- # -----------------------------------------------------------
@ -35,6 +33,7 @@ set(cvhaartraining_lib_src
) )
add_library(opencv_haartraining_engine STATIC ${cvhaartraining_lib_src}) add_library(opencv_haartraining_engine STATIC ${cvhaartraining_lib_src})
target_link_libraries(opencv_haartraining_engine ${OPENCV_HAARTRAINING_DEPS})
set_target_properties(opencv_haartraining_engine PROPERTIES set_target_properties(opencv_haartraining_engine PROPERTIES
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}" DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
ARCHIVE_OUTPUT_DIRECTORY ${LIBRARY_OUTPUT_PATH} ARCHIVE_OUTPUT_DIRECTORY ${LIBRARY_OUTPUT_PATH}
@ -47,6 +46,7 @@ set_target_properties(opencv_haartraining_engine PROPERTIES
# ----------------------------------------------------------- # -----------------------------------------------------------
add_executable(opencv_haartraining cvhaartraining.h haartraining.cpp) add_executable(opencv_haartraining cvhaartraining.h haartraining.cpp)
target_link_libraries(opencv_haartraining ${OPENCV_HAARTRAINING_DEPS} opencv_haartraining_engine)
set_target_properties(opencv_haartraining PROPERTIES set_target_properties(opencv_haartraining PROPERTIES
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}" DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
OUTPUT_NAME "opencv_haartraining") OUTPUT_NAME "opencv_haartraining")
@ -56,6 +56,7 @@ set_target_properties(opencv_haartraining PROPERTIES
# ----------------------------------------------------------- # -----------------------------------------------------------
add_executable(opencv_createsamples cvhaartraining.h createsamples.cpp) add_executable(opencv_createsamples cvhaartraining.h createsamples.cpp)
target_link_libraries(opencv_createsamples ${OPENCV_HAARTRAINING_DEPS} opencv_haartraining_engine)
set_target_properties(opencv_createsamples PROPERTIES set_target_properties(opencv_createsamples PROPERTIES
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}" DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
OUTPUT_NAME "opencv_createsamples") OUTPUT_NAME "opencv_createsamples")
@ -64,6 +65,7 @@ set_target_properties(opencv_createsamples PROPERTIES
# performance # performance
# ----------------------------------------------------------- # -----------------------------------------------------------
add_executable(opencv_performance performance.cpp) add_executable(opencv_performance performance.cpp)
target_link_libraries(opencv_performance ${OPENCV_HAARTRAINING_DEPS} opencv_haartraining_engine)
set_target_properties(opencv_performance PROPERTIES set_target_properties(opencv_performance PROPERTIES
DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}" DEBUG_POSTFIX "${OPENCV_DEBUG_POSTFIX}"
OUTPUT_NAME "opencv_performance") OUTPUT_NAME "opencv_performance")

View File

@ -320,5 +320,8 @@ if(MSVC)
if(NOT ENABLE_NOISY_WARNINGS) if(NOT ENABLE_NOISY_WARNINGS)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4251") #class 'std::XXX' needs to have dll-interface to be used by clients of YYY set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4251") #class 'std::XXX' needs to have dll-interface to be used by clients of YYY
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4275") # non dll-interface class 'std::exception' used as base for dll-interface class 'cv::Exception'
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4589") # Constructor of abstract class ... ignores initializer for virtual base class 'cv::Algorithm'
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4359") # Alignment specifier is less than actual alignment (4), and will be ignored
endif() endif()
endif() endif()

View File

@ -100,15 +100,15 @@ TEST_F(fisheyeTest, projectPoints)
TEST_F(fisheyeTest, undistortImage) TEST_F(fisheyeTest, undistortImage)
{ {
cv::Matx33d K = this->K; cv::Matx33d theK = this->K;
cv::Mat D = cv::Mat(this->D); cv::Mat theD = cv::Mat(this->D);
std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg"); std::string file = combine(datasets_repository_path, "/calib-3_stereo_from_JY/left/stereo_pair_014.jpg");
cv::Matx33d newK = K; cv::Matx33d newK = theK;
cv::Mat distorted = cv::imread(file), undistorted; cv::Mat distorted = cv::imread(file), undistorted;
{ {
newK(0, 0) = 100; newK(0, 0) = 100;
newK(1, 1) = 100; newK(1, 1) = 100;
cv::fisheye::undistortImage(distorted, undistorted, K, D, newK); cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
cv::Mat correct = cv::imread(combine(datasets_repository_path, "new_f_100.png")); cv::Mat correct = cv::imread(combine(datasets_repository_path, "new_f_100.png"));
if (correct.empty()) if (correct.empty())
CV_Assert(cv::imwrite(combine(datasets_repository_path, "new_f_100.png"), undistorted)); CV_Assert(cv::imwrite(combine(datasets_repository_path, "new_f_100.png"), undistorted));
@ -117,8 +117,8 @@ TEST_F(fisheyeTest, undistortImage)
} }
{ {
double balance = 1.0; double balance = 1.0;
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K, D, distorted.size(), cv::noArray(), newK, balance); cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance);
cv::fisheye::undistortImage(distorted, undistorted, K, D, newK); cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
cv::Mat correct = cv::imread(combine(datasets_repository_path, "balance_1.0.png")); cv::Mat correct = cv::imread(combine(datasets_repository_path, "balance_1.0.png"));
if (correct.empty()) if (correct.empty())
CV_Assert(cv::imwrite(combine(datasets_repository_path, "balance_1.0.png"), undistorted)); CV_Assert(cv::imwrite(combine(datasets_repository_path, "balance_1.0.png"), undistorted));
@ -128,8 +128,8 @@ TEST_F(fisheyeTest, undistortImage)
{ {
double balance = 0.0; double balance = 0.0;
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K, D, distorted.size(), cv::noArray(), newK, balance); cv::fisheye::estimateNewCameraMatrixForUndistortRectify(theK, theD, distorted.size(), cv::noArray(), newK, balance);
cv::fisheye::undistortImage(distorted, undistorted, K, D, newK); cv::fisheye::undistortImage(distorted, undistorted, theK, theD, newK);
cv::Mat correct = cv::imread(combine(datasets_repository_path, "balance_0.0.png")); cv::Mat correct = cv::imread(combine(datasets_repository_path, "balance_0.0.png"));
if (correct.empty()) if (correct.empty())
CV_Assert(cv::imwrite(combine(datasets_repository_path, "balance_0.0.png"), undistorted)); CV_Assert(cv::imwrite(combine(datasets_repository_path, "balance_0.0.png"), undistorted));
@ -142,7 +142,7 @@ TEST_F(fisheyeTest, jacobians)
{ {
int n = 10; int n = 10;
cv::Mat X(1, n, CV_64FC3); cv::Mat X(1, n, CV_64FC3);
cv::Mat om(3, 1, CV_64F), T(3, 1, CV_64F); cv::Mat om(3, 1, CV_64F), theT(3, 1, CV_64F);
cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F); cv::Mat f(2, 1, CV_64F), c(2, 1, CV_64F);
cv::Mat k(4, 1, CV_64F); cv::Mat k(4, 1, CV_64F);
double alpha; double alpha;
@ -155,8 +155,8 @@ TEST_F(fisheyeTest, jacobians)
r.fill(om, cv::RNG::NORMAL, 0, 1); r.fill(om, cv::RNG::NORMAL, 0, 1);
om = cv::abs(om); om = cv::abs(om);
r.fill(T, cv::RNG::NORMAL, 0, 1); r.fill(theT, cv::RNG::NORMAL, 0, 1);
T = cv::abs(T); T.at<double>(2) = 4; T *= 10; theT = cv::abs(theT); theT.at<double>(2) = 4; theT *= 10;
r.fill(f, cv::RNG::NORMAL, 0, 1); r.fill(f, cv::RNG::NORMAL, 0, 1);
f = cv::abs(f) * 1000; f = cv::abs(f) * 1000;
@ -170,19 +170,19 @@ TEST_F(fisheyeTest, jacobians)
alpha = 0.01*r.gaussian(1); alpha = 0.01*r.gaussian(1);
cv::Mat x1, x2, xpred; cv::Mat x1, x2, xpred;
cv::Matx33d K(f.at<double>(0), alpha * f.at<double>(0), c.at<double>(0), cv::Matx33d theK(f.at<double>(0), alpha * f.at<double>(0), c.at<double>(0),
0, f.at<double>(1), c.at<double>(1), 0, f.at<double>(1), c.at<double>(1),
0, 0, 1); 0, 0, 1);
cv::Mat jacobians; cv::Mat jacobians;
cv::fisheye::projectPoints(X, x1, om, T, K, k, alpha, jacobians); cv::fisheye::projectPoints(X, x1, om, theT, theK, k, alpha, jacobians);
//test on T: //test on T:
cv::Mat dT(3, 1, CV_64FC1); cv::Mat dT(3, 1, CV_64FC1);
r.fill(dT, cv::RNG::NORMAL, 0, 1); r.fill(dT, cv::RNG::NORMAL, 0, 1);
dT *= 1e-9*cv::norm(T); dT *= 1e-9*cv::norm(theT);
cv::Mat T2 = T + dT; cv::Mat T2 = theT + dT;
cv::fisheye::projectPoints(X, x2, om, T2, K, k, alpha, cv::noArray()); cv::fisheye::projectPoints(X, x2, om, T2, theK, k, alpha, cv::noArray());
xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1); xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10); CV_Assert (cv::norm(x2 - xpred) < 1e-10);
@ -191,7 +191,7 @@ TEST_F(fisheyeTest, jacobians)
r.fill(dom, cv::RNG::NORMAL, 0, 1); r.fill(dom, cv::RNG::NORMAL, 0, 1);
dom *= 1e-9*cv::norm(om); dom *= 1e-9*cv::norm(om);
cv::Mat om2 = om + dom; cv::Mat om2 = om + dom;
cv::fisheye::projectPoints(X, x2, om2, T, K, k, alpha, cv::noArray()); cv::fisheye::projectPoints(X, x2, om2, theT, theK, k, alpha, cv::noArray());
xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1); xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10); CV_Assert (cv::norm(x2 - xpred) < 1e-10);
@ -199,8 +199,8 @@ TEST_F(fisheyeTest, jacobians)
cv::Mat df(2, 1, CV_64FC1); cv::Mat df(2, 1, CV_64FC1);
r.fill(df, cv::RNG::NORMAL, 0, 1); r.fill(df, cv::RNG::NORMAL, 0, 1);
df *= 1e-9*cv::norm(f); df *= 1e-9*cv::norm(f);
cv::Matx33d K2 = K + cv::Matx33d(df.at<double>(0), df.at<double>(0) * alpha, 0, 0, df.at<double>(1), 0, 0, 0, 0); cv::Matx33d K2 = theK + cv::Matx33d(df.at<double>(0), df.at<double>(0) * alpha, 0, 0, df.at<double>(1), 0, 0, 0, 0);
cv::fisheye::projectPoints(X, x2, om, T, K2, k, alpha, cv::noArray()); cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray());
xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1); xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10); CV_Assert (cv::norm(x2 - xpred) < 1e-10);
@ -208,8 +208,8 @@ TEST_F(fisheyeTest, jacobians)
cv::Mat dc(2, 1, CV_64FC1); cv::Mat dc(2, 1, CV_64FC1);
r.fill(dc, cv::RNG::NORMAL, 0, 1); r.fill(dc, cv::RNG::NORMAL, 0, 1);
dc *= 1e-9*cv::norm(c); dc *= 1e-9*cv::norm(c);
K2 = K + cv::Matx33d(0, 0, dc.at<double>(0), 0, 0, dc.at<double>(1), 0, 0, 0); K2 = theK + cv::Matx33d(0, 0, dc.at<double>(0), 0, 0, dc.at<double>(1), 0, 0, 0);
cv::fisheye::projectPoints(X, x2, om, T, K2, k, alpha, cv::noArray()); cv::fisheye::projectPoints(X, x2, om, theT, K2, k, alpha, cv::noArray());
xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1); xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10); CV_Assert (cv::norm(x2 - xpred) < 1e-10);
@ -218,7 +218,7 @@ TEST_F(fisheyeTest, jacobians)
r.fill(dk, cv::RNG::NORMAL, 0, 1); r.fill(dk, cv::RNG::NORMAL, 0, 1);
dk *= 1e-9*cv::norm(k); dk *= 1e-9*cv::norm(k);
cv::Mat k2 = k + dk; cv::Mat k2 = k + dk;
cv::fisheye::projectPoints(X, x2, om, T, K, k2, alpha, cv::noArray()); cv::fisheye::projectPoints(X, x2, om, theT, theK, k2, alpha, cv::noArray());
xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1); xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10); CV_Assert (cv::norm(x2 - xpred) < 1e-10);
@ -227,8 +227,8 @@ TEST_F(fisheyeTest, jacobians)
r.fill(dalpha, cv::RNG::NORMAL, 0, 1); r.fill(dalpha, cv::RNG::NORMAL, 0, 1);
dalpha *= 1e-9*cv::norm(f); dalpha *= 1e-9*cv::norm(f);
double alpha2 = alpha + dalpha.at<double>(0); double alpha2 = alpha + dalpha.at<double>(0);
K2 = K + cv::Matx33d(0, f.at<double>(0) * dalpha.at<double>(0), 0, 0, 0, 0, 0, 0, 0); K2 = theK + cv::Matx33d(0, f.at<double>(0) * dalpha.at<double>(0), 0, 0, 0, 0, 0, 0, 0);
cv::fisheye::projectPoints(X, x2, om, T, K, k, alpha2, cv::noArray()); cv::fisheye::projectPoints(X, x2, om, theT, theK, k, alpha2, cv::noArray());
xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1); xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1);
CV_Assert (cv::norm(x2 - xpred) < 1e-10); CV_Assert (cv::norm(x2 - xpred) < 1e-10);
} }
@ -258,14 +258,14 @@ TEST_F(fisheyeTest, Calibration)
flag |= cv::fisheye::CALIB_CHECK_COND; flag |= cv::fisheye::CALIB_CHECK_COND;
flag |= cv::fisheye::CALIB_FIX_SKEW; flag |= cv::fisheye::CALIB_FIX_SKEW;
cv::Matx33d K; cv::Matx33d theK;
cv::Vec4d D; cv::Vec4d theD;
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, K, D, cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD,
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6)); cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
EXPECT_MAT_NEAR(K, this->K, 1e-10); EXPECT_MAT_NEAR(theK, this->K, 1e-10);
EXPECT_MAT_NEAR(D, this->D, 1e-10); EXPECT_MAT_NEAR(theD, this->D, 1e-10);
} }
TEST_F(fisheyeTest, Homography) TEST_F(fisheyeTest, Homography)
@ -302,15 +302,15 @@ TEST_F(fisheyeTest, Homography)
int Np = imagePointsNormalized.cols; int Np = imagePointsNormalized.cols;
cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, CV_COVAR_NORMAL | CV_COVAR_COLS); cv::calcCovarMatrix(_objectPoints, covObjectPoints, objectPointsMean, CV_COVAR_NORMAL | CV_COVAR_COLS);
cv::SVD svd(covObjectPoints); cv::SVD svd(covObjectPoints);
cv::Mat R(svd.vt); cv::Mat theR(svd.vt);
if (cv::norm(R(cv::Rect(2, 0, 1, 2))) < 1e-6) if (cv::norm(theR(cv::Rect(2, 0, 1, 2))) < 1e-6)
R = cv::Mat::eye(3,3, CV_64FC1); theR = cv::Mat::eye(3,3, CV_64FC1);
if (cv::determinant(R) < 0) if (cv::determinant(theR) < 0)
R = -R; theR = -theR;
cv::Mat T = -R * objectPointsMean; cv::Mat theT = -theR * objectPointsMean;
cv::Mat X_new = R * _objectPoints + T * cv::Mat::ones(1, Np, CV_64FC1); cv::Mat X_new = theR * _objectPoints + theT * cv::Mat::ones(1, Np, CV_64FC1);
cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2)); cv::Mat H = cv::internal::ComputeHomography(imagePointsNormalized, X_new.rowRange(0, 2));
cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1); cv::Mat M = cv::Mat::ones(3, X_new.cols, CV_64FC1);
@ -354,19 +354,19 @@ TEST_F(fisheyeTest, EtimateUncertainties)
flag |= cv::fisheye::CALIB_CHECK_COND; flag |= cv::fisheye::CALIB_CHECK_COND;
flag |= cv::fisheye::CALIB_FIX_SKEW; flag |= cv::fisheye::CALIB_FIX_SKEW;
cv::Matx33d K; cv::Matx33d theK;
cv::Vec4d D; cv::Vec4d theD;
std::vector<cv::Vec3d> rvec; std::vector<cv::Vec3d> rvec;
std::vector<cv::Vec3d> tvec; std::vector<cv::Vec3d> tvec;
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, K, D, cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD,
rvec, tvec, flag, cv::TermCriteria(3, 20, 1e-6)); rvec, tvec, flag, cv::TermCriteria(3, 20, 1e-6));
cv::internal::IntrinsicParams param, errors; cv::internal::IntrinsicParams param, errors;
cv::Vec2d err_std; cv::Vec2d err_std;
double thresh_cond = 1e6; double thresh_cond = 1e6;
int check_cond = 1; int check_cond = 1;
param.Init(cv::Vec2d(K(0,0), K(1,1)), cv::Vec2d(K(0,2), K(1, 2)), D); param.Init(cv::Vec2d(theK(0,0), theK(1,1)), cv::Vec2d(theK(0,2), theK(1, 2)), theD);
param.isEstimate = std::vector<int>(9, 1); param.isEstimate = std::vector<int>(9, 1);
param.isEstimate[4] = 0; param.isEstimate[4] = 0;
@ -397,12 +397,12 @@ TEST_F(fisheyeTest, rectify)
cv::Matx33d K1 = this->K, K2 = K1; cv::Matx33d K1 = this->K, K2 = K1;
cv::Mat D1 = cv::Mat(this->D), D2 = D1; cv::Mat D1 = cv::Mat(this->D), D2 = D1;
cv::Vec3d T = this->T; cv::Vec3d theT = this->T;
cv::Matx33d R = this->R; cv::Matx33d theR = this->R;
double balance = 0.0, fov_scale = 1.1; double balance = 0.0, fov_scale = 1.1;
cv::Mat R1, R2, P1, P2, Q; cv::Mat R1, R2, P1, P2, Q;
cv::fisheye::stereoRectify(K1, D1, K2, D2, calibration_size, R, T, R1, R2, P1, P2, Q, cv::fisheye::stereoRectify(K1, D1, K2, D2, calibration_size, theR, theT, R1, R2, P1, P2, Q,
cv::CALIB_ZERO_DISPARITY, requested_size, balance, fov_scale); cv::CALIB_ZERO_DISPARITY, requested_size, balance, fov_scale);
cv::Mat lmapx, lmapy, rmapx, rmapy; cv::Mat lmapx, lmapy, rmapx, rmapy;
@ -466,8 +466,8 @@ TEST_F(fisheyeTest, stereoCalibrate)
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object[cv::format("image_%d", i )] >> objectPoints[i];
fs_object.release(); fs_object.release();
cv::Matx33d K1, K2, R; cv::Matx33d K1, K2, theR;
cv::Vec3d T; cv::Vec3d theT;
cv::Vec4d D1, D2; cv::Vec4d D1, D2;
int flag = 0; int flag = 0;
@ -477,7 +477,7 @@ TEST_F(fisheyeTest, stereoCalibrate)
// flag |= cv::fisheye::CALIB_FIX_INTRINSIC; // flag |= cv::fisheye::CALIB_FIX_INTRINSIC;
cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints,
K1, D1, K2, D2, imageSize, R, T, flag, K1, D1, K2, D2, imageSize, theR, theT, flag,
cv::TermCriteria(3, 12, 0)); cv::TermCriteria(3, 12, 0));
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523,
@ -495,8 +495,8 @@ TEST_F(fisheyeTest, stereoCalibrate)
cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771); cv::Vec4d D1_correct (-7.44253716539556e-05, -0.00702662033932424, 0.00737569823650885, -0.00342230256441771);
cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); cv::Vec4d D2_correct (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
EXPECT_MAT_NEAR(R, R_correct, 1e-10); EXPECT_MAT_NEAR(theR, R_correct, 1e-10);
EXPECT_MAT_NEAR(T, T_correct, 1e-10); EXPECT_MAT_NEAR(theT, T_correct, 1e-10);
EXPECT_MAT_NEAR(K1, K1_correct, 1e-10); EXPECT_MAT_NEAR(K1, K1_correct, 1e-10);
EXPECT_MAT_NEAR(K2, K2_correct, 1e-10); EXPECT_MAT_NEAR(K2, K2_correct, 1e-10);
@ -534,8 +534,8 @@ TEST_F(fisheyeTest, stereoCalibrateFixIntrinsic)
fs_object[cv::format("image_%d", i )] >> objectPoints[i]; fs_object[cv::format("image_%d", i )] >> objectPoints[i];
fs_object.release(); fs_object.release();
cv::Matx33d R; cv::Matx33d theR;
cv::Vec3d T; cv::Vec3d theT;
int flag = 0; int flag = 0;
flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC; flag |= cv::fisheye::CALIB_RECOMPUTE_EXTRINSIC;
@ -555,7 +555,7 @@ TEST_F(fisheyeTest, stereoCalibrateFixIntrinsic)
cv::Vec4d D2 (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222); cv::Vec4d D2 (-0.0130785435677431, 0.0284434505383497, -0.0360333869900506, 0.0144724062347222);
cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints, cv::fisheye::stereoCalibrate(objectPoints, leftPoints, rightPoints,
K1, D1, K2, D2, imageSize, R, T, flag, K1, D1, K2, D2, imageSize, theR, theT, flag,
cv::TermCriteria(3, 12, 0)); cv::TermCriteria(3, 12, 0));
cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523, cv::Matx33d R_correct( 0.9975587205950972, 0.06953016383322372, 0.006492709911733523,
@ -564,8 +564,8 @@ TEST_F(fisheyeTest, stereoCalibrateFixIntrinsic)
cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699); cv::Vec3d T_correct(-0.099402724724121, 0.00270812139265413, 0.00129330292472699);
EXPECT_MAT_NEAR(R, R_correct, 1e-10); EXPECT_MAT_NEAR(theR, R_correct, 1e-10);
EXPECT_MAT_NEAR(T, T_correct, 1e-10); EXPECT_MAT_NEAR(theT, T_correct, 1e-10);
} }
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

View File

@ -189,7 +189,7 @@ namespace colormap
void init(int n) { void init(int n) {
float r[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; float r[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
float g[] = { 0, 0.01587301587301587, 0.03174603174603174, 0.04761904761904762, 0.06349206349206349, 0.07936507936507936, 0.09523809523809523, 0.1111111111111111, 0.126984126984127, 0.1428571428571428, 0.1587301587301587, 0.1746031746031746, 0.1904761904761905, 0.2063492063492063, 0.2222222222222222, 0.2380952380952381, 0.253968253968254, 0.2698412698412698, 0.2857142857142857, 0.3015873015873016, 0.3174603174603174, 0.3333333333333333, 0.3492063492063492, 0.3650793650793651, 0.3809523809523809, 0.3968253968253968, 0.4126984126984127, 0.4285714285714285, 0.4444444444444444, 0.4603174603174603, 0.4761904761904762, 0.492063492063492, 0.5079365079365079, 0.5238095238095238, 0.5396825396825397, 0.5555555555555556, 0.5714285714285714, 0.5873015873015873, 0.6031746031746031, 0.6190476190476191, 0.6349206349206349, 0.6507936507936508, 0.6666666666666666, 0.6825396825396826, 0.6984126984126984, 0.7142857142857143, 0.7301587301587301, 0.746031746031746, 0.7619047619047619, 0.7777777777777778, 0.7936507936507936, 0.8095238095238095, 0.8253968253968254, 0.8412698412698413, 0.8571428571428571, 0.873015873015873, 0.8888888888888888, 0.9047619047619048, 0.9206349206349206, 0.9365079365079365, 0.9523809523809523, 0.9682539682539683, 0.9841269841269841, 1}; float g[] = { 0, 0.01587301587301587f, 0.03174603174603174f, 0.04761904761904762f, 0.06349206349206349f, 0.07936507936507936f, 0.09523809523809523f, 0.1111111111111111f, 0.126984126984127f, 0.1428571428571428f, 0.1587301587301587f, 0.1746031746031746f, 0.1904761904761905f, 0.2063492063492063f, 0.2222222222222222f, 0.2380952380952381f, 0.253968253968254f, 0.2698412698412698f, 0.2857142857142857f, 0.3015873015873016f, 0.3174603174603174f, 0.3333333333333333f, 0.3492063492063492f, 0.3650793650793651f, 0.3809523809523809f, 0.3968253968253968f, 0.4126984126984127f, 0.4285714285714285f, 0.4444444444444444f, 0.4603174603174603f, 0.4761904761904762f, 0.492063492063492f, 0.5079365079365079f, 0.5238095238095238f, 0.5396825396825397f, 0.5555555555555556f, 0.5714285714285714f, 0.5873015873015873f, 0.6031746031746031f, 0.6190476190476191f, 0.6349206349206349f, 0.6507936507936508f, 0.6666666666666666f, 0.6825396825396826f, 0.6984126984126984f, 0.7142857142857143f, 0.7301587301587301f, 0.746031746031746f, 0.7619047619047619f, 0.7777777777777778f, 0.7936507936507936f, 0.8095238095238095f, 0.8253968253968254f, 0.8412698412698413f, 0.8571428571428571f, 0.873015873015873f, 0.8888888888888888f, 0.9047619047619048f, 0.9206349206349206f, 0.9365079365079365f, 0.9523809523809523f, 0.9682539682539683f, 0.9841269841269841f, 1};
float b[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; float b[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
Mat X = linspace(0,1,64); Mat X = linspace(0,1,64);
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
@ -212,9 +212,9 @@ namespace colormap
} }
void init(int n) { void init(int n) {
float r[] = { 0, 0.01388888888888889, 0.02777777777777778, 0.04166666666666666, 0.05555555555555555, 0.06944444444444445, 0.08333333333333333, 0.09722222222222221, 0.1111111111111111, 0.125, 0.1388888888888889, 0.1527777777777778, 0.1666666666666667, 0.1805555555555556, 0.1944444444444444, 0.2083333333333333, 0.2222222222222222, 0.2361111111111111, 0.25, 0.2638888888888889, 0.2777777777777778, 0.2916666666666666, 0.3055555555555555, 0.3194444444444444, 0.3333333333333333, 0.3472222222222222, 0.3611111111111111, 0.375, 0.3888888888888888, 0.4027777777777777, 0.4166666666666666, 0.4305555555555555, 0.4444444444444444, 0.4583333333333333, 0.4722222222222222, 0.4861111111111112, 0.5, 0.5138888888888888, 0.5277777777777778, 0.5416666666666667, 0.5555555555555556, 0.5694444444444444, 0.5833333333333333, 0.5972222222222222, 0.611111111111111, 0.6249999999999999, 0.6388888888888888, 0.6527777777777778, 0.6726190476190474, 0.6944444444444442, 0.7162698412698412, 0.7380952380952381, 0.7599206349206349, 0.7817460317460316, 0.8035714285714286, 0.8253968253968254, 0.8472222222222221, 0.8690476190476188, 0.8908730158730158, 0.9126984126984128, 0.9345238095238095, 0.9563492063492063, 0.978174603174603, 1}; float r[] = { 0, 0.01388888888888889f, 0.02777777777777778f, 0.04166666666666666f, 0.05555555555555555f, 0.06944444444444445f, 0.08333333333333333f, 0.09722222222222221f, 0.1111111111111111f, 0.125f, 0.1388888888888889f, 0.1527777777777778f, 0.1666666666666667f, 0.1805555555555556f, 0.1944444444444444f, 0.2083333333333333f, 0.2222222222222222f, 0.2361111111111111f, 0.25f, 0.2638888888888889f, 0.2777777777777778f, 0.2916666666666666f, 0.3055555555555555f, 0.3194444444444444f, 0.3333333333333333f, 0.3472222222222222f, 0.3611111111111111f, 0.375f, 0.3888888888888888f, 0.4027777777777777f, 0.4166666666666666f, 0.4305555555555555f, 0.4444444444444444f, 0.4583333333333333f, 0.4722222222222222f, 0.4861111111111112f, 0.5f, 0.5138888888888888f, 0.5277777777777778f, 0.5416666666666667f, 0.5555555555555556f, 0.5694444444444444f, 0.5833333333333333f, 0.5972222222222222f, 0.611111111111111f, 0.6249999999999999f, 0.6388888888888888f, 0.6527777777777778f, 0.6726190476190474f, 0.6944444444444442f, 0.7162698412698412f, 0.7380952380952381f, 0.7599206349206349f, 0.7817460317460316f, 0.8035714285714286f, 0.8253968253968254f, 0.8472222222222221f, 0.8690476190476188f, 0.8908730158730158f, 0.9126984126984128f, 0.9345238095238095f, 0.9563492063492063f, 0.978174603174603f, 1};
float g[] = { 0, 0.01388888888888889, 0.02777777777777778, 0.04166666666666666, 0.05555555555555555, 0.06944444444444445, 0.08333333333333333, 0.09722222222222221, 0.1111111111111111, 0.125, 0.1388888888888889, 0.1527777777777778, 0.1666666666666667, 0.1805555555555556, 0.1944444444444444, 0.2083333333333333, 0.2222222222222222, 0.2361111111111111, 0.25, 0.2638888888888889, 0.2777777777777778, 0.2916666666666666, 0.3055555555555555, 0.3194444444444444, 0.3353174603174602, 0.3544973544973544, 0.3736772486772486, 0.3928571428571428, 0.412037037037037, 0.4312169312169312, 0.4503968253968254, 0.4695767195767195, 0.4887566137566137, 0.5079365079365078, 0.5271164021164021, 0.5462962962962963, 0.5654761904761904, 0.5846560846560845, 0.6038359788359787, 0.623015873015873, 0.6421957671957671, 0.6613756613756612, 0.6805555555555555, 0.6997354497354497, 0.7189153439153438, 0.7380952380952379, 0.7572751322751322, 0.7764550264550264, 0.7916666666666666, 0.8055555555555555, 0.8194444444444444, 0.8333333333333334, 0.8472222222222222, 0.861111111111111, 0.875, 0.8888888888888888, 0.9027777777777777, 0.9166666666666665, 0.9305555555555555, 0.9444444444444444, 0.9583333333333333, 0.9722222222222221, 0.986111111111111, 1}; float g[] = { 0, 0.01388888888888889f, 0.02777777777777778f, 0.04166666666666666f, 0.05555555555555555f, 0.06944444444444445f, 0.08333333333333333f, 0.09722222222222221f, 0.1111111111111111f, 0.125f, 0.1388888888888889f, 0.1527777777777778f, 0.1666666666666667f, 0.1805555555555556f, 0.1944444444444444f, 0.2083333333333333f, 0.2222222222222222f, 0.2361111111111111f, 0.25f, 0.2638888888888889f, 0.2777777777777778f, 0.2916666666666666f, 0.3055555555555555f, 0.3194444444444444f, 0.3353174603174602f, 0.3544973544973544f, 0.3736772486772486f, 0.3928571428571428f, 0.412037037037037f, 0.4312169312169312f, 0.4503968253968254f, 0.4695767195767195f, 0.4887566137566137f, 0.5079365079365078f, 0.5271164021164021f, 0.5462962962962963f, 0.5654761904761904f, 0.5846560846560845f, 0.6038359788359787f, 0.623015873015873f, 0.6421957671957671f, 0.6613756613756612f, 0.6805555555555555f, 0.6997354497354497f, 0.7189153439153438f, 0.7380952380952379f, 0.7572751322751322f, 0.7764550264550264f, 0.7916666666666666f, 0.8055555555555555f, 0.8194444444444444f, 0.8333333333333334f, 0.8472222222222222f, 0.861111111111111f, 0.875f, 0.8888888888888888f, 0.9027777777777777f, 0.9166666666666665f, 0.9305555555555555f, 0.9444444444444444f, 0.9583333333333333f, 0.9722222222222221f, 0.986111111111111f, 1};
float b[] = { 0, 0.01917989417989418, 0.03835978835978836, 0.05753968253968253, 0.07671957671957672, 0.09589947089947089, 0.1150793650793651, 0.1342592592592592, 0.1534391534391534, 0.1726190476190476, 0.1917989417989418, 0.210978835978836, 0.2301587301587301, 0.2493386243386243, 0.2685185185185185, 0.2876984126984127, 0.3068783068783069, 0.326058201058201, 0.3452380952380952, 0.3644179894179894, 0.3835978835978835, 0.4027777777777777, 0.4219576719576719, 0.4411375661375661, 0.4583333333333333, 0.4722222222222222, 0.4861111111111111, 0.5, 0.5138888888888888, 0.5277777777777777, 0.5416666666666666, 0.5555555555555556, 0.5694444444444444, 0.5833333333333333, 0.5972222222222222, 0.6111111111111112, 0.625, 0.6388888888888888, 0.6527777777777778, 0.6666666666666667, 0.6805555555555556, 0.6944444444444444, 0.7083333333333333, 0.7222222222222222, 0.736111111111111, 0.7499999999999999, 0.7638888888888888, 0.7777777777777778, 0.7916666666666666, 0.8055555555555555, 0.8194444444444444, 0.8333333333333334, 0.8472222222222222, 0.861111111111111, 0.875, 0.8888888888888888, 0.9027777777777777, 0.9166666666666665, 0.9305555555555555, 0.9444444444444444, 0.9583333333333333, 0.9722222222222221, 0.986111111111111, 1}; float b[] = { 0, 0.01917989417989418f, 0.03835978835978836f, 0.05753968253968253f, 0.07671957671957672f, 0.09589947089947089f, 0.1150793650793651f, 0.1342592592592592f, 0.1534391534391534f, 0.1726190476190476f, 0.1917989417989418f, 0.210978835978836f, 0.2301587301587301f, 0.2493386243386243f, 0.2685185185185185f, 0.2876984126984127f, 0.3068783068783069f, 0.326058201058201f, 0.3452380952380952f, 0.3644179894179894f, 0.3835978835978835f, 0.4027777777777777f, 0.4219576719576719f, 0.4411375661375661f, 0.4583333333333333f, 0.4722222222222222f, 0.4861111111111111f, 0.5f, 0.5138888888888888f, 0.5277777777777777f, 0.5416666666666666f, 0.5555555555555556f, 0.5694444444444444f, 0.5833333333333333f, 0.5972222222222222f, 0.6111111111111112f, 0.625f, 0.6388888888888888f, 0.6527777777777778f, 0.6666666666666667f, 0.6805555555555556f, 0.6944444444444444f, 0.7083333333333333f, 0.7222222222222222f, 0.736111111111111f, 0.7499999999999999f, 0.7638888888888888f, 0.7777777777777778f, 0.7916666666666666f, 0.8055555555555555f, 0.8194444444444444f, 0.8333333333333334f, 0.8472222222222222f, 0.861111111111111f, 0.875f, 0.8888888888888888f, 0.9027777777777777f, 0.9166666666666665f, 0.9305555555555555f, 0.9444444444444444f, 0.9583333333333333f, 0.9722222222222221f, 0.986111111111111f, 1};
Mat X = linspace(0,1,64); Mat X = linspace(0,1,64);
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
Mat(64,1, CV_32FC1, r).clone(), // red Mat(64,1, CV_32FC1, r).clone(), // red
@ -242,9 +242,9 @@ namespace colormap
// breakpoints // breakpoints
Mat X = linspace(0,1,256); Mat X = linspace(0,1,256);
// define the basemap // define the basemap
float r[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.00588235294117645,0.02156862745098032,0.03725490196078418,0.05294117647058827,0.06862745098039214,0.084313725490196,0.1000000000000001,0.115686274509804,0.1313725490196078,0.1470588235294117,0.1627450980392156,0.1784313725490196,0.1941176470588235,0.2098039215686274,0.2254901960784315,0.2411764705882353,0.2568627450980392,0.2725490196078431,0.2882352941176469,0.303921568627451,0.3196078431372549,0.3352941176470587,0.3509803921568628,0.3666666666666667,0.3823529411764706,0.3980392156862744,0.4137254901960783,0.4294117647058824,0.4450980392156862,0.4607843137254901,0.4764705882352942,0.4921568627450981,0.5078431372549019,0.5235294117647058,0.5392156862745097,0.5549019607843135,0.5705882352941174,0.5862745098039217,0.6019607843137256,0.6176470588235294,0.6333333333333333,0.6490196078431372,0.664705882352941,0.6803921568627449,0.6960784313725492,0.7117647058823531,0.7274509803921569,0.7431372549019608,0.7588235294117647,0.7745098039215685,0.7901960784313724,0.8058823529411763,0.8215686274509801,0.8372549019607844,0.8529411764705883,0.8686274509803922,0.884313725490196,0.8999999999999999,0.9156862745098038,0.9313725490196076,0.947058823529412,0.9627450980392158,0.9784313725490197,0.9941176470588236,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0.9862745098039216,0.9705882352941178,0.9549019607843139,0.93921568627451,0.9235294117647062,0.9078431372549018,0.892156862745098,0.8764705882352941,0.8607843137254902,0.8450980392156864,0.8294117647058825,0.8137254901960786,0.7980392156862743,0.7823529411764705,0.7666666666666666,0.7509803921568627,0.7352941176470589,0.719607843137255,0.7039215686274511,0.6882352941176473,0.6725490196078434,0.6568627450980391,0.6411764705882352,0.6254901960784314,0.6098039215686275,0.5941176470588236,0.5784313725490198,0.5627450980392159,0.5470588235294116,0.5313725490196077,0.5156862745098039,0.5}; float r[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.00588235294117645f,0.02156862745098032f,0.03725490196078418f,0.05294117647058827f,0.06862745098039214f,0.084313725490196f,0.1000000000000001f,0.115686274509804f,0.1313725490196078f,0.1470588235294117f,0.1627450980392156f,0.1784313725490196f,0.1941176470588235f,0.2098039215686274f,0.2254901960784315f,0.2411764705882353f,0.2568627450980392f,0.2725490196078431f,0.2882352941176469f,0.303921568627451f,0.3196078431372549f,0.3352941176470587f,0.3509803921568628f,0.3666666666666667f,0.3823529411764706f,0.3980392156862744f,0.4137254901960783f,0.4294117647058824f,0.4450980392156862f,0.4607843137254901f,0.4764705882352942f,0.4921568627450981f,0.5078431372549019f,0.5235294117647058f,0.5392156862745097f,0.5549019607843135f,0.5705882352941174f,0.5862745098039217f,0.6019607843137256f,0.6176470588235294f,0.6333333333333333f,0.6490196078431372f,0.664705882352941f,0.6803921568627449f,0.6960784313725492f,0.7117647058823531f,0.7274509803921569f,0.7431372549019608f,0.7588235294117647f,0.7745098039215685f,0.7901960784313724f,0.8058823529411763f,0.8215686274509801f,0.8372549019607844f,0.8529411764705883f,0.8686274509803922f,0.884313725490196f,0.8999999999999999f,0.9156862745098038f,0.9313725490196076f,0.947058823529412f,0.9627450980392158f,0.9784313725490197f,0.9941176470588236f,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0.9862745098039216f,0.9705882352941178f,0.9549019607843139f,0.93921568627451f,0.9235294117647062f,0.9078431372549018f,0.892156862745098f,0.8764705882352941f,0.8607843137254902f,0.8450980392156864f,0.8294117647058825f,0.8137254901960786f,0.7980392156862743f,0.7823529411764705f,0.7666666666666666f,0.7509803921568627f,0.7352941176470589f,0.719607843137255f,0.7039215686274511f,0.6882352941176473f,0.6725490196078434f,0.6568627450980391f,0.6411764705882352f,0.6254901960784314f,0.6098039215686275f,0.5941176470588236f,0.5784313725490198f,0.5627450980392159f,0.5470588235294116f,0.5313725490196077f,0.5156862745098039f,0.5f};
float g[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.001960784313725483,0.01764705882352935,0.03333333333333333,0.0490196078431373,0.06470588235294117,0.08039215686274503,0.09607843137254901,0.111764705882353,0.1274509803921569,0.1431372549019607,0.1588235294117647,0.1745098039215687,0.1901960784313725,0.2058823529411764,0.2215686274509804,0.2372549019607844,0.2529411764705882,0.2686274509803921,0.2843137254901961,0.3,0.3156862745098039,0.3313725490196078,0.3470588235294118,0.3627450980392157,0.3784313725490196,0.3941176470588235,0.4098039215686274,0.4254901960784314,0.4411764705882353,0.4568627450980391,0.4725490196078431,0.4882352941176471,0.503921568627451,0.5196078431372548,0.5352941176470587,0.5509803921568628,0.5666666666666667,0.5823529411764705,0.5980392156862746,0.6137254901960785,0.6294117647058823,0.6450980392156862,0.6607843137254901,0.6764705882352942,0.692156862745098,0.7078431372549019,0.723529411764706,0.7392156862745098,0.7549019607843137,0.7705882352941176,0.7862745098039214,0.8019607843137255,0.8176470588235294,0.8333333333333333,0.8490196078431373,0.8647058823529412,0.8803921568627451,0.8960784313725489,0.9117647058823528,0.9274509803921569,0.9431372549019608,0.9588235294117646,0.9745098039215687,0.9901960784313726,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0.9901960784313726,0.9745098039215687,0.9588235294117649,0.943137254901961,0.9274509803921571,0.9117647058823528,0.8960784313725489,0.8803921568627451,0.8647058823529412,0.8490196078431373,0.8333333333333335,0.8176470588235296,0.8019607843137253,0.7862745098039214,0.7705882352941176,0.7549019607843137,0.7392156862745098,0.723529411764706,0.7078431372549021,0.6921568627450982,0.6764705882352944,0.6607843137254901,0.6450980392156862,0.6294117647058823,0.6137254901960785,0.5980392156862746,0.5823529411764707,0.5666666666666669,0.5509803921568626,0.5352941176470587,0.5196078431372548,0.503921568627451,0.4882352941176471,0.4725490196078432,0.4568627450980394,0.4411764705882355,0.4254901960784316,0.4098039215686273,0.3941176470588235,0.3784313725490196,0.3627450980392157,0.3470588235294119,0.331372549019608,0.3156862745098041,0.2999999999999998,0.284313725490196,0.2686274509803921,0.2529411764705882,0.2372549019607844,0.2215686274509805,0.2058823529411766,0.1901960784313728,0.1745098039215689,0.1588235294117646,0.1431372549019607,0.1274509803921569,0.111764705882353,0.09607843137254912,0.08039215686274526,0.06470588235294139,0.04901960784313708,0.03333333333333321,0.01764705882352935,0.001960784313725483,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; float g[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.001960784313725483f,0.01764705882352935f,0.03333333333333333f,0.0490196078431373f,0.06470588235294117f,0.08039215686274503f,0.09607843137254901f,0.111764705882353f,0.1274509803921569f,0.1431372549019607f,0.1588235294117647f,0.1745098039215687f,0.1901960784313725f,0.2058823529411764f,0.2215686274509804f,0.2372549019607844f,0.2529411764705882f,0.2686274509803921f,0.2843137254901961f,0.3f,0.3156862745098039f,0.3313725490196078f,0.3470588235294118f,0.3627450980392157f,0.3784313725490196f,0.3941176470588235f,0.4098039215686274f,0.4254901960784314f,0.4411764705882353f,0.4568627450980391f,0.4725490196078431f,0.4882352941176471f,0.503921568627451f,0.5196078431372548f,0.5352941176470587f,0.5509803921568628f,0.5666666666666667f,0.5823529411764705f,0.5980392156862746f,0.6137254901960785f,0.6294117647058823f,0.6450980392156862f,0.6607843137254901f,0.6764705882352942f,0.692156862745098f,0.7078431372549019f,0.723529411764706f,0.7392156862745098f,0.7549019607843137f,0.7705882352941176f,0.7862745098039214f,0.8019607843137255f,0.8176470588235294f,0.8333333333333333f,0.8490196078431373f,0.8647058823529412f,0.8803921568627451f,0.8960784313725489f,0.9117647058823528f,0.9274509803921569f,0.9431372549019608f,0.9588235294117646f,0.9745098039215687f,0.9901960784313726f,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0.9901960784313726f,0.9745098039215687f,0.9588235294117649f,0.943137254901961f,0.9274509803921571f,0.9117647058823528f,0.8960784313725489f,0.8803921568627451f,0.8647058823529412f,0.8490196078431373f,0.8333333333333335f,0.8176470588235296f,0.8019607843137253f,0.7862745098039214f,0.7705882352941176f,0.7549019607843137f,0.7392156862745098f,0.723529411764706f,0.7078431372549021f,0.6921568627450982f,0.6764705882352944f,0.6607843137254901f,0.6450980392156862f,0.6294117647058823f,0.6137254901960785f,0.5980392156862746f,0.5823529411764707f,0.5666666666666669f,0.5509803921568626f,0.5352941176470587f,0.5196078431372548f,0.503921568627451f,0.4882352941176471f,0.4725490196078432f,0.4568627450980394f,0.4411764705882355f,0.4254901960784316f,0.4098039215686273f,0.3941176470588235f,0.3784313725490196f,0.3627450980392157f,0.3470588235294119f,0.331372549019608f,0.3156862745098041f,0.2999999999999998f,0.284313725490196f,0.2686274509803921f,0.2529411764705882f,0.2372549019607844f,0.2215686274509805f,0.2058823529411766f,0.1901960784313728f,0.1745098039215689f,0.1588235294117646f,0.1431372549019607f,0.1274509803921569f,0.111764705882353f,0.09607843137254912f,0.08039215686274526f,0.06470588235294139f,0.04901960784313708f,0.03333333333333321f,0.01764705882352935f,0.001960784313725483f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
float b[] = {0.5,0.5156862745098039,0.5313725490196078,0.5470588235294118,0.5627450980392157,0.5784313725490196,0.5941176470588235,0.6098039215686275,0.6254901960784314,0.6411764705882352,0.6568627450980392,0.6725490196078432,0.6882352941176471,0.7039215686274509,0.7196078431372549,0.7352941176470589,0.7509803921568627,0.7666666666666666,0.7823529411764706,0.7980392156862746,0.8137254901960784,0.8294117647058823,0.8450980392156863,0.8607843137254902,0.8764705882352941,0.892156862745098,0.907843137254902,0.9235294117647059,0.9392156862745098,0.9549019607843137,0.9705882352941176,0.9862745098039216,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0.9941176470588236,0.9784313725490197,0.9627450980392158,0.9470588235294117,0.9313725490196079,0.915686274509804,0.8999999999999999,0.884313725490196,0.8686274509803922,0.8529411764705883,0.8372549019607844,0.8215686274509804,0.8058823529411765,0.7901960784313726,0.7745098039215685,0.7588235294117647,0.7431372549019608,0.7274509803921569,0.7117647058823531,0.696078431372549,0.6803921568627451,0.6647058823529413,0.6490196078431372,0.6333333333333333,0.6176470588235294,0.6019607843137256,0.5862745098039217,0.5705882352941176,0.5549019607843138,0.5392156862745099,0.5235294117647058,0.5078431372549019,0.4921568627450981,0.4764705882352942,0.4607843137254903,0.4450980392156865,0.4294117647058826,0.4137254901960783,0.3980392156862744,0.3823529411764706,0.3666666666666667,0.3509803921568628,0.335294117647059,0.3196078431372551,0.3039215686274508,0.2882352941176469,0.2725490196078431,0.2568627450980392,0.2411764705882353,0.2254901960784315,0.2098039215686276,0.1941176470588237,0.1784313725490199,0.1627450980392156,0.1470588235294117,0.1313725490196078,0.115686274509804,0.1000000000000001,0.08431372549019622,0.06862745098039236,0.05294117647058805,0.03725490196078418,0.02156862745098032,0.00588235294117645,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; float b[] = {0.5f,0.5156862745098039f,0.5313725490196078f,0.5470588235294118f,0.5627450980392157f,0.5784313725490196f,0.5941176470588235f,0.6098039215686275f,0.6254901960784314f,0.6411764705882352f,0.6568627450980392f,0.6725490196078432f,0.6882352941176471f,0.7039215686274509f,0.7196078431372549f,0.7352941176470589f,0.7509803921568627f,0.7666666666666666f,0.7823529411764706f,0.7980392156862746f,0.8137254901960784f,0.8294117647058823f,0.8450980392156863f,0.8607843137254902f,0.8764705882352941f,0.892156862745098f,0.907843137254902f,0.9235294117647059f,0.9392156862745098f,0.9549019607843137f,0.9705882352941176f,0.9862745098039216f,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0.9941176470588236f,0.9784313725490197f,0.9627450980392158f,0.9470588235294117f,0.9313725490196079f,0.915686274509804f,0.8999999999999999f,0.884313725490196f,0.8686274509803922f,0.8529411764705883f,0.8372549019607844f,0.8215686274509804f,0.8058823529411765f,0.7901960784313726f,0.7745098039215685f,0.7588235294117647f,0.7431372549019608f,0.7274509803921569f,0.7117647058823531f,0.696078431372549f,0.6803921568627451f,0.6647058823529413f,0.6490196078431372f,0.6333333333333333f,0.6176470588235294f,0.6019607843137256f,0.5862745098039217f,0.5705882352941176f,0.5549019607843138f,0.5392156862745099f,0.5235294117647058f,0.5078431372549019f,0.4921568627450981f,0.4764705882352942f,0.4607843137254903f,0.4450980392156865f,0.4294117647058826f,0.4137254901960783f,0.3980392156862744f,0.3823529411764706f,0.3666666666666667f,0.3509803921568628f,0.335294117647059f,0.3196078431372551f,0.3039215686274508f,0.2882352941176469f,0.2725490196078431f,0.2568627450980392f,0.2411764705882353f,0.2254901960784315f,0.2098039215686276f,0.1941176470588237f,0.1784313725490199f,0.1627450980392156f,0.1470588235294117f,0.1313725490196078f,0.115686274509804f,0.1000000000000001f,0.08431372549019622f,0.06862745098039236f,0.05294117647058805f,0.03725490196078418f,0.02156862745098032f,0.00588235294117645f,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
// now build lookup table // now build lookup table
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
Mat(256,1, CV_32FC1, r).clone(), // red Mat(256,1, CV_32FC1, r).clone(), // red
@ -266,9 +266,9 @@ namespace colormap
} }
void init(int n) { void init(int n) {
float r[] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}; float r[] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f};
float g[] = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}; float g[] = {0.0f, 0.1f, 0.2f, 0.3f, 0.4f, 0.5f, 0.6f, 0.7f, 0.8f, 0.9f, 1.0f,};
float b[] = {1.0, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5}; float b[] = {1.0, 0.95f, 0.9f, 0.85f, 0.8f, 0.75f, 0.7f, 0.65f, 0.6f, 0.55f, 0.5f};
Mat X = linspace(0,1,11); Mat X = linspace(0,1,11);
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
Mat(11,1, CV_32FC1, r).clone(), // red Mat(11,1, CV_32FC1, r).clone(), // red
@ -290,9 +290,9 @@ namespace colormap
} }
void init(int n) { void init(int n) {
float r[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9365079365079367, 0.8571428571428572, 0.7777777777777777, 0.6984126984126986, 0.6190476190476191, 0.53968253968254, 0.4603174603174605, 0.3809523809523814, 0.3015873015873018, 0.2222222222222223, 0.1428571428571432, 0.06349206349206415, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03174603174603208, 0.08465608465608465, 0.1375661375661377, 0.1904761904761907, 0.2433862433862437, 0.2962962962962963, 0.3492063492063493, 0.4021164021164023, 0.4550264550264553, 0.5079365079365079, 0.5608465608465609, 0.6137566137566139, 0.666666666666667}; float r[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9365079365079367f, 0.8571428571428572f, 0.7777777777777777f, 0.6984126984126986f, 0.6190476190476191f, 0.53968253968254f, 0.4603174603174605f, 0.3809523809523814f, 0.3015873015873018f, 0.2222222222222223f, 0.1428571428571432f, 0.06349206349206415f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03174603174603208f, 0.08465608465608465f, 0.1375661375661377f, 0.1904761904761907f, 0.2433862433862437f, 0.2962962962962963f, 0.3492063492063493f, 0.4021164021164023f, 0.4550264550264553f, 0.5079365079365079f, 0.5608465608465609f, 0.6137566137566139f, 0.666666666666667f};
float g[] = { 0, 0.03968253968253968, 0.07936507936507936, 0.119047619047619, 0.1587301587301587, 0.1984126984126984, 0.2380952380952381, 0.2777777777777778, 0.3174603174603174, 0.3571428571428571, 0.3968253968253968, 0.4365079365079365, 0.4761904761904762, 0.5158730158730158, 0.5555555555555556, 0.5952380952380952, 0.6349206349206349, 0.6746031746031745, 0.7142857142857142, 0.753968253968254, 0.7936507936507936, 0.8333333333333333, 0.873015873015873, 0.9126984126984127, 0.9523809523809523, 0.992063492063492, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9841269841269842, 0.9047619047619047, 0.8253968253968256, 0.7460317460317465, 0.666666666666667, 0.587301587301587, 0.5079365079365079, 0.4285714285714288, 0.3492063492063493, 0.2698412698412698, 0.1904761904761907, 0.1111111111111116, 0.03174603174603208, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; float g[] = { 0, 0.03968253968253968f, 0.07936507936507936f, 0.119047619047619f, 0.1587301587301587f, 0.1984126984126984f, 0.2380952380952381f, 0.2777777777777778f, 0.3174603174603174f, 0.3571428571428571f, 0.3968253968253968f, 0.4365079365079365f, 0.4761904761904762f, 0.5158730158730158f, 0.5555555555555556f, 0.5952380952380952f, 0.6349206349206349f, 0.6746031746031745f, 0.7142857142857142f, 0.753968253968254f, 0.7936507936507936f, 0.8333333333333333f, 0.873015873015873f, 0.9126984126984127f, 0.9523809523809523f, 0.992063492063492f, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9841269841269842f, 0.9047619047619047f, 0.8253968253968256f, 0.7460317460317465f, 0.666666666666667f, 0.587301587301587f, 0.5079365079365079f, 0.4285714285714288f, 0.3492063492063493f, 0.2698412698412698f, 0.1904761904761907f, 0.1111111111111116f, 0.03174603174603208f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
float b[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01587301587301582, 0.09523809523809534, 0.1746031746031744, 0.2539682539682535, 0.333333333333333, 0.412698412698413, 0.4920634920634921, 0.5714285714285712, 0.6507936507936507, 0.7301587301587302, 0.8095238095238093, 0.8888888888888884, 0.9682539682539679, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; float b[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01587301587301582f, 0.09523809523809534f, 0.1746031746031744f, 0.2539682539682535f, 0.333333333333333f, 0.412698412698413f, 0.4920634920634921f, 0.5714285714285712f, 0.6507936507936507f, 0.7301587301587302f, 0.8095238095238093f, 0.8888888888888884f, 0.9682539682539679f, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
Mat X = linspace(0,1,64); Mat X = linspace(0,1,64);
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
Mat(64,1, CV_32FC1, r).clone(), // red Mat(64,1, CV_32FC1, r).clone(), // red
@ -314,9 +314,9 @@ namespace colormap
} }
void init(int n) { void init(int n) {
float r[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04761904761904762, 0.09523809523809523, 0.1428571428571428, 0.1904761904761905, 0.2380952380952381, 0.2857142857142857, 0.3333333333333333, 0.3809523809523809, 0.4285714285714285, 0.4761904761904762, 0.5238095238095238, 0.5714285714285714, 0.6190476190476191, 0.6666666666666666, 0.7142857142857143, 0.7619047619047619, 0.8095238095238095, 0.8571428571428571, 0.9047619047619048, 0.9523809523809523, 1}; float r[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04761904761904762f, 0.09523809523809523f, 0.1428571428571428f, 0.1904761904761905f, 0.2380952380952381f, 0.2857142857142857f, 0.3333333333333333f, 0.3809523809523809f, 0.4285714285714285f, 0.4761904761904762f, 0.5238095238095238f, 0.5714285714285714f, 0.6190476190476191f, 0.6666666666666666f, 0.7142857142857143f, 0.7619047619047619f, 0.8095238095238095f, 0.8571428571428571f, 0.9047619047619048f, 0.9523809523809523f, 1};
float g[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.02380952380952381, 0.04761904761904762, 0.07142857142857142, 0.09523809523809523, 0.119047619047619, 0.1428571428571428, 0.1666666666666667, 0.1904761904761905, 0.2142857142857143, 0.2380952380952381, 0.2619047619047619, 0.2857142857142857, 0.3095238095238095, 0.3333333333333333, 0.3571428571428572, 0.3809523809523809, 0.4047619047619048, 0.4285714285714285, 0.4523809523809524, 0.4761904761904762, 0.5, 0.5238095238095238, 0.5476190476190477, 0.5714285714285714, 0.5952380952380952, 0.6190476190476191, 0.6428571428571429, 0.6666666666666666, 0.6904761904761905, 0.7142857142857143, 0.7380952380952381, 0.7619047619047619, 0.7857142857142857, 0.8095238095238095, 0.8333333333333334, 0.8571428571428571, 0.8809523809523809, 0.9047619047619048, 0.9285714285714286, 0.9523809523809523, 0.9761904761904762, 1}; float g[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.02380952380952381f, 0.04761904761904762f, 0.07142857142857142f, 0.09523809523809523f, 0.119047619047619f, 0.1428571428571428f, 0.1666666666666667f, 0.1904761904761905f, 0.2142857142857143f, 0.2380952380952381f, 0.2619047619047619f, 0.2857142857142857f, 0.3095238095238095f, 0.3333333333333333f, 0.3571428571428572f, 0.3809523809523809f, 0.4047619047619048f, 0.4285714285714285f, 0.4523809523809524f, 0.4761904761904762f, 0.5f, 0.5238095238095238f, 0.5476190476190477f, 0.5714285714285714f, 0.5952380952380952f, 0.6190476190476191f, 0.6428571428571429f, 0.6666666666666666f, 0.6904761904761905f, 0.7142857142857143f, 0.7380952380952381f, 0.7619047619047619f, 0.7857142857142857f, 0.8095238095238095f, 0.8333333333333334f, 0.8571428571428571f, 0.8809523809523809f, 0.9047619047619048f, 0.9285714285714286f, 0.9523809523809523f, 0.9761904761904762f, 1};
float b[] = { 0, 0.01587301587301587, 0.03174603174603174, 0.04761904761904762, 0.06349206349206349, 0.07936507936507936, 0.09523809523809523, 0.1111111111111111, 0.126984126984127, 0.1428571428571428, 0.1587301587301587, 0.1746031746031746, 0.1904761904761905, 0.2063492063492063, 0.2222222222222222, 0.2380952380952381, 0.253968253968254, 0.2698412698412698, 0.2857142857142857, 0.3015873015873016, 0.3174603174603174, 0.3333333333333333, 0.3492063492063492, 0.3650793650793651, 0.3809523809523809, 0.3968253968253968, 0.4126984126984127, 0.4285714285714285, 0.4444444444444444, 0.4603174603174603, 0.4761904761904762, 0.492063492063492, 0.5079365079365079, 0.5238095238095238, 0.5396825396825397, 0.5555555555555556, 0.5714285714285714, 0.5873015873015873, 0.6031746031746031, 0.6190476190476191, 0.6349206349206349, 0.6507936507936508, 0.6666666666666666, 0.6825396825396826, 0.6984126984126984, 0.7142857142857143, 0.7301587301587301, 0.746031746031746, 0.7619047619047619, 0.7777777777777778, 0.7936507936507936, 0.8095238095238095, 0.8253968253968254, 0.8412698412698413, 0.8571428571428571, 0.873015873015873, 0.8888888888888888, 0.9047619047619048, 0.9206349206349206, 0.9365079365079365, 0.9523809523809523, 0.9682539682539683, 0.9841269841269841, 1}; float b[] = { 0, 0.01587301587301587f, 0.03174603174603174f, 0.04761904761904762f, 0.06349206349206349f, 0.07936507936507936f, 0.09523809523809523f, 0.1111111111111111f, 0.126984126984127f, 0.1428571428571428f, 0.1587301587301587f, 0.1746031746031746f, 0.1904761904761905f, 0.2063492063492063f, 0.2222222222222222f, 0.2380952380952381f, 0.253968253968254f, 0.2698412698412698f, 0.2857142857142857f, 0.3015873015873016f, 0.3174603174603174f, 0.3333333333333333f, 0.3492063492063492f, 0.3650793650793651f, 0.3809523809523809f, 0.3968253968253968f, 0.4126984126984127f, 0.4285714285714285f, 0.4444444444444444f, 0.4603174603174603f, 0.4761904761904762f, 0.492063492063492f, 0.5079365079365079f, 0.5238095238095238f, 0.5396825396825397f, 0.5555555555555556f, 0.5714285714285714f, 0.5873015873015873f, 0.6031746031746031f, 0.6190476190476191f, 0.6349206349206349f, 0.6507936507936508f, 0.6666666666666666f, 0.6825396825396826f, 0.6984126984126984f, 0.7142857142857143f, 0.7301587301587301f, 0.746031746031746f, 0.7619047619047619f, 0.7777777777777778f, 0.7936507936507936f, 0.8095238095238095f, 0.8253968253968254f, 0.8412698412698413f, 0.8571428571428571f, 0.873015873015873f, 0.8888888888888888f, 0.9047619047619048f, 0.9206349206349206f, 0.9365079365079365f, 0.9523809523809523f, 0.9682539682539683f, 0.9841269841269841f, 1};
Mat X = linspace(0,1,64); Mat X = linspace(0,1,64);
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
Mat(64,1, CV_32FC1, r).clone(), // red Mat(64,1, CV_32FC1, r).clone(), // red
@ -338,9 +338,9 @@ namespace colormap
} }
void init(int n) { void init(int n) {
float r[] = { 0, 0.01587301587301587, 0.03174603174603174, 0.04761904761904762, 0.06349206349206349, 0.07936507936507936, 0.09523809523809523, 0.1111111111111111, 0.126984126984127, 0.1428571428571428, 0.1587301587301587, 0.1746031746031746, 0.1904761904761905, 0.2063492063492063, 0.2222222222222222, 0.2380952380952381, 0.253968253968254, 0.2698412698412698, 0.2857142857142857, 0.3015873015873016, 0.3174603174603174, 0.3333333333333333, 0.3492063492063492, 0.3650793650793651, 0.3809523809523809, 0.3968253968253968, 0.4126984126984127, 0.4285714285714285, 0.4444444444444444, 0.4603174603174603, 0.4761904761904762, 0.492063492063492, 0.5079365079365079, 0.5238095238095238, 0.5396825396825397, 0.5555555555555556, 0.5714285714285714, 0.5873015873015873, 0.6031746031746031, 0.6190476190476191, 0.6349206349206349, 0.6507936507936508, 0.6666666666666666, 0.6825396825396826, 0.6984126984126984, 0.7142857142857143, 0.7301587301587301, 0.746031746031746, 0.7619047619047619, 0.7777777777777778, 0.7936507936507936, 0.8095238095238095, 0.8253968253968254, 0.8412698412698413, 0.8571428571428571, 0.873015873015873, 0.8888888888888888, 0.9047619047619048, 0.9206349206349206, 0.9365079365079365, 0.9523809523809523, 0.9682539682539683, 0.9841269841269841, 1}; float r[] = { 0, 0.01587301587301587f, 0.03174603174603174f, 0.04761904761904762f, 0.06349206349206349f, 0.07936507936507936f, 0.09523809523809523f, 0.1111111111111111f, 0.126984126984127f, 0.1428571428571428f, 0.1587301587301587f, 0.1746031746031746f, 0.1904761904761905f, 0.2063492063492063f, 0.2222222222222222f, 0.2380952380952381f, 0.253968253968254f, 0.2698412698412698f, 0.2857142857142857f, 0.3015873015873016f, 0.3174603174603174f, 0.3333333333333333f, 0.3492063492063492f, 0.3650793650793651f, 0.3809523809523809f, 0.3968253968253968f, 0.4126984126984127f, 0.4285714285714285f, 0.4444444444444444f, 0.4603174603174603f, 0.4761904761904762f, 0.492063492063492f, 0.5079365079365079f, 0.5238095238095238f, 0.5396825396825397f, 0.5555555555555556f, 0.5714285714285714f, 0.5873015873015873f, 0.6031746031746031f, 0.6190476190476191f, 0.6349206349206349f, 0.6507936507936508f, 0.6666666666666666f, 0.6825396825396826f, 0.6984126984126984f, 0.7142857142857143f, 0.7301587301587301f, 0.746031746031746f, 0.7619047619047619f, 0.7777777777777778f, 0.7936507936507936f, 0.8095238095238095f, 0.8253968253968254f, 0.8412698412698413f, 0.8571428571428571f, 0.873015873015873f, 0.8888888888888888f, 0.9047619047619048f, 0.9206349206349206f, 0.9365079365079365f, 0.9523809523809523f, 0.9682539682539683f, 0.9841269841269841f, 1};
float g[] = { 0.5, 0.5079365079365079, 0.5158730158730158, 0.5238095238095238, 0.5317460317460317, 0.5396825396825397, 0.5476190476190477, 0.5555555555555556, 0.5634920634920635, 0.5714285714285714, 0.5793650793650793, 0.5873015873015873, 0.5952380952380952, 0.6031746031746031, 0.6111111111111112, 0.6190476190476191, 0.626984126984127, 0.6349206349206349, 0.6428571428571428, 0.6507936507936508, 0.6587301587301587, 0.6666666666666666, 0.6746031746031746, 0.6825396825396826, 0.6904761904761905, 0.6984126984126984, 0.7063492063492063, 0.7142857142857143, 0.7222222222222222, 0.7301587301587301, 0.7380952380952381, 0.746031746031746, 0.753968253968254, 0.7619047619047619, 0.7698412698412698, 0.7777777777777778, 0.7857142857142857, 0.7936507936507937, 0.8015873015873016, 0.8095238095238095, 0.8174603174603174, 0.8253968253968254, 0.8333333333333333, 0.8412698412698413, 0.8492063492063492, 0.8571428571428572, 0.8650793650793651, 0.873015873015873, 0.8809523809523809, 0.8888888888888888, 0.8968253968253967, 0.9047619047619048, 0.9126984126984127, 0.9206349206349207, 0.9285714285714286, 0.9365079365079365, 0.9444444444444444, 0.9523809523809523, 0.9603174603174602, 0.9682539682539683, 0.9761904761904762, 0.9841269841269842, 0.9920634920634921, 1}; float g[] = { 0.5f, 0.5079365079365079f, 0.5158730158730158f, 0.5238095238095238f, 0.5317460317460317f, 0.5396825396825397f, 0.5476190476190477f, 0.5555555555555556f, 0.5634920634920635f, 0.5714285714285714f, 0.5793650793650793f, 0.5873015873015873f, 0.5952380952380952f, 0.6031746031746031f, 0.6111111111111112f, 0.6190476190476191f, 0.626984126984127f, 0.6349206349206349f, 0.6428571428571428f, 0.6507936507936508f, 0.6587301587301587f, 0.6666666666666666f, 0.6746031746031746f, 0.6825396825396826f, 0.6904761904761905f, 0.6984126984126984f, 0.7063492063492063f, 0.7142857142857143f, 0.7222222222222222f, 0.7301587301587301f, 0.7380952380952381f, 0.746031746031746f, 0.753968253968254f, 0.7619047619047619f, 0.7698412698412698f, 0.7777777777777778f, 0.7857142857142857f, 0.7936507936507937f, 0.8015873015873016f, 0.8095238095238095f, 0.8174603174603174f, 0.8253968253968254f, 0.8333333333333333f, 0.8412698412698413f, 0.8492063492063492f, 0.8571428571428572f, 0.8650793650793651f, 0.873015873015873f, 0.8809523809523809f, 0.8888888888888888f, 0.8968253968253967f, 0.9047619047619048f, 0.9126984126984127f, 0.9206349206349207f, 0.9285714285714286f, 0.9365079365079365f, 0.9444444444444444f, 0.9523809523809523f, 0.9603174603174602f, 0.9682539682539683f, 0.9761904761904762f, 0.9841269841269842f, 0.9920634920634921f, 1};
float b[] = { 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4}; float b[] = { 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f, 0.4f};
Mat X = linspace(0,1,64); Mat X = linspace(0,1,64);
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
Mat(64,1, CV_32FC1, r).clone(), // red Mat(64,1, CV_32FC1, r).clone(), // red
@ -363,8 +363,8 @@ namespace colormap
void init(int n) { void init(int n) {
float r[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; float r[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
float g[] = { 0, 0.01587301587301587, 0.03174603174603174, 0.04761904761904762, 0.06349206349206349, 0.07936507936507936, 0.09523809523809523, 0.1111111111111111, 0.126984126984127, 0.1428571428571428, 0.1587301587301587, 0.1746031746031746, 0.1904761904761905, 0.2063492063492063, 0.2222222222222222, 0.2380952380952381, 0.253968253968254, 0.2698412698412698, 0.2857142857142857, 0.3015873015873016, 0.3174603174603174, 0.3333333333333333, 0.3492063492063492, 0.3650793650793651, 0.3809523809523809, 0.3968253968253968, 0.4126984126984127, 0.4285714285714285, 0.4444444444444444, 0.4603174603174603, 0.4761904761904762, 0.492063492063492, 0.5079365079365079, 0.5238095238095238, 0.5396825396825397, 0.5555555555555556, 0.5714285714285714, 0.5873015873015873, 0.6031746031746031, 0.6190476190476191, 0.6349206349206349, 0.6507936507936508, 0.6666666666666666, 0.6825396825396826, 0.6984126984126984, 0.7142857142857143, 0.7301587301587301, 0.746031746031746, 0.7619047619047619, 0.7777777777777778, 0.7936507936507936, 0.8095238095238095, 0.8253968253968254, 0.8412698412698413, 0.8571428571428571, 0.873015873015873, 0.8888888888888888, 0.9047619047619048, 0.9206349206349206, 0.9365079365079365, 0.9523809523809523, 0.9682539682539683, 0.9841269841269841, 1}; float g[] = { 0, 0.01587301587301587f, 0.03174603174603174f, 0.04761904761904762f, 0.06349206349206349f, 0.07936507936507936f, 0.09523809523809523f, 0.1111111111111111f, 0.126984126984127f, 0.1428571428571428f, 0.1587301587301587f, 0.1746031746031746f, 0.1904761904761905f, 0.2063492063492063f, 0.2222222222222222f, 0.2380952380952381f, 0.253968253968254f, 0.2698412698412698f, 0.2857142857142857f, 0.3015873015873016f, 0.3174603174603174f, 0.3333333333333333f, 0.3492063492063492f, 0.3650793650793651f, 0.3809523809523809f, 0.3968253968253968f, 0.4126984126984127f, 0.4285714285714285f, 0.4444444444444444f, 0.4603174603174603f, 0.4761904761904762f, 0.492063492063492f, 0.5079365079365079f, 0.5238095238095238f, 0.5396825396825397f, 0.5555555555555556f, 0.5714285714285714f, 0.5873015873015873f, 0.6031746031746031f, 0.6190476190476191f, 0.6349206349206349f, 0.6507936507936508f, 0.6666666666666666f, 0.6825396825396826f, 0.6984126984126984f, 0.7142857142857143f, 0.7301587301587301f, 0.746031746031746f, 0.7619047619047619f, 0.7777777777777778f, 0.7936507936507936f, 0.8095238095238095f, 0.8253968253968254f, 0.8412698412698413f, 0.8571428571428571f, 0.873015873015873f, 0.8888888888888888f, 0.9047619047619048f, 0.9206349206349206f, 0.9365079365079365f, 0.9523809523809523f, 0.9682539682539683f, 0.9841269841269841f, 1};
float b[] = { 1, 0.9841269841269842, 0.9682539682539683, 0.9523809523809523, 0.9365079365079365, 0.9206349206349207, 0.9047619047619048, 0.8888888888888888, 0.873015873015873, 0.8571428571428572, 0.8412698412698413, 0.8253968253968254, 0.8095238095238095, 0.7936507936507937, 0.7777777777777778, 0.7619047619047619, 0.746031746031746, 0.7301587301587302, 0.7142857142857143, 0.6984126984126984, 0.6825396825396826, 0.6666666666666667, 0.6507936507936508, 0.6349206349206349, 0.6190476190476191, 0.6031746031746033, 0.5873015873015873, 0.5714285714285714, 0.5555555555555556, 0.5396825396825398, 0.5238095238095238, 0.5079365079365079, 0.4920634920634921, 0.4761904761904762, 0.4603174603174603, 0.4444444444444444, 0.4285714285714286, 0.4126984126984127, 0.3968253968253969, 0.3809523809523809, 0.3650793650793651, 0.3492063492063492, 0.3333333333333334, 0.3174603174603174, 0.3015873015873016, 0.2857142857142857, 0.2698412698412699, 0.253968253968254, 0.2380952380952381, 0.2222222222222222, 0.2063492063492064, 0.1904761904761905, 0.1746031746031746, 0.1587301587301587, 0.1428571428571429, 0.126984126984127, 0.1111111111111112, 0.09523809523809523, 0.07936507936507942, 0.06349206349206349, 0.04761904761904767, 0.03174603174603174, 0.01587301587301593, 0}; float b[] = { 1, 0.9841269841269842f, 0.9682539682539683f, 0.9523809523809523f, 0.9365079365079365f, 0.9206349206349207f, 0.9047619047619048f, 0.8888888888888888f, 0.873015873015873f, 0.8571428571428572f, 0.8412698412698413f, 0.8253968253968254f, 0.8095238095238095f, 0.7936507936507937f, 0.7777777777777778f, 0.7619047619047619f, 0.746031746031746f, 0.7301587301587302f, 0.7142857142857143f, 0.6984126984126984f, 0.6825396825396826f, 0.6666666666666667f, 0.6507936507936508f, 0.6349206349206349f, 0.6190476190476191f, 0.6031746031746033f, 0.5873015873015873f, 0.5714285714285714f, 0.5555555555555556f, 0.5396825396825398f, 0.5238095238095238f, 0.5079365079365079f, 0.4920634920634921f, 0.4761904761904762f, 0.4603174603174603f, 0.4444444444444444f, 0.4285714285714286f, 0.4126984126984127f, 0.3968253968253969f, 0.3809523809523809f, 0.3650793650793651f, 0.3492063492063492f, 0.3333333333333334f, 0.3174603174603174f, 0.3015873015873016f, 0.2857142857142857f, 0.2698412698412699f, 0.253968253968254f, 0.2380952380952381f, 0.2222222222222222f, 0.2063492063492064f, 0.1904761904761905f, 0.1746031746031746f, 0.1587301587301587f, 0.1428571428571429f, 0.126984126984127f, 0.1111111111111112f, 0.09523809523809523f, 0.07936507936507942f, 0.06349206349206349f, 0.04761904761904767f, 0.03174603174603174f, 0.01587301587301593f, 0};
Mat X = linspace(0,1,64); Mat X = linspace(0,1,64);
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
Mat(64,1, CV_32FC1, r).clone(), // red Mat(64,1, CV_32FC1, r).clone(), // red
@ -386,8 +386,8 @@ namespace colormap
} }
void init(int n) { void init(int n) {
float r[] = { 0, 0.01587301587301587, 0.03174603174603174, 0.04761904761904762, 0.06349206349206349, 0.07936507936507936, 0.09523809523809523, 0.1111111111111111, 0.126984126984127, 0.1428571428571428, 0.1587301587301587, 0.1746031746031746, 0.1904761904761905, 0.2063492063492063, 0.2222222222222222, 0.2380952380952381, 0.253968253968254, 0.2698412698412698, 0.2857142857142857, 0.3015873015873016, 0.3174603174603174, 0.3333333333333333, 0.3492063492063492, 0.3650793650793651, 0.3809523809523809, 0.3968253968253968, 0.4126984126984127, 0.4285714285714285, 0.4444444444444444, 0.4603174603174603, 0.4761904761904762, 0.492063492063492, 0.5079365079365079, 0.5238095238095238, 0.5396825396825397, 0.5555555555555556, 0.5714285714285714, 0.5873015873015873, 0.6031746031746031, 0.6190476190476191, 0.6349206349206349, 0.6507936507936508, 0.6666666666666666, 0.6825396825396826, 0.6984126984126984, 0.7142857142857143, 0.7301587301587301, 0.746031746031746, 0.7619047619047619, 0.7777777777777778, 0.7936507936507936, 0.8095238095238095, 0.8253968253968254, 0.8412698412698413, 0.8571428571428571, 0.873015873015873, 0.8888888888888888, 0.9047619047619048, 0.9206349206349206, 0.9365079365079365, 0.9523809523809523, 0.9682539682539683, 0.9841269841269841, 1}; float r[] = { 0, 0.01587301587301587f, 0.03174603174603174f, 0.04761904761904762f, 0.06349206349206349f, 0.07936507936507936f, 0.09523809523809523f, 0.1111111111111111f, 0.126984126984127f, 0.1428571428571428f, 0.1587301587301587f, 0.1746031746031746f, 0.1904761904761905f, 0.2063492063492063f, 0.2222222222222222f, 0.2380952380952381f, 0.253968253968254f, 0.2698412698412698f, 0.2857142857142857f, 0.3015873015873016f, 0.3174603174603174f, 0.3333333333333333f, 0.3492063492063492f, 0.3650793650793651f, 0.3809523809523809f, 0.3968253968253968f, 0.4126984126984127f, 0.4285714285714285f, 0.4444444444444444f, 0.4603174603174603f, 0.4761904761904762f, 0.492063492063492f, 0.5079365079365079f, 0.5238095238095238f, 0.5396825396825397f, 0.5555555555555556f, 0.5714285714285714f, 0.5873015873015873f, 0.6031746031746031f, 0.6190476190476191f, 0.6349206349206349f, 0.6507936507936508f, 0.6666666666666666f, 0.6825396825396826f, 0.6984126984126984f, 0.7142857142857143f, 0.7301587301587301f, 0.746031746031746f, 0.7619047619047619f, 0.7777777777777778f, 0.7936507936507936f, 0.8095238095238095f, 0.8253968253968254f, 0.8412698412698413f, 0.8571428571428571f, 0.873015873015873f, 0.8888888888888888f, 0.9047619047619048f, 0.9206349206349206f, 0.9365079365079365f, 0.9523809523809523f, 0.9682539682539683f, 0.9841269841269841f, 1};
float g[] = { 1, 0.9841269841269842, 0.9682539682539683, 0.9523809523809523, 0.9365079365079365, 0.9206349206349207, 0.9047619047619048, 0.8888888888888888, 0.873015873015873, 0.8571428571428572, 0.8412698412698413, 0.8253968253968254, 0.8095238095238095, 0.7936507936507937, 0.7777777777777778, 0.7619047619047619, 0.746031746031746, 0.7301587301587302, 0.7142857142857143, 0.6984126984126984, 0.6825396825396826, 0.6666666666666667, 0.6507936507936508, 0.6349206349206349, 0.6190476190476191, 0.6031746031746033, 0.5873015873015873, 0.5714285714285714, 0.5555555555555556, 0.5396825396825398, 0.5238095238095238, 0.5079365079365079, 0.4920634920634921, 0.4761904761904762, 0.4603174603174603, 0.4444444444444444, 0.4285714285714286, 0.4126984126984127, 0.3968253968253969, 0.3809523809523809, 0.3650793650793651, 0.3492063492063492, 0.3333333333333334, 0.3174603174603174, 0.3015873015873016, 0.2857142857142857, 0.2698412698412699, 0.253968253968254, 0.2380952380952381, 0.2222222222222222, 0.2063492063492064, 0.1904761904761905, 0.1746031746031746, 0.1587301587301587, 0.1428571428571429, 0.126984126984127, 0.1111111111111112, 0.09523809523809523, 0.07936507936507942, 0.06349206349206349, 0.04761904761904767, 0.03174603174603174, 0.01587301587301593, 0}; float g[] = { 1, 0.9841269841269842f, 0.9682539682539683f, 0.9523809523809523f, 0.9365079365079365f, 0.9206349206349207f, 0.9047619047619048f, 0.8888888888888888f, 0.873015873015873f, 0.8571428571428572f, 0.8412698412698413f, 0.8253968253968254f, 0.8095238095238095f, 0.7936507936507937f, 0.7777777777777778f, 0.7619047619047619f, 0.746031746031746f, 0.7301587301587302f, 0.7142857142857143f, 0.6984126984126984f, 0.6825396825396826f, 0.6666666666666667f, 0.6507936507936508f, 0.6349206349206349f, 0.6190476190476191f, 0.6031746031746033f, 0.5873015873015873f, 0.5714285714285714f, 0.5555555555555556f, 0.5396825396825398f, 0.5238095238095238f, 0.5079365079365079f, 0.4920634920634921f, 0.4761904761904762f, 0.4603174603174603f, 0.4444444444444444f, 0.4285714285714286f, 0.4126984126984127f, 0.3968253968253969f, 0.3809523809523809f, 0.3650793650793651f, 0.3492063492063492f, 0.3333333333333334f, 0.3174603174603174f, 0.3015873015873016f, 0.2857142857142857f, 0.2698412698412699f, 0.253968253968254f, 0.2380952380952381f, 0.2222222222222222f, 0.2063492063492064f, 0.1904761904761905f, 0.1746031746031746f, 0.1587301587301587f, 0.1428571428571429f, 0.126984126984127f, 0.1111111111111112f, 0.09523809523809523f, 0.07936507936507942f, 0.06349206349206349f, 0.04761904761904767f, 0.03174603174603174f, 0.01587301587301593f, 0};
float b[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; float b[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
Mat X = linspace(0,1,64); Mat X = linspace(0,1,64);
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
@ -410,9 +410,9 @@ namespace colormap
} }
void init(int n) { void init(int n) {
float r[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9523809523809526, 0.8571428571428568, 0.7619047619047614, 0.6666666666666665, 0.5714285714285716, 0.4761904761904763, 0.3809523809523805, 0.2857142857142856, 0.1904761904761907, 0.0952380952380949, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.09523809523809557, 0.1904761904761905, 0.2857142857142854, 0.3809523809523809, 0.4761904761904765, 0.5714285714285714, 0.6666666666666663, 0.7619047619047619, 0.8571428571428574, 0.9523809523809523, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; float r[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9523809523809526f, 0.8571428571428568f, 0.7619047619047614f, 0.6666666666666665f, 0.5714285714285716f, 0.4761904761904763f, 0.3809523809523805f, 0.2857142857142856f, 0.1904761904761907f, 0.0952380952380949f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.09523809523809557f, 0.1904761904761905f, 0.2857142857142854f, 0.3809523809523809f, 0.4761904761904765f, 0.5714285714285714f, 0.6666666666666663f, 0.7619047619047619f, 0.8571428571428574f, 0.9523809523809523f, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
float g[] = { 0, 0.09523809523809523, 0.1904761904761905, 0.2857142857142857, 0.3809523809523809, 0.4761904761904762, 0.5714285714285714, 0.6666666666666666, 0.7619047619047619, 0.8571428571428571, 0.9523809523809523, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9523809523809526, 0.8571428571428577, 0.7619047619047619, 0.6666666666666665, 0.5714285714285716, 0.4761904761904767, 0.3809523809523814, 0.2857142857142856, 0.1904761904761907, 0.09523809523809579, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; float g[] = { 0, 0.09523809523809523f, 0.1904761904761905f, 0.2857142857142857f, 0.3809523809523809f, 0.4761904761904762f, 0.5714285714285714f, 0.6666666666666666f, 0.7619047619047619f, 0.8571428571428571f, 0.9523809523809523f, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9523809523809526f, 0.8571428571428577f, 0.7619047619047619f, 0.6666666666666665f, 0.5714285714285716f, 0.4761904761904767f, 0.3809523809523814f, 0.2857142857142856f, 0.1904761904761907f, 0.09523809523809579f, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
float b[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.09523809523809523, 0.1904761904761905, 0.2857142857142857, 0.3809523809523809, 0.4761904761904762, 0.5714285714285714, 0.6666666666666666, 0.7619047619047619, 0.8571428571428571, 0.9523809523809523, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9523809523809526, 0.8571428571428577, 0.7619047619047614, 0.6666666666666665, 0.5714285714285716, 0.4761904761904767, 0.3809523809523805, 0.2857142857142856, 0.1904761904761907, 0.09523809523809579, 0}; float b[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.09523809523809523f, 0.1904761904761905f, 0.2857142857142857f, 0.3809523809523809f, 0.4761904761904762f, 0.5714285714285714f, 0.6666666666666666f, 0.7619047619047619f, 0.8571428571428571f, 0.9523809523809523f, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.9523809523809526f, 0.8571428571428577f, 0.7619047619047614f, 0.6666666666666665f, 0.5714285714285716f, 0.4761904761904767f, 0.3809523809523805f, 0.2857142857142856f, 0.1904761904761907f, 0.09523809523809579f, 0};
Mat X = linspace(0,1,64); Mat X = linspace(0,1,64);
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
Mat(64,1, CV_32FC1, r).clone(), // red Mat(64,1, CV_32FC1, r).clone(), // red
@ -434,9 +434,9 @@ namespace colormap
} }
void init(int n) { void init(int n) {
float r[] = { 0, 0.1571348402636772, 0.2222222222222222, 0.2721655269759087, 0.3142696805273544, 0.3513641844631533, 0.3849001794597505, 0.415739709641549, 0.4444444444444444, 0.4714045207910317, 0.4969039949999532, 0.5211573066470477, 0.5443310539518174, 0.5665577237325317, 0.5879447357921312, 0.6085806194501846, 0.6285393610547089, 0.6478835438717, 0.6666666666666666, 0.6849348892187751, 0.7027283689263065, 0.7200822998230956, 0.7370277311900888, 0.753592220347252, 0.7663560447348133, 0.7732293307186413, 0.7800420555749596, 0.7867957924694432, 0.7934920476158722, 0.8001322641986387, 0.8067178260046388, 0.8132500607904444, 0.8197302434079591, 0.8261595987094034, 0.8325393042503717, 0.8388704928078611, 0.8451542547285166, 0.8513916401208816, 0.8575836609041332, 0.8637312927246217, 0.8698354767504924, 0.8758971213537393, 0.8819171036881968, 0.8878962711712378, 0.8938354428762595, 0.8997354108424372, 0.9055969413076769, 0.9114207758701963, 0.9172076325837248, 0.9229582069908971, 0.9286731730990523, 0.9343531843023135, 0.9399988742535192, 0.9456108576893002, 0.9511897312113418, 0.9567360740266436, 0.9622504486493763, 0.9677334015667416, 0.9731854638710686, 0.9786071518602129, 0.9839989676081821, 0.9893613995077727, 0.9946949227868761, 1}; float r[] = { 0, 0.1571348402636772f, 0.2222222222222222f, 0.2721655269759087f, 0.3142696805273544f, 0.3513641844631533f, 0.3849001794597505f, 0.415739709641549f, 0.4444444444444444f, 0.4714045207910317f, 0.4969039949999532f, 0.5211573066470477f, 0.5443310539518174f, 0.5665577237325317f, 0.5879447357921312f, 0.6085806194501846f, 0.6285393610547089f, 0.6478835438717f, 0.6666666666666666f, 0.6849348892187751f, 0.7027283689263065f, 0.7200822998230956f, 0.7370277311900888f, 0.753592220347252f, 0.7663560447348133f, 0.7732293307186413f, 0.7800420555749596f, 0.7867957924694432f, 0.7934920476158722f, 0.8001322641986387f, 0.8067178260046388f, 0.8132500607904444f, 0.8197302434079591f, 0.8261595987094034f, 0.8325393042503717f, 0.8388704928078611f, 0.8451542547285166f, 0.8513916401208816f, 0.8575836609041332f, 0.8637312927246217f, 0.8698354767504924f, 0.8758971213537393f, 0.8819171036881968f, 0.8878962711712378f, 0.8938354428762595f, 0.8997354108424372f, 0.9055969413076769f, 0.9114207758701963f, 0.9172076325837248f, 0.9229582069908971f, 0.9286731730990523f, 0.9343531843023135f, 0.9399988742535192f, 0.9456108576893002f, 0.9511897312113418f, 0.9567360740266436f, 0.9622504486493763f, 0.9677334015667416f, 0.9731854638710686f, 0.9786071518602129f, 0.9839989676081821f, 0.9893613995077727f, 0.9946949227868761f, 1};
float g[] = { 0, 0.1028688999747279, 0.1454785934906616, 0.1781741612749496, 0.2057377999494559, 0.2300218531141181, 0.2519763153394848, 0.2721655269759087, 0.2909571869813232, 0.3086066999241838, 0.3253000243161777, 0.3411775438127727, 0.3563483225498992, 0.3708990935094579, 0.3849001794597505, 0.3984095364447979, 0.4114755998989117, 0.4241393401869012, 0.4364357804719847, 0.4483951394230328, 0.4600437062282361, 0.4714045207910317, 0.4824979096371639, 0.4933419132673033, 0.5091750772173156, 0.5328701692569688, 0.5555555555555556, 0.5773502691896257, 0.5983516452371671, 0.6186404847588913, 0.6382847385042254, 0.6573421981221795, 0.6758625033664688, 0.6938886664887108, 0.7114582486036499, 0.7286042804780002, 0.7453559924999299, 0.7617394000445604, 0.7777777777777778, 0.7934920476158723, 0.8089010988089465, 0.8240220541217402, 0.8388704928078611, 0.8534606386520677, 0.8678055195451838, 0.8819171036881968, 0.8958064164776166, 0.9094836413191612, 0.9172076325837248, 0.9229582069908971, 0.9286731730990523, 0.9343531843023135, 0.9399988742535192, 0.9456108576893002, 0.9511897312113418, 0.9567360740266436, 0.9622504486493763, 0.9677334015667416, 0.9731854638710686, 0.9786071518602129, 0.9839989676081821, 0.9893613995077727, 0.9946949227868761, 1}; float g[] = { 0, 0.1028688999747279f, 0.1454785934906616f, 0.1781741612749496f, 0.2057377999494559f, 0.2300218531141181f, 0.2519763153394848f, 0.2721655269759087f, 0.2909571869813232f, 0.3086066999241838f, 0.3253000243161777f, 0.3411775438127727f, 0.3563483225498992f, 0.3708990935094579f, 0.3849001794597505f, 0.3984095364447979f, 0.4114755998989117f, 0.4241393401869012f, 0.4364357804719847f, 0.4483951394230328f, 0.4600437062282361f, 0.4714045207910317f, 0.4824979096371639f, 0.4933419132673033f, 0.5091750772173156f, 0.5328701692569688f, 0.5555555555555556f, 0.5773502691896257f, 0.5983516452371671f, 0.6186404847588913f, 0.6382847385042254f, 0.6573421981221795f, 0.6758625033664688f, 0.6938886664887108f, 0.7114582486036499f, 0.7286042804780002f, 0.7453559924999299f, 0.7617394000445604f, 0.7777777777777778f, 0.7934920476158723f, 0.8089010988089465f, 0.8240220541217402f, 0.8388704928078611f, 0.8534606386520677f, 0.8678055195451838f, 0.8819171036881968f, 0.8958064164776166f, 0.9094836413191612f, 0.9172076325837248f, 0.9229582069908971f, 0.9286731730990523f, 0.9343531843023135f, 0.9399988742535192f, 0.9456108576893002f, 0.9511897312113418f, 0.9567360740266436f, 0.9622504486493763f, 0.9677334015667416f, 0.9731854638710686f, 0.9786071518602129f, 0.9839989676081821f, 0.9893613995077727f, 0.9946949227868761f, 1};
float b[] = { 0, 0.1028688999747279, 0.1454785934906616, 0.1781741612749496, 0.2057377999494559, 0.2300218531141181, 0.2519763153394848, 0.2721655269759087, 0.2909571869813232, 0.3086066999241838, 0.3253000243161777, 0.3411775438127727, 0.3563483225498992, 0.3708990935094579, 0.3849001794597505, 0.3984095364447979, 0.4114755998989117, 0.4241393401869012, 0.4364357804719847, 0.4483951394230328, 0.4600437062282361, 0.4714045207910317, 0.4824979096371639, 0.4933419132673033, 0.5039526306789697, 0.5143444998736397, 0.5245305283129621, 0.5345224838248488, 0.5443310539518174, 0.5539659798925444, 0.563436169819011, 0.5727497953228163, 0.5819143739626463, 0.5909368402852788, 0.5998236072282915, 0.6085806194501846, 0.6172133998483676, 0.6257270902992705, 0.6341264874742278, 0.642416074439621, 0.6506000486323554, 0.6586823467062358, 0.6666666666666666, 0.6745564876468501, 0.6823550876255453, 0.6900655593423541, 0.6976908246297114, 0.7052336473499384, 0.7237468644557459, 0.7453559924999298, 0.7663560447348133, 0.7867957924694432, 0.8067178260046388, 0.8261595987094034, 0.8451542547285166, 0.8637312927246217, 0.8819171036881968, 0.8997354108424372, 0.9172076325837248, 0.9343531843023135, 0.9511897312113418, 0.9677334015667416, 0.9839989676081821, 1}; float b[] = { 0, 0.1028688999747279f, 0.1454785934906616f, 0.1781741612749496f, 0.2057377999494559f, 0.2300218531141181f, 0.2519763153394848f, 0.2721655269759087f, 0.2909571869813232f, 0.3086066999241838f, 0.3253000243161777f, 0.3411775438127727f, 0.3563483225498992f, 0.3708990935094579f, 0.3849001794597505f, 0.3984095364447979f, 0.4114755998989117f, 0.4241393401869012f, 0.4364357804719847f, 0.4483951394230328f, 0.4600437062282361f, 0.4714045207910317f, 0.4824979096371639f, 0.4933419132673033f, 0.5039526306789697f, 0.5143444998736397f, 0.5245305283129621f, 0.5345224838248488f, 0.5443310539518174f, 0.5539659798925444f, 0.563436169819011f, 0.5727497953228163f, 0.5819143739626463f, 0.5909368402852788f, 0.5998236072282915f, 0.6085806194501846f, 0.6172133998483676f, 0.6257270902992705f, 0.6341264874742278f, 0.642416074439621f, 0.6506000486323554f, 0.6586823467062358f, 0.6666666666666666f, 0.6745564876468501f, 0.6823550876255453f, 0.6900655593423541f, 0.6976908246297114f, 0.7052336473499384f, 0.7237468644557459f, 0.7453559924999298f, 0.7663560447348133f, 0.7867957924694432f, 0.8067178260046388f, 0.8261595987094034f, 0.8451542547285166f, 0.8637312927246217f, 0.8819171036881968f, 0.8997354108424372f, 0.9172076325837248f, 0.9343531843023135f, 0.9511897312113418f, 0.9677334015667416f, 0.9839989676081821f, 1};
Mat X = linspace(0,1,64); Mat X = linspace(0,1,64);
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
Mat(64,1, CV_32FC1, r).clone(), // red Mat(64,1, CV_32FC1, r).clone(), // red
@ -458,9 +458,9 @@ namespace colormap
} }
void init(int n) { void init(int n) {
float r[] = { 0, 0.03968253968253968, 0.07936507936507936, 0.119047619047619, 0.1587301587301587, 0.1984126984126984, 0.2380952380952381, 0.2777777777777778, 0.3174603174603174, 0.3571428571428571, 0.3968253968253968, 0.4365079365079365, 0.4761904761904762, 0.5158730158730158, 0.5555555555555556, 0.5952380952380952, 0.6349206349206349, 0.6746031746031745, 0.7142857142857142, 0.753968253968254, 0.7936507936507936, 0.8333333333333333, 0.873015873015873, 0.9126984126984127, 0.9523809523809523, 0.992063492063492, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; float r[] = { 0, 0.03968253968253968f, 0.07936507936507936f, 0.119047619047619f, 0.1587301587301587f, 0.1984126984126984f, 0.2380952380952381f, 0.2777777777777778f, 0.3174603174603174f, 0.3571428571428571f, 0.3968253968253968f, 0.4365079365079365f, 0.4761904761904762f, 0.5158730158730158f, 0.5555555555555556f, 0.5952380952380952f, 0.6349206349206349f, 0.6746031746031745f, 0.7142857142857142f, 0.753968253968254f, 0.7936507936507936f, 0.8333333333333333f, 0.873015873015873f, 0.9126984126984127f, 0.9523809523809523f, 0.992063492063492f, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
float g[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03174603174603163, 0.0714285714285714, 0.1111111111111112, 0.1507936507936507, 0.1904761904761905, 0.23015873015873, 0.2698412698412698, 0.3095238095238093, 0.3492063492063491, 0.3888888888888888, 0.4285714285714284, 0.4682539682539679, 0.5079365079365079, 0.5476190476190477, 0.5873015873015872, 0.6269841269841268, 0.6666666666666665, 0.7063492063492065, 0.746031746031746, 0.7857142857142856, 0.8253968253968254, 0.8650793650793651, 0.9047619047619047, 0.9444444444444442, 0.984126984126984, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; float g[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03174603174603163f, 0.0714285714285714f, 0.1111111111111112f, 0.1507936507936507f, 0.1904761904761905f, 0.23015873015873f, 0.2698412698412698f, 0.3095238095238093f, 0.3492063492063491f, 0.3888888888888888f, 0.4285714285714284f, 0.4682539682539679f, 0.5079365079365079f, 0.5476190476190477f, 0.5873015873015872f, 0.6269841269841268f, 0.6666666666666665f, 0.7063492063492065f, 0.746031746031746f, 0.7857142857142856f, 0.8253968253968254f, 0.8650793650793651f, 0.9047619047619047f, 0.9444444444444442f, 0.984126984126984f, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1};
float b[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04761904761904745, 0.1269841269841265, 0.2063492063492056, 0.2857142857142856, 0.3650793650793656, 0.4444444444444446, 0.5238095238095237, 0.6031746031746028, 0.6825396825396828, 0.7619047619047619, 0.8412698412698409, 0.92063492063492, 1}; float b[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04761904761904745f, 0.1269841269841265f, 0.2063492063492056f, 0.2857142857142856f, 0.3650793650793656f, 0.4444444444444446f, 0.5238095238095237f, 0.6031746031746028f, 0.6825396825396828f, 0.7619047619047619f, 0.8412698412698409f, 0.92063492063492f, 1};
Mat X = linspace(0,1,64); Mat X = linspace(0,1,64);
this->_lut = ColorMap::linear_colormap(X, this->_lut = ColorMap::linear_colormap(X,
Mat(64,1, CV_32FC1, r).clone(), // red Mat(64,1, CV_32FC1, r).clone(), // red

View File

@ -41,6 +41,7 @@
//M*/ //M*/
#include "perf_precomp.hpp" #include "perf_precomp.hpp"
#include "perf_util.hpp"
using namespace std; using namespace std;
using namespace testing; using namespace testing;

View File

@ -41,6 +41,7 @@
//M*/ //M*/
#include "perf_precomp.hpp" #include "perf_precomp.hpp"
#include "perf_util.hpp"
using namespace std; using namespace std;
using namespace testing; using namespace testing;

View File

@ -41,6 +41,7 @@
//M*/ //M*/
#include "perf_precomp.hpp" #include "perf_precomp.hpp"
#include "perf_util.hpp"
using namespace std; using namespace std;
using namespace testing; using namespace testing;

View File

@ -41,6 +41,7 @@
//M*/ //M*/
#include "perf_precomp.hpp" #include "perf_precomp.hpp"
#include "perf_util.hpp"
using namespace std; using namespace std;
using namespace testing; using namespace testing;

View File

@ -41,6 +41,7 @@
//M*/ //M*/
#include "perf_precomp.hpp" #include "perf_precomp.hpp"
#include "perf_util.hpp"
using namespace std; using namespace std;
using namespace testing; using namespace testing;

View File

@ -0,0 +1,53 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PERF_UTIL_HPP__
#define __OPENCV_PERF_UTIL_HPP__
namespace perf {
DEF_PARAM_TEST_1(Sz, cv::Size);
typedef ::perf::Size_MatType Sz_Type;
DEF_PARAM_TEST(Sz_Depth, cv::Size, ::perf::MatDepth);
DEF_PARAM_TEST(Sz_Depth_Cn, cv::Size, ::perf::MatDepth, MatCn);
}
#endif // __OPENCV_PERF_UTIL_HPP__

View File

@ -1119,7 +1119,7 @@ extern "C" {
("jdoubleArray _da_retval_ = env->NewDoubleArray(%(cnt)i); " + ("jdoubleArray _da_retval_ = env->NewDoubleArray(%(cnt)i); " +
"jdouble _tmp_retval_[%(cnt)i] = {%(args)s}; " + "jdouble _tmp_retval_[%(cnt)i] = {%(args)s}; " +
"env->SetDoubleArrayRegion(_da_retval_, 0, %(cnt)i, _tmp_retval_);") % "env->SetDoubleArrayRegion(_da_retval_, 0, %(cnt)i, _tmp_retval_);") %
{ "cnt" : len(fields), "args" : ", ".join(["_retval_" + f[1] for f in fields]) } ) { "cnt" : len(fields), "args" : ", ".join(["(jdouble)_retval_" + f[1] for f in fields]) } )
if fi.classname and fi.ctype and not fi.static: # non-static class method except c-tor if fi.classname and fi.ctype and not fi.static: # non-static class method except c-tor
# adding 'self' # adding 'self'
jn_args.append ( ArgInfo([ "__int64", "nativeObj", "", [], "" ]) ) jn_args.append ( ArgInfo([ "__int64", "nativeObj", "", [], "" ]) )
@ -1167,7 +1167,7 @@ extern "C" {
j_prologue.append( "double[] %s_out = new double[%i];" % (a.name, len(fields)) ) j_prologue.append( "double[] %s_out = new double[%i];" % (a.name, len(fields)) )
c_epilogue.append( \ c_epilogue.append( \
"jdouble tmp_%(n)s[%(cnt)i] = {%(args)s}; env->SetDoubleArrayRegion(%(n)s_out, 0, %(cnt)i, tmp_%(n)s);" % "jdouble tmp_%(n)s[%(cnt)i] = {%(args)s}; env->SetDoubleArrayRegion(%(n)s_out, 0, %(cnt)i, tmp_%(n)s);" %
{ "n" : a.name, "cnt" : len(fields), "args" : ", ".join([a.name + f[1] for f in fields]) } ) { "n" : a.name, "cnt" : len(fields), "args" : ", ".join(["(jdouble)" + a.name + f[1] for f in fields]) } )
if a.ctype in ('bool', 'int', 'long', 'float', 'double'): if a.ctype in ('bool', 'int', 'long', 'float', 'double'):
j_epilogue.append('if(%(n)s!=null) %(n)s[0] = (%(t)s)%(n)s_out[0];' % {'n':a.name,'t':a.ctype}) j_epilogue.append('if(%(n)s!=null) %(n)s[0] = (%(t)s)%(n)s_out[0];' % {'n':a.name,'t':a.ctype})
else: else:

View File

@ -1069,7 +1069,7 @@ JNIEXPORT void JNICALL Java_org_opencv_core_Mat_locateROI_10
Size wholeSize; Size wholeSize;
Point ofs; Point ofs;
me->locateROI( wholeSize, ofs ); me->locateROI( wholeSize, ofs );
jdouble tmp_wholeSize[2] = {wholeSize.width, wholeSize.height}; env->SetDoubleArrayRegion(wholeSize_out, 0, 2, tmp_wholeSize); jdouble tmp_ofs[2] = {ofs.x, ofs.y}; env->SetDoubleArrayRegion(ofs_out, 0, 2, tmp_ofs); jdouble tmp_wholeSize[2] = {(jdouble)wholeSize.width, (jdouble)wholeSize.height}; env->SetDoubleArrayRegion(wholeSize_out, 0, 2, tmp_wholeSize); jdouble tmp_ofs[2] = {(jdouble)ofs.x, (jdouble)ofs.y}; env->SetDoubleArrayRegion(ofs_out, 0, 2, tmp_ofs);
} catch(const std::exception &e) { } catch(const std::exception &e) {
throwJavaException(env, &e, method_name); throwJavaException(env, &e, method_name);
} catch (...) { } catch (...) {
@ -1488,7 +1488,7 @@ JNIEXPORT jdoubleArray JNICALL Java_org_opencv_core_Mat_n_1size
Mat* me = (Mat*) self; //TODO: check for NULL Mat* me = (Mat*) self; //TODO: check for NULL
Size _retval_ = me->size( ); Size _retval_ = me->size( );
jdoubleArray _da_retval_ = env->NewDoubleArray(2); jdoubleArray _da_retval_ = env->NewDoubleArray(2);
jdouble _tmp_retval_[2] = {_retval_.width, _retval_.height}; jdouble _tmp_retval_[2] = {(jdouble)_retval_.width, (jdouble)_retval_.height};
env->SetDoubleArrayRegion(_da_retval_, 0, 2, _tmp_retval_); env->SetDoubleArrayRegion(_da_retval_, 0, 2, _tmp_retval_);
return _da_retval_; return _da_retval_;
} catch(const std::exception &e) { } catch(const std::exception &e) {

View File

@ -451,9 +451,9 @@ JNIEXPORT void JNICALL Java_org_opencv_gpu_DeviceInfo_queryMemory_10
size_t totalMemory; size_t totalMemory;
size_t freeMemory; size_t freeMemory;
me->queryMemory( totalMemory, freeMemory ); me->queryMemory( totalMemory, freeMemory );
jdouble tmp_totalMemory[1] = {totalMemory}; jdouble tmp_totalMemory[1] = {(jdouble)totalMemory};
env->SetDoubleArrayRegion(totalMemory_out, 0, 1, tmp_totalMemory); env->SetDoubleArrayRegion(totalMemory_out, 0, 1, tmp_totalMemory);
jdouble tmp_freeMemory[1] = {freeMemory}; jdouble tmp_freeMemory[1] = {(jdouble)freeMemory};
env->SetDoubleArrayRegion(freeMemory_out, 0, 1, tmp_freeMemory); env->SetDoubleArrayRegion(freeMemory_out, 0, 1, tmp_freeMemory);
return; return;
} catch(const std::exception &e) { } catch(const std::exception &e) {

View File

@ -119,8 +119,8 @@ public:
void compute_descriptors_gpu(const oclMat &descriptors, const oclMat &keypoints, int nFeatures); void compute_descriptors_gpu(const oclMat &descriptors, const oclMat &keypoints, int nFeatures);
// end of kernel callers declarations // end of kernel callers declarations
SURF_OCL_Invoker(SURF_OCL &surf, const oclMat &img, const oclMat &mask) : SURF_OCL_Invoker(SURF_OCL &theSurf, const oclMat &img, const oclMat &mask) :
surf_(surf), surf_(theSurf),
img_cols(img.cols), img_rows(img.rows), img_cols(img.cols), img_rows(img.rows),
use_mask(!mask.empty()), counters(oclMat()), use_mask(!mask.empty()), counters(oclMat()),
imgTex(NULL), sumTex(NULL), maskSumTex(NULL), _img(img) imgTex(NULL), sumTex(NULL), maskSumTex(NULL), _img(img)
@ -139,7 +139,7 @@ public:
CV_Assert(layer_rows - 2 * min_margin > 0); CV_Assert(layer_rows - 2 * min_margin > 0);
CV_Assert(layer_cols - 2 * min_margin > 0); CV_Assert(layer_cols - 2 * min_margin > 0);
maxFeatures = std::min(static_cast<int>(img.size().area() * surf.keypointsRatio), 65535); maxFeatures = std::min(static_cast<int>(img.size().area() * theSurf.keypointsRatio), 65535);
maxCandidates = std::min(static_cast<int>(1.5 * maxFeatures), 65535); maxCandidates = std::min(static_cast<int>(1.5 * maxFeatures), 65535);
CV_Assert(maxFeatures > 0); CV_Assert(maxFeatures > 0);
@ -396,9 +396,9 @@ void cv::ocl::SURF_OCL::operator()(const oclMat &img, const oclMat &mask, oclMat
{ {
if (!img.empty()) if (!img.empty())
{ {
SURF_OCL_Invoker surf(*this, img, mask); SURF_OCL_Invoker theSurf(*this, img, mask);
surf.detectKeypoints(keypoints); theSurf.detectKeypoints(keypoints);
} }
} }
@ -407,16 +407,16 @@ void cv::ocl::SURF_OCL::operator()(const oclMat &img, const oclMat &mask, oclMat
{ {
if (!img.empty()) if (!img.empty())
{ {
SURF_OCL_Invoker surf(*this, img, mask); SURF_OCL_Invoker theSurf(*this, img, mask);
if (!useProvidedKeypoints) if (!useProvidedKeypoints)
surf.detectKeypoints(keypoints); theSurf.detectKeypoints(keypoints);
else if (!upright) else if (!upright)
{ {
surf.findOrientation(keypoints); theSurf.findOrientation(keypoints);
} }
surf.computeDescriptors(keypoints, descriptors, descriptorSize()); theSurf.computeDescriptors(keypoints, descriptors, descriptorSize());
} }
} }
@ -482,23 +482,23 @@ void cv::ocl::SURF_OCL::operator()(InputArray img, InputArray mask, vector<KeyPo
_mask.upload(mask.getMat()); _mask.upload(mask.getMat());
} }
SURF_OCL_Invoker surf((SURF_OCL&)*this, _img, _mask); SURF_OCL_Invoker theSurf((SURF_OCL&)*this, _img, _mask);
oclMat keypointsGPU; oclMat keypointsGPU;
if (!useProvidedKeypoints || !upright) if (!useProvidedKeypoints || !upright)
((SURF_OCL*)this)->uploadKeypoints(keypoints, keypointsGPU); ((SURF_OCL*)this)->uploadKeypoints(keypoints, keypointsGPU);
if (!useProvidedKeypoints) if (!useProvidedKeypoints)
surf.detectKeypoints(keypointsGPU); theSurf.detectKeypoints(keypointsGPU);
else if (!upright) else if (!upright)
surf.findOrientation(keypointsGPU); theSurf.findOrientation(keypointsGPU);
if(keypointsGPU.cols*keypointsGPU.rows != 0) if(keypointsGPU.cols*keypointsGPU.rows != 0)
((SURF_OCL*)this)->downloadKeypoints(keypointsGPU, keypoints); ((SURF_OCL*)this)->downloadKeypoints(keypointsGPU, keypoints);
if( descriptors.needed() ) if( descriptors.needed() )
{ {
oclMat descriptorsGPU; oclMat descriptorsGPU;
surf.computeDescriptors(keypointsGPU, descriptorsGPU, descriptorSize()); theSurf.computeDescriptors(keypointsGPU, descriptorsGPU, descriptorSize());
Size sz = descriptorsGPU.size(); Size sz = descriptorsGPU.size();
if( descriptors.kind() == _InputArray::STD_VECTOR ) if( descriptors.kind() == _InputArray::STD_VECTOR )
{ {

View File

@ -108,7 +108,7 @@ static void arithmetic_run_generic(const oclMat &src1, const oclMat &src2, const
#else #else
size_t localThreads[3] = { 16, 16, 1 }; size_t localThreads[3] = { 16, 16, 1 };
#endif #endif
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
std::string kernelName = "arithm_binary_op"; std::string kernelName = "arithm_binary_op";
@ -266,7 +266,7 @@ static void compare_run(const oclMat &src1, const oclMat &src2, oclMat &dst, int
int depth = src1.depth(); int depth = src1.depth();
size_t localThreads[3] = { 64, 4, 1 }; size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
int src1step1 = src1.step1(), src1offset1 = src1.offset / src1.elemSize1(); int src1step1 = src1.step1(), src1offset1 = src1.offset / src1.elemSize1();
int src2step1 = src2.step1(), src2offset1 = src2.offset / src2.elemSize1(); int src2step1 = src2.step1(), src2offset1 = src2.offset / src2.elemSize1();
@ -336,7 +336,7 @@ static void arithmetic_sum_buffer_run(const oclMat &src, cl_mem &dst, int groupn
args.push_back( make_pair( sizeof(cl_int) , (void *)&total )); args.push_back( make_pair( sizeof(cl_int) , (void *)&total ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum )); args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst ));
size_t globalThreads[3] = { groupnum * 256, 1, 1 }; size_t globalThreads[3] = { (size_t)groupnum * 256, 1, 1 };
#ifdef ANDROID #ifdef ANDROID
openCLExecuteKernel(src.clCxt, &arithm_sum, "arithm_op_sum", globalThreads, NULL, openCLExecuteKernel(src.clCxt, &arithm_sum, "arithm_op_sum", globalThreads, NULL,
@ -514,7 +514,7 @@ static void arithmetic_minMax_run(const oclMat &src, const oclMat & mask, cl_mem
buildOptions += " -D WITH_MASK"; buildOptions += " -D WITH_MASK";
} }
size_t globalThreads[3] = { groupnum * 256, 1, 1 }; size_t globalThreads[3] = { (size_t)groupnum * 256, 1, 1 };
size_t localThreads[3] = { 256, 1, 1 }; size_t localThreads[3] = { 256, 1, 1 };
// kernel use fixed grid size, replace lt on NULL is impossible without kernel changes // kernel use fixed grid size, replace lt on NULL is impossible without kernel changes
@ -638,7 +638,7 @@ static void arithm_absdiff_nonsaturate_run(const oclMat & src1, const oclMat & s
#else #else
size_t localThreads[3] = { 16, 16, 1 }; size_t localThreads[3] = { 16, 16, 1 };
#endif #endif
size_t globalThreads[3] = { diff.cols, diff.rows, 1 }; size_t globalThreads[3] = { (size_t)diff.cols, (size_t)diff.rows, 1 };
const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" };
const char * const channelMap[] = { "", "", "2", "4", "4" }; const char * const channelMap[] = { "", "", "2", "4", "4" };
@ -744,7 +744,7 @@ static void arithmetic_flip_run(const oclMat &src, oclMat &dst, string kernelNam
std::string buildOptions = format("-D T=%s%s", typeMap[dst.depth()], channelMap[dst.oclchannels()]); std::string buildOptions = format("-D T=%s%s", typeMap[dst.depth()], channelMap[dst.oclchannels()]);
size_t localThreads[3] = { 64, 4, 1 }; size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { cols, rows, 1 }; size_t globalThreads[3] = { (size_t)cols, (size_t)rows, 1 };
int elemSize = src.elemSize(); int elemSize = src.elemSize();
int src_step = src.step / elemSize, src_offset = src.offset / elemSize; int src_step = src.step / elemSize, src_offset = src.offset / elemSize;
@ -797,7 +797,7 @@ static void arithmetic_lut_run(const oclMat &src, const oclMat &lut, oclMat &dst
int cols1 = src.cols * src.oclchannels(); int cols1 = src.cols * src.oclchannels();
size_t localSize[] = { 16, 16, 1 }; size_t localSize[] = { 16, 16, 1 };
size_t globalSize[] = { lut.channels() == 1 ? cols1 : src.cols, src.rows, 1 }; size_t globalSize[] = { (size_t)(lut.channels() == 1 ? cols1 : src.cols), (size_t)src.rows, 1 };
const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" };
std::string buildOptions = format("-D srcT=%s -D dstT=%s", typeMap[sdepth], typeMap[dst.depth()]); std::string buildOptions = format("-D srcT=%s -D dstT=%s", typeMap[sdepth], typeMap[dst.depth()]);
@ -862,7 +862,7 @@ static void arithmetic_exp_log_run(const oclMat &src, oclMat &dst, string kernel
#else #else
size_t localThreads[3] = { 64, 4, 1 }; size_t localThreads[3] = { 64, 4, 1 };
#endif #endif
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
std::string buildOptions = format("-D srcT=%s", std::string buildOptions = format("-D srcT=%s",
ddepth == CV_32F ? "float" : "double"); ddepth == CV_32F ? "float" : "double");
@ -904,7 +904,7 @@ static void arithmetic_magnitude_phase_run(const oclMat &src1, const oclMat &src
#else #else
size_t localThreads[3] = { 64, 4, 1 }; size_t localThreads[3] = { 64, 4, 1 };
#endif #endif
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
int src1_step = src1.step / src1.elemSize(), src1_offset = src1.offset / src1.elemSize(); int src1_step = src1.step / src1.elemSize(), src1_offset = src1.offset / src1.elemSize();
int src2_step = src2.step / src2.elemSize(), src2_offset = src2.offset / src2.elemSize(); int src2_step = src2.step / src2.elemSize(), src2_offset = src2.offset / src2.elemSize();
@ -956,7 +956,7 @@ static void arithmetic_phase_run(const oclMat &src1, const oclMat &src2, oclMat
#else #else
size_t localThreads[3] = { 64, 4, 1 }; size_t localThreads[3] = { 64, 4, 1 };
#endif #endif
size_t globalThreads[3] = { cols1, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)cols1, (size_t)dst.rows, 1 };
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
@ -1006,7 +1006,7 @@ static void arithmetic_cartToPolar_run(const oclMat &src1, const oclMat &src2, o
#else #else
size_t localThreads[3] = { 64, 4, 1 }; size_t localThreads[3] = { 64, 4, 1 };
#endif #endif
size_t globalThreads[3] = { cols, src1.rows, 1 }; size_t globalThreads[3] = { (size_t)cols, (size_t)src1.rows, 1 };
int src1_step = src1.step / src1.elemSize1(), src1_offset = src1.offset / src1.elemSize1(); int src1_step = src1.step / src1.elemSize1(), src1_offset = src1.offset / src1.elemSize1();
int src2_step = src2.step / src2.elemSize1(), src2_offset = src2.offset / src2.elemSize1(); int src2_step = src2.step / src2.elemSize1(), src2_offset = src2.offset / src2.elemSize1();
@ -1064,7 +1064,7 @@ static void arithmetic_ptc_run(const oclMat &src1, const oclMat &src2, oclMat &d
#else #else
size_t localThreads[3] = { 64, 4, 1 }; size_t localThreads[3] = { 64, 4, 1 };
#endif #endif
size_t globalThreads[3] = { cols, rows, 1 }; size_t globalThreads[3] = { (size_t)cols, (size_t)rows, 1 };
int src1_step = src1.step / src1.elemSize1(), src1_offset = src1.offset / src1.elemSize1(); int src1_step = src1.step / src1.elemSize1(), src1_offset = src1.offset / src1.elemSize1();
int src2_step = src2.step / src2.elemSize1(), src2_offset = src2.offset / src2.elemSize1(); int src2_step = src2.step / src2.elemSize1(), src2_offset = src2.offset / src2.elemSize1();
@ -1138,7 +1138,7 @@ static void arithmetic_minMaxLoc_run(const oclMat &src, cl_mem &dst, int vlen ,
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst ));
char build_options[50]; char build_options[50];
sprintf(build_options, "-D DEPTH_%d -D REPEAT_S%d -D REPEAT_E%d", src.depth(), repeat_s, repeat_e); sprintf(build_options, "-D DEPTH_%d -D REPEAT_S%d -D REPEAT_E%d", src.depth(), repeat_s, repeat_e);
size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; size_t gt[3] = {(size_t)groupnum * 256, 1, 1}, lt[3] = {256, 1, 1};
// kernel use fixed grid size, replace lt on NULL is impossible without kernel changes // kernel use fixed grid size, replace lt on NULL is impossible without kernel changes
openCLExecuteKernel(src.clCxt, &arithm_minMaxLoc, "arithm_op_minMaxLoc", gt, lt, args, -1, -1, build_options); openCLExecuteKernel(src.clCxt, &arithm_minMaxLoc, "arithm_op_minMaxLoc", gt, lt, args, -1, -1, build_options);
@ -1147,7 +1147,7 @@ static void arithmetic_minMaxLoc_run(const oclMat &src, cl_mem &dst, int vlen ,
static void arithmetic_minMaxLoc_mask_run(const oclMat &src, const oclMat &mask, cl_mem &dst, int vlen, int groupnum) static void arithmetic_minMaxLoc_mask_run(const oclMat &src, const oclMat &mask, cl_mem &dst, int vlen, int groupnum)
{ {
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; size_t gt[3] = {(size_t)groupnum * 256, 1, 1}, lt[3] = {256, 1, 1};
char build_options[50]; char build_options[50];
if (src.oclchannels() == 1) if (src.oclchannels() == 1)
{ {
@ -1284,7 +1284,7 @@ static void arithmetic_countNonZero_run(const oclMat &src, cl_mem &dst, int grou
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum )); args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst ));
size_t globalThreads[3] = { groupnum * 256, 1, 1 }; size_t globalThreads[3] = { (size_t)groupnum * 256, 1, 1 };
#ifdef ANDROID #ifdef ANDROID
openCLExecuteKernel(src.clCxt, &arithm_nonzero, "arithm_op_nonzero", globalThreads, NULL, openCLExecuteKernel(src.clCxt, &arithm_nonzero, "arithm_op_nonzero", globalThreads, NULL,
@ -1409,7 +1409,7 @@ static void bitwise_run(const oclMat & src1, const oclMat & src2, const Scalar &
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows )); args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
size_t globalsize[3] = { dst.cols * ocn / kercn, dst.rows, 1 }; size_t globalsize[3] = { (size_t)dst.cols * ocn / kercn, (size_t)dst.rows, 1 };
globalsize[0] = divUp(globalsize[0], 256) * 256; globalsize[0] = divUp(globalsize[0], 256) * 256;
openCLExecuteKernel(src1.clCxt, &arithm_bitwise, "arithm_bitwise", globalsize, NULL, openCLExecuteKernel(src1.clCxt, &arithm_bitwise, "arithm_bitwise", globalsize, NULL,
args, -1, -1, buildOptions.c_str()); args, -1, -1, buildOptions.c_str());
@ -1543,7 +1543,7 @@ static void transpose_run(const oclMat &src, oclMat &dst, string kernelName, boo
channelsString[src.channels()]); channelsString[src.channels()]);
size_t localThreads[3] = { TILE_DIM, BLOCK_ROWS, 1 }; size_t localThreads[3] = { TILE_DIM, BLOCK_ROWS, 1 };
size_t globalThreads[3] = { src.cols, inplace ? src.rows : divUp(src.rows, TILE_DIM) * BLOCK_ROWS, 1 }; size_t globalThreads[3] = { (size_t)src.cols, inplace ? (size_t)src.rows : divUp(src.rows, TILE_DIM) * BLOCK_ROWS, 1 };
int srcstep1 = src.step / src.elemSize(), dststep1 = dst.step / dst.elemSize(); int srcstep1 = src.step / src.elemSize(), dststep1 = dst.step / dst.elemSize();
int srcoffset1 = src.offset / src.elemSize(), dstoffset1 = dst.offset / dst.elemSize(); int srcoffset1 = src.offset / src.elemSize(), dstoffset1 = dst.offset / dst.elemSize();
@ -1610,7 +1610,7 @@ void cv::ocl::addWeighted(const oclMat &src1, double alpha, const oclMat &src2,
typeMap[depth], hasDouble ? "double" : "float", typeMap[depth], typeMap[depth], hasDouble ? "double" : "float", typeMap[depth],
depth >= CV_32F ? "" : "_sat_rte"); depth >= CV_32F ? "" : "_sat_rte");
size_t globalThreads[3] = { cols1, dst.rows, 1}; size_t globalThreads[3] = { (size_t)cols1, (size_t)dst.rows, 1};
float alpha_f = static_cast<float>(alpha), float alpha_f = static_cast<float>(alpha),
beta_f = static_cast<float>(beta), beta_f = static_cast<float>(beta),
@ -1663,7 +1663,7 @@ static void arithmetic_pow_run(const oclMat &src, double p, oclMat &dst, string
int depth = dst.depth(); int depth = dst.depth();
size_t localThreads[3] = { 64, 4, 1 }; size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
const char * const typeStr = depth == CV_32F ? "float" : "double"; const char * const typeStr = depth == CV_32F ? "float" : "double";
const char * const channelMap[] = { "", "", "2", "4", "4" }; const char * const channelMap[] = { "", "", "2", "4", "4" };
@ -1721,7 +1721,7 @@ void cv::ocl::setIdentity(oclMat& src, const Scalar & scalar)
int src_step1 = src.step / src.elemSize(), src_offset1 = src.offset / src.elemSize(); int src_step1 = src.step / src.elemSize(), src_offset1 = src.offset / src.elemSize();
size_t local_threads[] = { 16, 16, 1 }; size_t local_threads[] = { 16, 16, 1 };
size_t global_threads[] = { src.cols, src.rows, 1 }; size_t global_threads[] = { (size_t)src.cols, (size_t)src.rows, 1 };
const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" };
const char * const channelMap[] = { "", "", "2", "4", "4" }; const char * const channelMap[] = { "", "", "2", "4", "4" };

View File

@ -199,7 +199,7 @@ static void mog_withoutLearning(const oclMat& frame, int cn, oclMat& fgmask, ocl
Context* clCxt = Context::getContext(); Context* clCxt = Context::getContext();
size_t local_thread[] = {32, 8, 1}; size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {frame.cols, frame.rows, 1}; size_t global_thread[] = {(size_t)frame.cols, (size_t)frame.rows, 1};
int frame_step = (int)(frame.step/frame.elemSize()); int frame_step = (int)(frame.step/frame.elemSize());
int fgmask_step = (int)(fgmask.step/fgmask.elemSize()); int fgmask_step = (int)(fgmask.step/fgmask.elemSize());
@ -261,7 +261,7 @@ static void mog_withLearning(const oclMat& frame, int cn, oclMat& fgmask_raw, oc
Context* clCxt = Context::getContext(); Context* clCxt = Context::getContext();
size_t local_thread[] = {32, 8, 1}; size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {frame.cols, frame.rows, 1}; size_t global_thread[] = {(size_t)frame.cols, (size_t)frame.rows, 1};
oclMat fgmask(fgmask_raw.size(), CV_32SC1); oclMat fgmask(fgmask_raw.size(), CV_32SC1);
@ -342,7 +342,7 @@ void cv::ocl::device::mog::getBackgroundImage_ocl(int cn, const oclMat& weight,
Context* clCxt = Context::getContext(); Context* clCxt = Context::getContext();
size_t local_thread[] = {32, 8, 1}; size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {dst.cols, dst.rows, 1}; size_t global_thread[] = {(size_t)dst.cols, (size_t)dst.rows, 1};
int weight_step = (int)(weight.step/weight.elemSize()); int weight_step = (int)(weight.step/weight.elemSize());
int mean_step = (int)(mean.step/mean.elemSize()); int mean_step = (int)(mean.step/mean.elemSize());
@ -411,7 +411,7 @@ void cv::ocl::device::mog::mog2_ocl(const oclMat& frame, int cn, oclMat& fgmaskR
detectShadows_flag = 1; detectShadows_flag = 1;
size_t local_thread[] = {32, 8, 1}; size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {frame.cols, frame.rows, 1}; size_t global_thread[] = {(size_t)frame.cols, (size_t)frame.rows, 1};
int frame_step = (int)(frame.step/frame.elemSize()); int frame_step = (int)(frame.step/frame.elemSize());
int fgmask_step = (int)(fgmask.step/fgmask.elemSize()); int fgmask_step = (int)(fgmask.step/fgmask.elemSize());
@ -481,7 +481,7 @@ void cv::ocl::device::mog::getBackgroundImage2_ocl(int cn, const oclMat& modesUs
Context* clCxt = Context::getContext(); Context* clCxt = Context::getContext();
size_t local_thread[] = {32, 8, 1}; size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {modesUsed.cols, modesUsed.rows, 1}; size_t global_thread[] = {(size_t)modesUsed.cols, (size_t)modesUsed.rows, 1};
int weight_step = (int)(weight.step/weight.elemSize()); int weight_step = (int)(weight.step/weight.elemSize());
int modesUsed_step = (int)(modesUsed.step/modesUsed.elemSize()); int modesUsed_step = (int)(modesUsed.step/modesUsed.elemSize());

View File

@ -59,7 +59,7 @@ void cv::ocl::blendLinear(const oclMat &src1, const oclMat &src2, const oclMat &
dst.create(src1.size(), src1.type()); dst.create(src1.size(), src1.type());
size_t globalSize[] = { dst.cols, dst.rows, 1}; size_t globalSize[] = { (size_t)dst.cols, (size_t)dst.rows, 1};
size_t localSize[] = { 16, 16, 1 }; size_t localSize[] = { 16, 16, 1 };
int depth = dst.depth(), ocn = dst.oclchannels(); int depth = dst.depth(), ocn = dst.oclchannels();

View File

@ -71,7 +71,7 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat
const oclMat &trainIdx, const oclMat &distance, int distType) const oclMat &trainIdx, const oclMat &distance, int distType)
{ {
cv::ocl::Context *ctx = query.clCxt; cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t globalSize[] = {((size_t)query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= 2 * BLOCK_SIZE ? MAX_DESC_LEN : 2 * BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= 2 * BLOCK_SIZE ? MAX_DESC_LEN : 2 * BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE; int block_size = BLOCK_SIZE;
@ -114,7 +114,7 @@ void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
const oclMat &trainIdx, const oclMat &distance, int distType) const oclMat &trainIdx, const oclMat &distance, int distType)
{ {
cv::ocl::Context *ctx = query.clCxt; cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t globalSize[] = {((size_t)query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE; int block_size = BLOCK_SIZE;
@ -156,7 +156,7 @@ void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDist
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType) const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
{ {
cv::ocl::Context *ctx = query.clCxt; cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1}; size_t globalSize[] = {((size_t)train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, ((size_t)query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE; int block_size = BLOCK_SIZE;
@ -198,7 +198,7 @@ void radius_match(const oclMat &query, const oclMat &train, float maxDistance, c
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType) const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
{ {
cv::ocl::Context *ctx = query.clCxt; cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1}; size_t globalSize[] = {((size_t)train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, ((size_t)query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE; int block_size = BLOCK_SIZE;
@ -300,7 +300,7 @@ void knn_matchUnrolledCached(const oclMat &query, const oclMat &train, const ocl
const oclMat &trainIdx, const oclMat &distance, int distType) const oclMat &trainIdx, const oclMat &distance, int distType)
{ {
cv::ocl::Context *ctx = query.clCxt; cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t globalSize[] = {((size_t)query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= BLOCK_SIZE ? MAX_DESC_LEN : BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= BLOCK_SIZE ? MAX_DESC_LEN : BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE; int block_size = BLOCK_SIZE;
@ -337,7 +337,7 @@ void knn_match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
const oclMat &trainIdx, const oclMat &distance, int distType) const oclMat &trainIdx, const oclMat &distance, int distType)
{ {
cv::ocl::Context *ctx = query.clCxt; cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t globalSize[] = {((size_t)query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE; int block_size = BLOCK_SIZE;
@ -372,7 +372,7 @@ template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType) void calcDistanceUnrolled(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType)
{ {
cv::ocl::Context *ctx = query.clCxt; cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t globalSize[] = {((size_t)query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE; int block_size = BLOCK_SIZE;
@ -409,7 +409,7 @@ template < int BLOCK_SIZE/*, typename Mask*/ >
void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType) void calcDistance(const oclMat &query, const oclMat &train, const oclMat &/*mask*/, const oclMat &allDist, int distType)
{ {
cv::ocl::Context *ctx = query.clCxt; cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1}; size_t globalSize[] = {((size_t)query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1}; size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int); const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
int block_size = BLOCK_SIZE; int block_size = BLOCK_SIZE;
@ -481,7 +481,7 @@ template <int BLOCK_SIZE>
void findKnnMatch(int k, const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist, int /*distType*/) void findKnnMatch(int k, const oclMat &trainIdx, const oclMat &distance, const oclMat &allDist, int /*distType*/)
{ {
cv::ocl::Context *ctx = trainIdx.clCxt; cv::ocl::Context *ctx = trainIdx.clCxt;
size_t globalSize[] = {trainIdx.rows * BLOCK_SIZE, 1, 1}; size_t globalSize[] = {(size_t)trainIdx.rows * BLOCK_SIZE, 1, 1};
size_t localSize[] = {BLOCK_SIZE, 1, 1}; size_t localSize[] = {BLOCK_SIZE, 1, 1};
int block_size = BLOCK_SIZE; int block_size = BLOCK_SIZE;
std::string kernelName = "BruteForceMatch_findBestMatch"; std::string kernelName = "BruteForceMatch_findBestMatch";
@ -598,14 +598,14 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchConvert(const Mat &trainIdx, cons
const float *distance_ptr = distance.ptr<float>(); const float *distance_ptr = distance.ptr<float>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr) for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr)
{ {
int trainIdx = *trainIdx_ptr; int oneTrainIdx = *trainIdx_ptr;
if (trainIdx == -1) if (oneTrainIdx == -1)
continue; continue;
float distance = *distance_ptr; float oneDistance = *distance_ptr;
DMatch m(queryIdx, trainIdx, 0, distance); DMatch m(queryIdx, oneTrainIdx, 0, oneDistance);
matches.push_back(m); matches.push_back(m);
} }
@ -713,16 +713,16 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchConvert(const Mat &trainIdx, cons
const float *distance_ptr = distance.ptr<float>(); const float *distance_ptr = distance.ptr<float>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{ {
int trainIdx = *trainIdx_ptr; int oneTrainIdx = *trainIdx_ptr;
if (trainIdx == -1) if (oneTrainIdx == -1)
continue; continue;
int imgIdx = *imgIdx_ptr; int oneImgIdx = *imgIdx_ptr;
float distance = *distance_ptr; float oneDistance = *distance_ptr;
DMatch m(queryIdx, trainIdx, imgIdx, distance); DMatch m(queryIdx, oneTrainIdx, oneImgIdx, oneDistance);
matches.push_back(m); matches.push_back(m);
} }
@ -811,13 +811,13 @@ void cv::ocl::BruteForceMatcher_OCL_base::knnMatchConvert(const Mat &trainIdx, c
for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr) for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr)
{ {
int trainIdx = *trainIdx_ptr; int oneTrainIdx = *trainIdx_ptr;
if (trainIdx != -1) if (oneTrainIdx != -1)
{ {
float distance = *distance_ptr; float oneDistance = *distance_ptr;
DMatch m(queryIdx, trainIdx, 0, distance); DMatch m(queryIdx, oneTrainIdx, 0, oneDistance);
curMatches.push_back(m); curMatches.push_back(m);
} }
@ -901,15 +901,15 @@ void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Convert(const Mat &trainIdx,
for (int i = 0; i < 2; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) for (int i = 0; i < 2; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{ {
int trainIdx = *trainIdx_ptr; int oneTrainIdx = *trainIdx_ptr;
if (trainIdx != -1) if (oneTrainIdx != -1)
{ {
int imgIdx = *imgIdx_ptr; int oneImgIdx = *imgIdx_ptr;
float distance = *distance_ptr; float oneDistance = *distance_ptr;
DMatch m(queryIdx, trainIdx, imgIdx, distance); DMatch m(queryIdx, oneTrainIdx, oneImgIdx, oneDistance);
curMatches.push_back(m); curMatches.push_back(m);
} }
@ -1051,25 +1051,25 @@ void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchConvert(const Mat &trainIdx
const int *trainIdx_ptr = trainIdx.ptr<int>(queryIdx); const int *trainIdx_ptr = trainIdx.ptr<int>(queryIdx);
const float *distance_ptr = distance.ptr<float>(queryIdx); const float *distance_ptr = distance.ptr<float>(queryIdx);
const int nMatches = std::min(nMatches_ptr[queryIdx], trainIdx.cols); const int matchesNum = std::min(nMatches_ptr[queryIdx], trainIdx.cols);
if (nMatches == 0) if (matchesNum == 0)
{ {
if (!compactResult) if (!compactResult)
matches.push_back(vector<DMatch>()); matches.push_back(vector<DMatch>());
continue; continue;
} }
matches.push_back(vector<DMatch>(nMatches)); matches.push_back(vector<DMatch>(matchesNum));
vector<DMatch> &curMatches = matches.back(); vector<DMatch> &curMatches = matches.back();
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++distance_ptr) for (int i = 0; i < matchesNum; ++i, ++trainIdx_ptr, ++distance_ptr)
{ {
int trainIdx = *trainIdx_ptr; int oneTrainIdx = *trainIdx_ptr;
float distance = *distance_ptr; float oneDistance = *distance_ptr;
DMatch m(queryIdx, trainIdx, 0, distance); DMatch m(queryIdx, oneTrainIdx, 0, oneDistance);
curMatches[i] = m; curMatches[i] = m;
} }
@ -1177,9 +1177,9 @@ void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchConvert(const Mat &trainIdx
const int *imgIdx_ptr = imgIdx.ptr<int>(queryIdx); const int *imgIdx_ptr = imgIdx.ptr<int>(queryIdx);
const float *distance_ptr = distance.ptr<float>(queryIdx); const float *distance_ptr = distance.ptr<float>(queryIdx);
const int nMatches = std::min(nMatches_ptr[queryIdx], trainIdx.cols); const int matchesNum = std::min(nMatches_ptr[queryIdx], trainIdx.cols);
if (nMatches == 0) if (matchesNum == 0)
{ {
if (!compactResult) if (!compactResult)
matches.push_back(vector<DMatch>()); matches.push_back(vector<DMatch>());
@ -1188,15 +1188,15 @@ void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchConvert(const Mat &trainIdx
matches.push_back(vector<DMatch>()); matches.push_back(vector<DMatch>());
vector<DMatch> &curMatches = matches.back(); vector<DMatch> &curMatches = matches.back();
curMatches.reserve(nMatches); curMatches.reserve(matchesNum);
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) for (int i = 0; i < matchesNum; ++i, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{ {
int trainIdx = *trainIdx_ptr; int oneTrainIdx = *trainIdx_ptr;
int imgIdx = *imgIdx_ptr; int oneImgIdx = *imgIdx_ptr;
float distance = *distance_ptr; float oneDistance = *distance_ptr;
DMatch m(queryIdx, trainIdx, imgIdx, distance); DMatch m(queryIdx, oneTrainIdx, oneImgIdx, oneDistance);
curMatches.push_back(m); curMatches.push_back(m);
} }

View File

@ -91,7 +91,7 @@ void cv::ocl::buildWarpPlaneMaps(Size /*src_size*/, Rect dst_roi, const Mat &K,
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset));
args.push_back( make_pair( sizeof(cl_float), (void *)&scale)); args.push_back( make_pair( sizeof(cl_float), (void *)&scale));
size_t globalThreads[3] = { xmap.cols, xmap.rows, 1 }; size_t globalThreads[3] = { (size_t)xmap.cols, (size_t)xmap.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t localThreads[3] = {32, 4, 1}; size_t localThreads[3] = {32, 4, 1};
#else #else
@ -137,7 +137,7 @@ void cv::ocl::buildWarpCylindricalMaps(Size /*src_size*/, Rect dst_roi, const Ma
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset));
args.push_back( make_pair( sizeof(cl_float), (void *)&scale)); args.push_back( make_pair( sizeof(cl_float), (void *)&scale));
size_t globalThreads[3] = { xmap.cols, xmap.rows, 1 }; size_t globalThreads[3] = { (size_t)xmap.cols, (size_t)xmap.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t localThreads[3] = {32, 1, 1}; size_t localThreads[3] = {32, 1, 1};
#else #else
@ -183,7 +183,7 @@ void cv::ocl::buildWarpSphericalMaps(Size /*src_size*/, Rect dst_roi, const Mat
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset));
args.push_back( make_pair( sizeof(cl_float), (void *)&scale)); args.push_back( make_pair( sizeof(cl_float), (void *)&scale));
size_t globalThreads[3] = { xmap.cols, xmap.rows, 1 }; size_t globalThreads[3] = { (size_t)xmap.cols, (size_t)xmap.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t localThreads[3] = {32, 4, 1}; size_t localThreads[3] = {32, 4, 1};
#else #else
@ -231,7 +231,7 @@ void cv::ocl::buildWarpAffineMaps(const Mat &M, bool inverse, Size dsize, oclMat
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset));
size_t globalThreads[3] = { xmap.cols, xmap.rows, 1 }; size_t globalThreads[3] = { (size_t)xmap.cols, (size_t)xmap.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t localThreads[3] = {32, 4, 1}; size_t localThreads[3] = {32, 4, 1};
#else #else
@ -279,7 +279,7 @@ void cv::ocl::buildWarpPerspectiveMaps(const Mat &M, bool inverse, Size dsize, o
args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&xmap_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&ymap_offset));
size_t globalThreads[3] = { xmap.cols, xmap.rows, 1 }; size_t globalThreads[3] = { (size_t)xmap.cols, (size_t)xmap.rows, 1 };
openCLExecuteKernel(Context::getContext(), &build_warps, "buildWarpPerspectiveMaps", globalThreads, NULL, args, -1, -1); openCLExecuteKernel(Context::getContext(), &build_warps, "buildWarpPerspectiveMaps", globalThreads, NULL, args, -1, -1);
} }

View File

@ -221,7 +221,7 @@ void canny::calcSobelRowPass_gpu(const oclMat &src, oclMat &dx_buf, oclMat &dy_b
args.push_back( make_pair( sizeof(cl_int), (void *)&dy_buf.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&dy_buf.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&dy_buf.offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&dy_buf.offset));
size_t globalThreads[3] = {cols, rows, 1}; size_t globalThreads[3] = {(size_t)cols, (size_t)rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &imgproc_canny, kernelName, globalThreads, localThreads, args, -1, -1); openCLExecuteKernel(clCxt, &imgproc_canny, kernelName, globalThreads, localThreads, args, -1, -1);
} }
@ -250,7 +250,7 @@ void canny::calcMagnitude_gpu(const oclMat &dx_buf, const oclMat &dy_buf, oclMat
args.push_back( make_pair( sizeof(cl_int), (void *)&mag.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&mag.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mag.offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&mag.offset));
size_t globalThreads[3] = {cols, rows, 1}; size_t globalThreads[3] = {(size_t)cols, (size_t)rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
const char * build_options = L2Grad ? "-D L2GRAD":""; const char * build_options = L2Grad ? "-D L2GRAD":"";
@ -274,7 +274,7 @@ void canny::calcMagnitude_gpu(const oclMat &dx, const oclMat &dy, oclMat &mag, i
args.push_back( make_pair( sizeof(cl_int), (void *)&mag.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&mag.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&mag.offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&mag.offset));
size_t globalThreads[3] = {cols, rows, 1}; size_t globalThreads[3] = {(size_t)cols, (size_t)rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
const char * build_options = L2Grad ? "-D L2GRAD":""; const char * build_options = L2Grad ? "-D L2GRAD":"";
@ -305,7 +305,7 @@ void canny::calcMap_gpu(oclMat &dx, oclMat &dy, oclMat &mag, oclMat &map, int ro
args.push_back( make_pair( sizeof(cl_int), (void *)&map.offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&map.offset));
size_t globalThreads[3] = {cols, rows, 1}; size_t globalThreads[3] = {(size_t)cols, (size_t)rows, 1};
string kernelName = "calcMap"; string kernelName = "calcMap";
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
@ -331,7 +331,7 @@ void canny::edgesHysteresisLocal_gpu(oclMat &map, oclMat &st1, oclMat& counter,
cl_int offsetBytes = map.offset; cl_int offsetBytes = map.offset;
args.push_back( make_pair( sizeof(cl_int), (void *)&offsetBytes)); args.push_back( make_pair( sizeof(cl_int), (void *)&offsetBytes));
size_t globalThreads[3] = {cols, rows, 1}; size_t globalThreads[3] = {(size_t)cols, (size_t)rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &imgproc_canny, "edgesHysteresisLocal", globalThreads, localThreads, args, -1, -1); openCLExecuteKernel(clCxt, &imgproc_canny, "edgesHysteresisLocal", globalThreads, localThreads, args, -1, -1);
@ -355,7 +355,7 @@ void canny::edgesHysteresisGlobal_gpu(oclMat &map, oclMat &st1, oclMat &st2, ocl
counter.upload(counterMat); counter.upload(counterMat);
args.clear(); args.clear();
size_t globalThreads[3] = {std::min((unsigned)count, 65535u) * 128, divUp(count, 65535), 1}; size_t globalThreads[3] = {(size_t)std::min((unsigned)count, 65535u) * 128, divUp(count, 65535), 1};
args.push_back( make_pair( sizeof(cl_mem), (void *)&map.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&map.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&st1.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&st1.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&st2.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&st2.data));
@ -386,7 +386,7 @@ void canny::getEdges_gpu(oclMat &map, oclMat &dst, int rows, int cols)
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset));
size_t globalThreads[3] = {cols, rows, 1}; size_t globalThreads[3] = {(size_t)cols, (size_t)rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &imgproc_canny, kernelName, globalThreads, localThreads, args, -1, -1); openCLExecuteKernel(clCxt, &imgproc_canny, kernelName, globalThreads, localThreads, args, -1, -1);

View File

@ -167,28 +167,28 @@ struct DeviceInfoImpl: public DeviceInfo
parseOpenCLVersion(this->deviceVersion, parseOpenCLVersion(this->deviceVersion,
this->deviceVersionMajor, this->deviceVersionMinor); this->deviceVersionMajor, this->deviceVersionMinor);
size_t maxWorkGroupSize = 0; size_t maxWGS = 0;
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_WORK_GROUP_SIZE, maxWorkGroupSize)); openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_WORK_GROUP_SIZE, maxWGS));
this->maxWorkGroupSize = maxWorkGroupSize; this->maxWorkGroupSize = maxWGS;
cl_uint maxDimensions = 0; cl_uint maxDimensions = 0;
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, maxDimensions)); openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, maxDimensions));
std::vector<size_t> maxWorkItemSizes(maxDimensions); std::vector<size_t> maxWIS(maxDimensions);
openCLSafeCall(clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t) * maxDimensions, openCLSafeCall(clGetDeviceInfo(device, CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(size_t) * maxDimensions,
(void *)&maxWorkItemSizes[0], 0)); (void *)&maxWIS[0], 0));
this->maxWorkItemSizes = maxWorkItemSizes; this->maxWorkItemSizes = maxWIS;
cl_uint maxComputeUnits = 0; cl_uint maxCU = 0;
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_COMPUTE_UNITS, maxComputeUnits)); openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_COMPUTE_UNITS, maxCU));
this->maxComputeUnits = maxComputeUnits; this->maxComputeUnits = maxCU;
cl_ulong localMemorySize = 0; cl_ulong localMS = 0;
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_LOCAL_MEM_SIZE, localMemorySize)); openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_LOCAL_MEM_SIZE, localMS));
this->localMemorySize = (size_t)localMemorySize; this->localMemorySize = (size_t)localMS;
cl_ulong maxMemAllocSize = 0; cl_ulong maxMAS = 0;
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, maxMemAllocSize)); openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, maxMAS));
this->maxMemAllocSize = (size_t)maxMemAllocSize; this->maxMemAllocSize = (size_t)maxMAS;
cl_bool unifiedMemory = false; cl_bool unifiedMemory = false;
openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_HOST_UNIFIED_MEMORY, unifiedMemory)); openCLSafeCall(getScalarInfo(clGetDeviceInfo, device, CL_DEVICE_HOST_UNIFIED_MEMORY, unifiedMemory));

View File

@ -397,16 +397,16 @@ struct ProgramFileCache
sizeof(size_t), sizeof(size_t),
&binarySize, NULL)); &binarySize, NULL));
std::vector<char> binary(binarySize); std::vector<char> localBinary(binarySize);
char* ptr = &binary[0]; char* ptr = &localBinary[0];
openCLSafeCall(clGetProgramInfo(program, openCLSafeCall(clGetProgramInfo(program,
CL_PROGRAM_BINARIES, CL_PROGRAM_BINARIES,
sizeof(char*), sizeof(char*),
&ptr, &ptr,
NULL)); NULL));
if (!writeConfigurationToFile(options, binary)) if (!writeConfigurationToFile(options, localBinary))
{ {
std::cerr << "Can't write data to file: " << fileName_ << std::endl; std::cerr << "Can't write data to file: " << fileName_ << std::endl;
} }
@ -463,7 +463,7 @@ cl_program ProgramCache::getProgram(const Context *ctx, const cv::ocl::ProgramEn
} }
{ {
cv::AutoLock lockCache(mutexCache); cv::AutoLock localLockCache(mutexCache);
cl_program program = ProgramCache::getProgramCache()->progLookup(src_sign.str()); cl_program program = ProgramCache::getProgramCache()->progLookup(src_sign.str());
if (!!program) if (!!program)
{ {
@ -478,7 +478,7 @@ cl_program ProgramCache::getProgram(const Context *ctx, const cv::ocl::ProgramEn
// second check // second check
if (source->name) if (source->name)
{ {
cv::AutoLock lockCache(mutexCache); cv::AutoLock localLockCache(mutexCache);
cl_program program = ProgramCache::getProgramCache()->progLookup(src_sign.str()); cl_program program = ProgramCache::getProgramCache()->progLookup(src_sign.str());
if (!!program) if (!!program)
{ {
@ -504,7 +504,7 @@ cl_program ProgramCache::getProgram(const Context *ctx, const cv::ocl::ProgramEn
//Cache the binary for future use if build_options is null //Cache the binary for future use if build_options is null
if (source->name) if (source->name)
{ {
cv::AutoLock lockCache(mutexCache); cv::AutoLock localLockCache(mutexCache);
this->addProgram(src_sign.str(), program); this->addProgram(src_sign.str(), program);
} }
return program; return program;

View File

@ -31,11 +31,11 @@
opencl_module = GetModuleHandleA("OpenCL.dll"); opencl_module = GetModuleHandleA("OpenCL.dll");
if (!opencl_module) if (!opencl_module)
{ {
const char* name = "OpenCL.dll"; const char* libName = "OpenCL.dll";
const char* envOpenCLBinary = getenv("OPENCV_OPENCL_BINARY"); const char* envOpenCLBinary = getenv("OPENCV_OPENCL_BINARY");
if (envOpenCLBinary) if (envOpenCLBinary)
name = envOpenCLBinary; libName = envOpenCLBinary;
opencl_module = LoadLibraryA(name); opencl_module = LoadLibraryA(libName);
if (!opencl_module) if (!opencl_module)
return NULL; return NULL;
} }

View File

@ -87,7 +87,7 @@ static void fromRGB_caller(const oclMat &src, oclMat &dst, int bidx, const std::
if (!data2.empty()) if (!data2.empty())
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data2.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&data2.data ));
size_t gt[3] = { dst.cols/pixels_per_work_item, dst.rows, 1 }; size_t gt[3] = { (size_t)dst.cols/pixels_per_work_item, (size_t)dst.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t lt[3] = { 16, 10, 1 }; size_t lt[3] = { 16, 10, 1 };
#else #else
@ -122,7 +122,7 @@ static void toHSV_caller(const oclMat &src, oclMat &dst, int bidx, const std::st
if (!data2.empty()) if (!data2.empty())
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data2.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&data2.data ));
size_t gt[3] = { dst.cols, dst.rows, 1 }; size_t gt[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t lt[3] = { 16, 10, 1 }; size_t lt[3] = { 16, 10, 1 };
#else #else
@ -154,7 +154,7 @@ static void fromGray_caller(const oclMat &src, oclMat &dst, int bidx, const std:
if (!data.empty()) if (!data.empty())
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data ));
size_t gt[3] = { dst.cols, dst.rows, 1 }; size_t gt[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t lt[3] = { 16, 10, 1 }; size_t lt[3] = { 16, 10, 1 };
#else #else
@ -197,7 +197,7 @@ static void toRGB_caller(const oclMat &src, oclMat &dst, int bidx, const std::st
if (!data.empty()) if (!data.empty())
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data ));
size_t gt[3] = { dst.cols/pixels_per_work_item, dst.rows, 1 }; size_t gt[3] = { (size_t)dst.cols/pixels_per_work_item, (size_t)dst.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t lt[3] = { 16, 10, 1 }; size_t lt[3] = { 16, 10, 1 };
#else #else
@ -229,7 +229,7 @@ static void toRGB_NV12_caller(const oclMat &src, oclMat &dst, int bidx, const st
if (!data.empty()) if (!data.empty())
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data ));
size_t gt[3] = {src.cols, src.rows, 1}; size_t gt[3] = {(size_t)src.cols, (size_t)src.rows, 1};
#ifdef ANDROID #ifdef ANDROID
size_t lt[3] = {16, 10, 1}; size_t lt[3] = {16, 10, 1};
#else #else
@ -261,7 +261,7 @@ static void fromHSV_caller(const oclMat &src, oclMat &dst, int bidx, const std::
if (!data.empty()) if (!data.empty())
args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&data.data ));
size_t gt[3] = { dst.cols, dst.rows, 1 }; size_t gt[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t lt[3] = { 16, 10, 1 }; size_t lt[3] = { 16, 10, 1 };
#else #else
@ -288,7 +288,7 @@ static void RGB_caller(const oclMat &src, oclMat &dst, bool reverse)
args.push_back( make_pair( sizeof(cl_int) , (void *)&src_offset )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src_offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_offset )); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_offset ));
size_t gt[3] = { dst.cols, dst.rows, 1 }; size_t gt[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t lt[3] = { 16, 10, 1 }; size_t lt[3] = { 16, 10, 1 };
#else #else
@ -314,7 +314,7 @@ static void fromRGB5x5_caller(const oclMat &src, oclMat &dst, int bidx, int gree
args.push_back( make_pair( sizeof(cl_int) , (void *)&src_offset )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src_offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_offset )); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_offset ));
size_t gt[3] = { dst.cols, dst.rows, 1 }; size_t gt[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t lt[3] = { 16, 10, 1 }; size_t lt[3] = { 16, 10, 1 };
#else #else
@ -340,7 +340,7 @@ static void toRGB5x5_caller(const oclMat &src, oclMat &dst, int bidx, int greenb
args.push_back( make_pair( sizeof(cl_int) , (void *)&src_offset )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src_offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_offset )); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_offset ));
size_t gt[3] = { dst.cols, dst.rows, 1 }; size_t gt[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
#ifdef ANDROID #ifdef ANDROID
size_t lt[3] = { 16, 10, 1 }; size_t lt[3] = { 16, 10, 1 };
#else #else

View File

@ -67,7 +67,7 @@ void cv::ocl::columnSum(const oclMat &src, oclMat &dst)
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset));
size_t globalThreads[3] = {dst.cols, 1, 1}; size_t globalThreads[3] = {(size_t)dst.cols, 1, 1};
size_t localThreads[3] = {256, 1, 1}; size_t localThreads[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_columnsum, "columnSum", globalThreads, localThreads, args, src.oclchannels(), src.depth()); openCLExecuteKernel(src.clCxt, &imgproc_columnsum, "columnSum", globalThreads, localThreads, args, src.oclchannels(), src.depth());

View File

@ -690,20 +690,20 @@ static void GPUFilter2D(const oclMat &src, oclMat &dst, const Mat &kernel,
size_t lt[3] = {BLOCK_SIZE, 1, 1}; size_t lt[3] = {BLOCK_SIZE, 1, 1};
size_t gt[3] = {divUp(dst.cols, BLOCK_SIZE - (ksize.width - 1)) * BLOCK_SIZE, divUp(dst.rows, BLOCK_SIZE_Y), 1}; size_t gt[3] = {divUp(dst.cols, BLOCK_SIZE - (ksize.width - 1)) * BLOCK_SIZE, divUp(dst.rows, BLOCK_SIZE_Y), 1};
cl_kernel kernel = openCLGetKernelFromSource(src.clCxt, &filtering_filter2D, "filter2D", -1, -1, build_options); cl_kernel localKernel = openCLGetKernelFromSource(src.clCxt, &filtering_filter2D, "filter2D", -1, -1, build_options);
size_t kernelWorkGroupSize; size_t kernelWorkGroupSize;
openCLSafeCall(clGetKernelWorkGroupInfo(kernel, getClDeviceID(src.clCxt), openCLSafeCall(clGetKernelWorkGroupInfo(localKernel, getClDeviceID(src.clCxt),
CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &kernelWorkGroupSize, 0)); CL_KERNEL_WORK_GROUP_SIZE, sizeof(size_t), &kernelWorkGroupSize, 0));
if (lt[0] > kernelWorkGroupSize) if (lt[0] > kernelWorkGroupSize)
{ {
clReleaseKernel(kernel); clReleaseKernel(localKernel);
CV_Assert(BLOCK_SIZE > kernelWorkGroupSize); CV_Assert(BLOCK_SIZE > kernelWorkGroupSize);
tryWorkItems = kernelWorkGroupSize; tryWorkItems = kernelWorkGroupSize;
continue; continue;
} }
openCLExecuteKernel(src.clCxt, kernel, gt, lt, args); // kernel will be released here openCLExecuteKernel(src.clCxt, localKernel, gt, lt, args); // kernel will be released here
} while (false); } while (false);
} }
@ -1170,7 +1170,7 @@ void linearRowFilter_gpu(const oclMat &src, const oclMat &dst, oclMat mat_kernel
#else #else
size_t localThreads[3] = { 16, 16, 1 }; size_t localThreads[3] = { 16, 16, 1 };
#endif #endif
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101" }; const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101" };
std::string buildOptions = format("-D RADIUSX=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D %s", std::string buildOptions = format("-D RADIUSX=%d -D LSIZE0=%d -D LSIZE1=%d -D CN=%d -D %s",

View File

@ -75,8 +75,8 @@ static void sortCorners_caller(oclMat& corners, const int count)
Context * cxt = Context::getContext(); Context * cxt = Context::getContext();
int GS = count/2; int GS = count/2;
int LS = min(255,GS); int LS = min(255,GS);
size_t globalThreads[3] = {GS, 1, 1}; size_t globalThreads[3] = {(size_t)GS, 1, 1};
size_t localThreads[3] = {LS, 1, 1}; size_t localThreads[3] = {(size_t)LS, 1, 1};
// 2^numStages should be equal to count or the output is invalid // 2^numStages should be equal to count or the output is invalid
int numStages = 0; int numStages = 0;
@ -130,7 +130,7 @@ static void findCorners_caller(
args.push_back(make_pair( sizeof(cl_int), (void*)&corners.cols )); args.push_back(make_pair( sizeof(cl_int), (void*)&corners.cols ));
args.push_back(make_pair( sizeof(cl_mem), (void*)&counter.data )); args.push_back(make_pair( sizeof(cl_mem), (void*)&counter.data ));
size_t globalThreads[3] = {eig_mat.cols, eig_mat.rows, 1}; size_t globalThreads[3] = {(size_t)eig_mat.cols, (size_t)eig_mat.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
if(!mask.empty()) if(!mask.empty())
opt += " -D WITH_MASK=1"; opt += " -D WITH_MASK=1";
@ -164,7 +164,7 @@ static void minMaxEig_caller(const oclMat &src, oclMat &dst, oclMat & tozero)
args.push_back( make_pair( sizeof(cl_int) , (void *)&total)); args.push_back( make_pair( sizeof(cl_int) , (void *)&total));
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum)); args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst_data ));
size_t globalThreads[3] = {groupnum * 256, 1, 1}; size_t globalThreads[3] = {(size_t)groupnum * 256, 1, 1};
size_t localThreads[3] = {256, 1, 1}; size_t localThreads[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &arithm_minMax, "arithm_op_minMax", globalThreads, localThreads, openCLExecuteKernel(src.clCxt, &arithm_minMax, "arithm_op_minMax", globalThreads, localThreads,
args, -1, -1, "-D T=float -D DEPTH_5 -D vlen=1"); args, -1, -1, "-D T=float -D DEPTH_5 -D vlen=1");

View File

@ -902,9 +902,9 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
// pack node info to have less memory loads on the device side // pack node info to have less memory loads on the device side
oclMat oclNodesPK(1,sizeof(cl_int) * NODE_SIZE * nodenum,CV_8U); oclMat oclNodesPK(1,sizeof(cl_int) * NODE_SIZE * nodenum,CV_8U);
{ {
cl_int status; cl_int localStatus;
cl_int* pNodesPK = (cl_int*)clEnqueueMapBuffer(getClCommandQueue(oclNodesPK.clCxt),(cl_mem)oclNodesPK.datastart,true,CL_MAP_WRITE, 0, oclNodesPK.step, 0,0,0,&status); cl_int* pNodesPK = (cl_int*)clEnqueueMapBuffer(getClCommandQueue(oclNodesPK.clCxt),(cl_mem)oclNodesPK.datastart,true,CL_MAP_WRITE, 0, oclNodesPK.step, 0,0,0,&localStatus);
openCLVerifyCall(status); openCLVerifyCall(localStatus);
//use known local data stride to precalulate indexes //use known local data stride to precalulate indexes
int DATA_SIZE_X = (localThreads[0]+cascade->orig_window_size.width); int DATA_SIZE_X = (localThreads[0]+cascade->orig_window_size.width);
// check that maximal value is less than maximal unsigned short // check that maximal value is less than maximal unsigned short
@ -921,11 +921,11 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
struct NodePK * pOut = (struct NodePK *)(pNodesPK + NODE_SIZE*i); struct NodePK * pOut = (struct NodePK *)(pNodesPK + NODE_SIZE*i);
for(int k=0;k<3;++k) for(int k=0;k<3;++k)
{// calc 4 short indexes in shared local mem for each rectangle instead of 2 (x,y) pair. {// calc 4 short indexes in shared local mem for each rectangle instead of 2 (x,y) pair.
int* p = &(node[i].p[k][0]); int* lp = &(node[i].p[k][0]);
pOut->slm_index[k][0] = (unsigned short)(p[1]*DATA_SIZE_X+p[0]); pOut->slm_index[k][0] = (unsigned short)(lp[1]*DATA_SIZE_X+lp[0]);
pOut->slm_index[k][1] = (unsigned short)(p[1]*DATA_SIZE_X+p[2]); pOut->slm_index[k][1] = (unsigned short)(lp[1]*DATA_SIZE_X+lp[2]);
pOut->slm_index[k][2] = (unsigned short)(p[3]*DATA_SIZE_X+p[0]); pOut->slm_index[k][2] = (unsigned short)(lp[3]*DATA_SIZE_X+lp[0]);
pOut->slm_index[k][3] = (unsigned short)(p[3]*DATA_SIZE_X+p[2]); pOut->slm_index[k][3] = (unsigned short)(lp[3]*DATA_SIZE_X+lp[2]);
} }
//store used float point values for each node //store used float point values for each node
pOut->weight[0] = node[i].weight[0]; pOut->weight[0] = node[i].weight[0];
@ -959,13 +959,13 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
if(WGNumTotal>WGNumSampled) if(WGNumTotal>WGNumSampled)
{// small images and each pixel is processed {// small images and each pixel is processed
// setup global sizes to have linear array of workgroups with WGNum size // setup global sizes to have linear array of workgroups with WGNum size
int pixelstep = 1; int pstep = 1;
size_t LS[3]={localThreads[0]/pixelstep,localThreads[1]/pixelstep,1}; size_t LS[3]={localThreads[0]/pstep,localThreads[1]/pstep,1};
globalThreads[0] = LS[0]*(WGNumTotal-WGNumSampled); globalThreads[0] = LS[0]*(WGNumTotal-WGNumSampled);
globalThreads[1] = LS[1]; globalThreads[1] = LS[1];
globalThreads[2] = 1; globalThreads[2] = 1;
string options1 = options; string options1 = options;
options1 += format(" -D PIXEL_STEP=%d",pixelstep); options1 += format(" -D PIXEL_STEP=%d",pstep);
options1 += format(" -D WGSTART=%d",WGNumSampled); options1 += format(" -D WGSTART=%d",WGNumSampled);
options1 += format(" -D LSx=%d",LS[0]); options1 += format(" -D LSx=%d",LS[0]);
options1 += format(" -D LSy=%d",LS[1]); options1 += format(" -D LSy=%d",LS[1]);
@ -975,13 +975,13 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
if(WGNumSampled>0) if(WGNumSampled>0)
{// large images each 4th pixel is processed {// large images each 4th pixel is processed
// setup global sizes to have linear array of workgroups with WGNum size // setup global sizes to have linear array of workgroups with WGNum size
int pixelstep = 2; int pstep = 2;
size_t LS[3]={localThreads[0]/pixelstep,localThreads[1]/pixelstep,1}; size_t LS[3]={localThreads[0]/pstep,localThreads[1]/pstep,1};
globalThreads[0] = LS[0]*WGNumSampled; globalThreads[0] = LS[0]*WGNumSampled;
globalThreads[1] = LS[1]; globalThreads[1] = LS[1];
globalThreads[2] = 1; globalThreads[2] = 1;
string options2 = options; string options2 = options;
options2 += format(" -D PIXEL_STEP=%d",pixelstep); options2 += format(" -D PIXEL_STEP=%d",pstep);
options2 += format(" -D WGSTART=%d",0); options2 += format(" -D WGSTART=%d",0);
options2 += format(" -D LSx=%d",LS[0]); options2 += format(" -D LSx=%d",LS[0]);
options2 += format(" -D LSy=%d",LS[1]); options2 += format(" -D LSy=%d",LS[1]);
@ -1117,7 +1117,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] ));
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum ));
size_t globalThreads2[3] = {nodenum, 1, 1}; size_t globalThreads2[3] = {(size_t)nodenum, 1, 1};
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
} }
@ -1255,7 +1255,7 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
{ {
int blocksize = 8; int blocksize = 8;
int grp_per_CU = 12; int grp_per_CU = 12;
size_t localThreads[3] = { blocksize, blocksize, 1 }; size_t localThreads[3] = { (size_t)blocksize, (size_t)blocksize, 1 };
size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->getDeviceInfo().maxComputeUnits *localThreads[0], size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->getDeviceInfo().maxComputeUnits *localThreads[0],
localThreads[1], localThreads[1],
1 }; 1 };
@ -1531,7 +1531,7 @@ void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols,
args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] )); args1.push_back ( make_pair(sizeof(cl_float) , (void *)&correction[i] ));
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum )); args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum ));
size_t globalThreads2[3] = {m_nodenum, 1, 1}; size_t globalThreads2[3] = {(size_t)m_nodenum, 1, 1};
openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1); openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
} }

View File

@ -242,7 +242,7 @@ void cv::ocl::HOGDescriptor::init_buffer(const oclMat &img, Size win_stride)
gauss_w_lut.upload(gaussian_lut); gauss_w_lut.upload(gaussian_lut);
} }
void cv::ocl::HOGDescriptor::computeGradient(const oclMat &img, oclMat &grad, oclMat &qangle) void cv::ocl::HOGDescriptor::computeGradient(const oclMat &img, oclMat &lgrad, oclMat &lqangle)
{ {
CV_Assert(img.type() == CV_8UC1 || img.type() == CV_8UC4); CV_Assert(img.type() == CV_8UC1 || img.type() == CV_8UC4);
@ -251,11 +251,11 @@ void cv::ocl::HOGDescriptor::computeGradient(const oclMat &img, oclMat &grad, oc
{ {
case CV_8UC1: case CV_8UC1:
hog::compute_gradients_8UC1(effect_size.height, effect_size.width, img, hog::compute_gradients_8UC1(effect_size.height, effect_size.width, img,
angleScale, grad, qangle, gamma_correction); angleScale, lgrad, lqangle, gamma_correction);
break; break;
case CV_8UC4: case CV_8UC4:
hog::compute_gradients_8UC4(effect_size.height, effect_size.width, img, hog::compute_gradients_8UC4(effect_size.height, effect_size.width, img,
angleScale, grad, qangle, gamma_correction); angleScale, lgrad, lqangle, gamma_correction);
break; break;
} }
} }
@ -1646,7 +1646,7 @@ void cv::ocl::device::hog::compute_hists(int nbins,
int qangle_step = qangle.step >> qangle_step_shift; int qangle_step = qangle.step >> qangle_step_shift;
int blocks_in_group = 4; int blocks_in_group = 4;
size_t localThreads[3] = { blocks_in_group * 24, 2, 1 }; size_t localThreads[3] = { (size_t)blocks_in_group * 24, 2, 1 };
size_t globalThreads[3] = { size_t globalThreads[3] = {
divUp(img_block_width * img_block_height, blocks_in_group) * localThreads[0], 2, 1 }; divUp(img_block_width * img_block_height, blocks_in_group) * localThreads[0], 2, 1 };
@ -1791,8 +1791,8 @@ void cv::ocl::device::hog::classify_hists(int win_height, int win_width,
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) / int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) /
block_stride_x; block_stride_x;
size_t globalThreads[3] = { img_win_width * nthreads, img_win_height, 1 }; size_t globalThreads[3] = { (size_t)img_win_width * nthreads, (size_t)img_win_height, 1 };
size_t localThreads[3] = { nthreads, 1, 1 }; size_t localThreads[3] = { (size_t)nthreads, 1, 1 };
args.push_back( make_pair( sizeof(cl_int), (void *)&cblock_hist_size)); args.push_back( make_pair( sizeof(cl_int), (void *)&cblock_hist_size));
args.push_back( make_pair( sizeof(cl_int), (void *)&img_win_width)); args.push_back( make_pair( sizeof(cl_int), (void *)&img_win_width));
args.push_back( make_pair( sizeof(cl_int), (void *)&img_block_width)); args.push_back( make_pair( sizeof(cl_int), (void *)&img_block_width));
@ -1837,7 +1837,7 @@ void cv::ocl::device::hog::extract_descrs_by_rows(int win_height, int win_width,
block_stride_x; block_stride_x;
int descriptors_quadstep = descriptors.step >> 2; int descriptors_quadstep = descriptors.step >> 2;
size_t globalThreads[3] = { img_win_width * NTHREADS, img_win_height, 1 }; size_t globalThreads[3] = { (size_t)img_win_width * NTHREADS, (size_t)img_win_height, 1 };
size_t localThreads[3] = { NTHREADS, 1, 1 }; size_t localThreads[3] = { NTHREADS, 1, 1 };
args.push_back( make_pair( sizeof(cl_int), (void *)&cblock_hist_size)); args.push_back( make_pair( sizeof(cl_int), (void *)&cblock_hist_size));
@ -1873,7 +1873,7 @@ void cv::ocl::device::hog::extract_descrs_by_cols(int win_height, int win_width,
block_stride_x; block_stride_x;
int descriptors_quadstep = descriptors.step >> 2; int descriptors_quadstep = descriptors.step >> 2;
size_t globalThreads[3] = { img_win_width * NTHREADS, img_win_height, 1 }; size_t globalThreads[3] = { (size_t)img_win_width * NTHREADS, (size_t)img_win_height, 1 };
size_t localThreads[3] = { NTHREADS, 1, 1 }; size_t localThreads[3] = { NTHREADS, 1, 1 };
args.push_back( make_pair( sizeof(cl_int), (void *)&cblock_hist_size)); args.push_back( make_pair( sizeof(cl_int), (void *)&cblock_hist_size));
@ -1903,7 +1903,7 @@ void cv::ocl::device::hog::compute_gradients_8UC1(int height, int width,
vector< pair<size_t, const void *> > args; vector< pair<size_t, const void *> > args;
size_t localThreads[3] = { NTHREADS, 1, 1 }; size_t localThreads[3] = { NTHREADS, 1, 1 };
size_t globalThreads[3] = { width, height, 1 }; size_t globalThreads[3] = { (size_t)width, (size_t)height, 1 };
char correctGamma = (correct_gamma) ? 1 : 0; char correctGamma = (correct_gamma) ? 1 : 0;
int img_step = img.step; int img_step = img.step;
int grad_quadstep = grad.step >> 3; int grad_quadstep = grad.step >> 3;
@ -1937,7 +1937,7 @@ void cv::ocl::device::hog::compute_gradients_8UC4(int height, int width,
vector< pair<size_t, const void *> > args; vector< pair<size_t, const void *> > args;
size_t localThreads[3] = { NTHREADS, 1, 1 }; size_t localThreads[3] = { NTHREADS, 1, 1 };
size_t globalThreads[3] = { width, height, 1 }; size_t globalThreads[3] = { (size_t)width, (size_t)height, 1 };
char correctGamma = (correct_gamma) ? 1 : 0; char correctGamma = (correct_gamma) ? 1 : 0;
int img_step = img.step >> 2; int img_step = img.step >> 2;

View File

@ -164,7 +164,7 @@ namespace cv
args.push_back( make_pair(sizeof(cl_int), (void *)&cols)); args.push_back( make_pair(sizeof(cl_int), (void *)&cols));
size_t localThreads[3] = { 16, 16, 1 }; size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)cols, (size_t)dst.rows, 1 };
openCLExecuteKernel(src.clCxt, &imgproc_threshold, "threshold", globalThreads, localThreads, args, openCLExecuteKernel(src.clCxt, &imgproc_threshold, "threshold", globalThreads, localThreads, args,
-1, -1, buildOptions.c_str()); -1, -1, buildOptions.c_str());
@ -229,7 +229,7 @@ namespace cv
CV_Error(CV_StsBadArg, "Unsupported map types"); CV_Error(CV_StsBadArg, "Unsupported map types");
int ocn = dst.oclchannels(); int ocn = dst.oclchannels();
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
Mat scalar(1, 1, CV_MAKE_TYPE(dst.depth(), ocn), borderValue); Mat scalar(1, 1, CV_MAKE_TYPE(dst.depth(), ocn), borderValue);
std::string buildOptions = format("-D %s -D %s -D T=%s%s", interMap[interpolation], std::string buildOptions = format("-D %s -D %s -D T=%s%s", interMap[interpolation],
@ -422,7 +422,7 @@ namespace cv
} }
} }
size_t globalThreads[3] = { glbSizeX, dst.rows, 1 }; size_t globalThreads[3] = { glbSizeX, (size_t)dst.rows, 1 };
size_t localThreads[3] = { blkSizeX, blkSizeY, 1 }; size_t localThreads[3] = { blkSizeX, blkSizeY, 1 };
std::vector< std::pair<size_t, const void *> > args; std::vector< std::pair<size_t, const void *> > args;
@ -521,7 +521,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int), (void *)&srcStep)); args.push_back( make_pair( sizeof(cl_int), (void *)&srcStep));
args.push_back( make_pair( sizeof(cl_int), (void *)&dstStep)); args.push_back( make_pair( sizeof(cl_int), (void *)&dstStep));
size_t globalThreads[3] = {(src.cols + 18) / 16 * 16, (src.rows + 15) / 16 * 16, 1}; size_t globalThreads[3] = {((size_t)src.cols + 18) / 16 * 16, ((size_t)src.rows + 15) / 16 * 16, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
if (m == 3) if (m == 3)
@ -589,7 +589,7 @@ namespace cv
CV_Error(CV_StsBadArg, "Unsupported border type"); CV_Error(CV_StsBadArg, "Unsupported border type");
size_t localThreads[3] = { 16, 16, 1 }; size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
vector< pair<size_t, const void *> > args; vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&_src.data)); args.push_back( make_pair( sizeof(cl_mem), (void *)&_src.data));
@ -936,7 +936,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step));
size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1}; size_t gt[3] = {(((size_t)vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_cols", gt, lt, args, -1, depth); openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_cols", gt, lt, args, -1, depth);
args.clear(); args.clear();
@ -951,7 +951,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset)); args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum_offset)); args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum_offset));
size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1}; size_t gt2[3] = {(size_t)t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_rows", gt2, lt2, args, -1, depth); openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_rows", gt2, lt2, args, -1, depth);
} }
@ -981,7 +981,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step )); args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step));
size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1}; size_t gt[3] = {(((size_t)vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_cols", gt, lt, args, -1, depth); openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_cols", gt, lt, args, -1, depth);
args.clear(); args.clear();
@ -992,7 +992,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step )); args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&sum.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset)); args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset));
size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1}; size_t gt2[3] = {(size_t)t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_rows", gt2, lt2, args, -1, depth); openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_rows", gt2, lt2, args, -1, depth);
} }
@ -1025,7 +1025,7 @@ namespace cv
CV_Assert(Dx.rows == Dy.rows && Dx.cols == Dy.cols); CV_Assert(Dx.rows == Dy.rows && Dx.cols == Dy.cols);
size_t lt2[3] = {sobel_lsz, sobel_lsz, 1}; size_t lt2[3] = {(size_t)sobel_lsz, (size_t)sobel_lsz, 1};
size_t gt2[3] = {lt2[0]*(1 + (src.cols-1) / lt2[0]), lt2[1]*(1 + (src.rows-1) / lt2[1]), 1}; size_t gt2[3] = {lt2[0]*(1 + (src.cols-1) / lt2[0]), lt2[1]*(1 + (src.rows-1) / lt2[1]), 1};
unsigned int src_pitch = src.step; unsigned int src_pitch = src.step;
@ -1247,8 +1247,8 @@ namespace cv
if (src.rows % lty != 0) if (src.rows % lty != 0)
row = (row / lty + 1) * lty; row = (row / lty + 1) * lty;
size_t globalThreads[3] = {col, row, 1}; size_t globalThreads[3] = {(size_t)col, (size_t)row, 1};
size_t localThreads[3] = {ltx, lty, 1}; size_t localThreads[3] = {(size_t)ltx, (size_t)lty, 1};
//set args //set args
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
@ -1306,8 +1306,8 @@ namespace cv
if (src.rows % lty != 0) if (src.rows % lty != 0)
row = (row / lty + 1) * lty; row = (row / lty + 1) * lty;
size_t globalThreads[3] = {col, row, 1}; size_t globalThreads[3] = {(size_t)col, (size_t)row, 1};
size_t localThreads[3] = {ltx, lty, 1}; size_t localThreads[3] = {(size_t)ltx, (size_t)lty, 1};
//set args //set args
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
@ -1567,7 +1567,7 @@ namespace cv
args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut.offset )); args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut.offset ));
size_t localThreads[3] = { 32, 8, 1 }; size_t localThreads[3] = { 32, 8, 1 };
size_t globalThreads[3] = { src.cols, src.rows, 1 }; size_t globalThreads[3] = { (size_t)src.cols, (size_t)src.rows, 1 };
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, "transform", globalThreads, localThreads, args, -1, -1); openCLExecuteKernel(Context::getContext(), &imgproc_clahe, "transform", globalThreads, localThreads, args, -1, -1);
} }
@ -1754,7 +1754,7 @@ namespace cv
#else #else
size_t localThreads[3] = { 16, 16, 1 }; size_t localThreads[3] = { 16, 16, 1 };
#endif #endif
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
if ((dst.type() == CV_8UC1) && ((dst.offset & 3) == 0) && ((dst.cols & 3) == 0)) if ((dst.type() == CV_8UC1) && ((dst.offset & 3) == 0) && ((dst.cols & 3) == 0))
{ {
@ -1799,7 +1799,7 @@ static void convolve_run(const oclMat &src, const oclMat &temp1, oclMat &dst, st
dst.create(src.size(), src.type()); dst.create(src.size(), src.type());
size_t localThreads[3] = { 16, 16, 1 }; size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
int src_step = src.step / src.elemSize(), src_offset = src.offset / src.elemSize(); int src_step = src.step / src.elemSize(), src_offset = src.offset / src.elemSize();
int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize(); int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize();

View File

@ -141,7 +141,7 @@ void interpolate::memsetKernel(float val, oclMat &img, int height, int offset)
args.push_back( make_pair( sizeof(cl_int), (void *)&step)); args.push_back( make_pair( sizeof(cl_int), (void *)&step));
args.push_back( make_pair( sizeof(cl_int), (void *)&offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&offset));
size_t globalThreads[3] = {img.cols, height, 1}; size_t globalThreads[3] = {(size_t)img.cols, (size_t)height, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1); openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
} }
@ -161,7 +161,7 @@ void interpolate::normalizeKernel(oclMat &buffer, int height, int factor_offset,
args.push_back( make_pair( sizeof(cl_int), (void *)&factor_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&factor_offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset));
size_t globalThreads[3] = {buffer.cols, height, 1}; size_t globalThreads[3] = {(size_t)buffer.cols, (size_t)height, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1); openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
} }
@ -190,7 +190,7 @@ void interpolate::forwardWarpKernel(const oclMat &src, oclMat &buffer, const ocl
args.push_back( make_pair( sizeof(cl_int), (void *)&d_offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&d_offset));
args.push_back( make_pair( sizeof(cl_float), (void *)&time_scale)); args.push_back( make_pair( sizeof(cl_float), (void *)&time_scale));
size_t globalThreads[3] = {src.cols, src.rows, 1}; size_t globalThreads[3] = {(size_t)src.cols, (size_t)src.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1); openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
} }
@ -220,7 +220,7 @@ void interpolate::blendFrames(const oclMat &frame0, const oclMat &/*frame1*/, co
args.push_back( make_pair( sizeof(cl_int), (void *)&step)); args.push_back( make_pair( sizeof(cl_int), (void *)&step));
args.push_back( make_pair( sizeof(cl_float), (void *)&pos)); args.push_back( make_pair( sizeof(cl_float), (void *)&pos));
size_t globalThreads[3] = {frame0.cols, frame0.rows, 1}; size_t globalThreads[3] = {(size_t)frame0.cols, (size_t)frame0.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1); openCLExecuteKernel(clCxt, &interpolate_frames, kernelName, globalThreads, localThreads, args, -1, -1);
} }

View File

@ -195,7 +195,7 @@ void cv::ocl::distanceToCenters(const oclMat &src, const oclMat &centers, Mat &d
args.push_back(make_pair(sizeof(cl_int), (void *)&src_offset)); args.push_back(make_pair(sizeof(cl_int), (void *)&src_offset));
args.push_back(make_pair(sizeof(cl_int), (void *)&centers_offset)); args.push_back(make_pair(sizeof(cl_int), (void *)&centers_offset));
size_t globalThreads[3] = { all_dist_count, 1, 1 }; size_t globalThreads[3] = { (size_t)all_dist_count, 1, 1 };
openCLExecuteKernel(Context::getContext(), &kmeans_kernel, openCLExecuteKernel(Context::getContext(), &kmeans_kernel,
"distanceToCenters", globalThreads, NULL, args, -1, -1, build_opt_ss.str().c_str()); "distanceToCenters", globalThreads, NULL, args, -1, -1, build_opt_ss.str().c_str());

View File

@ -93,13 +93,13 @@ bool KNearestNeighbour::train(const Mat& trainData, Mat& labels, Mat& sampleIdx,
return cv_knn_train; return cv_knn_train;
} }
void KNearestNeighbour::find_nearest(const oclMat& samples, int k, oclMat& lables) void KNearestNeighbour::find_nearest(const oclMat& lsamples, int k, oclMat& lables)
{ {
CV_Assert(!samples_ocl.empty()); CV_Assert(!samples_ocl.empty());
lables.create(samples.rows, 1, CV_32FC1); lables.create(lsamples.rows, 1, CV_32FC1);
CV_Assert(samples.cols == CvKNearest::var_count); CV_Assert(lsamples.cols == CvKNearest::var_count);
CV_Assert(samples.type() == CV_32FC1); CV_Assert(lsamples.type() == CV_32FC1);
CV_Assert(k >= 1 && k <= max_k); CV_Assert(k >= 1 && k <= max_k);
int k1 = KNearest::get_sample_count(); int k1 = KNearest::get_sample_count();
@ -112,8 +112,8 @@ void KNearestNeighbour::find_nearest(const oclMat& samples, int k, oclMat& lable
nThreads = 256; nThreads = 256;
int smem_size = nThreads * k * 4 * 2; int smem_size = nThreads * k * 4 * 2;
size_t local_thread[] = {1, nThreads, 1}; size_t local_thread[] = {1, (size_t)nThreads, 1};
size_t global_thread[] = {1, samples.rows, 1}; size_t global_thread[] = {1, (size_t)lsamples.rows, 1};
char build_option[50]; char build_option[50];
if(!Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE)) if(!Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE))
@ -125,16 +125,16 @@ void KNearestNeighbour::find_nearest(const oclMat& samples, int k, oclMat& lable
std::vector< std::pair<size_t, const void*> > args; std::vector< std::pair<size_t, const void*> > args;
int samples_ocl_step = samples_ocl.step/samples_ocl.elemSize(); int samples_ocl_step = samples_ocl.step/samples_ocl.elemSize();
int samples_step = samples.step/samples.elemSize(); int samples_step = lsamples.step/lsamples.elemSize();
int lables_step = lables.step/lables.elemSize(); int lables_step = lables.step/lables.elemSize();
int _regression = 0; int _regression = 0;
if(CvKNearest::regression) if(CvKNearest::regression)
_regression = 1; _regression = 1;
args.push_back(make_pair(sizeof(cl_mem), (void*)&samples.data)); args.push_back(make_pair(sizeof(cl_mem), (void*)&lsamples.data));
args.push_back(make_pair(sizeof(cl_int), (void*)&samples.rows)); args.push_back(make_pair(sizeof(cl_int), (void*)&lsamples.rows));
args.push_back(make_pair(sizeof(cl_int), (void*)&samples.cols)); args.push_back(make_pair(sizeof(cl_int), (void*)&lsamples.cols));
args.push_back(make_pair(sizeof(cl_int), (void*)&samples_step)); args.push_back(make_pair(sizeof(cl_int), (void*)&samples_step));
args.push_back(make_pair(sizeof(cl_int), (void*)&k)); args.push_back(make_pair(sizeof(cl_int), (void*)&k));
args.push_back(make_pair(sizeof(cl_mem), (void*)&samples_ocl.data)); args.push_back(make_pair(sizeof(cl_mem), (void*)&samples_ocl.data));

View File

@ -136,7 +136,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&result.step));
size_t globalThreads[3] = {result.cols, result.rows, 1}; size_t globalThreads[3] = {(size_t)result.cols, (size_t)result.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
const char * build_opt = image.oclchannels() == 4 ? "-D CN4" : ""; const char * build_opt = image.oclchannels() == 4 ? "-D CN4" : "";
@ -170,7 +170,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&result.step));
size_t globalThreads[3] = {result.cols, result.rows, 1}; size_t globalThreads[3] = {(size_t)result.cols, (size_t)result.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, 1, CV_8U); openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, 1, CV_8U);
} }
@ -205,7 +205,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&templ.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&result.step));
size_t globalThreads[3] = {result.cols, result.rows, 1}; size_t globalThreads[3] = {(size_t)result.cols, (size_t)result.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.oclchannels(), image.depth()); openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.oclchannels(), image.depth());
} }
@ -269,7 +269,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset)); args.push_back( make_pair( sizeof(cl_int), (void *)&result.offset));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&result.step));
size_t globalThreads[3] = {result.cols, result.rows, 1}; size_t globalThreads[3] = {(size_t)result.cols, (size_t)result.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, 1, CV_8U); openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, 1, CV_8U);
} }
@ -304,7 +304,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int), (void *)&templ.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&templ.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&result.step)); args.push_back( make_pair( sizeof(cl_int), (void *)&result.step));
size_t globalThreads[3] = {result.cols, result.rows, 1}; size_t globalThreads[3] = {(size_t)result.cols, (size_t)result.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.oclchannels(), image.depth()); openCLExecuteKernel(clCxt, &match_template, kernelName, globalThreads, localThreads, args, image.oclchannels(), image.depth());
} }
@ -321,7 +321,7 @@ namespace cv
string kernelName; string kernelName;
kernelName = "matchTemplate_Prepared_CCOFF"; kernelName = "matchTemplate_Prepared_CCOFF";
size_t globalThreads[3] = {result.cols, result.rows, 1}; size_t globalThreads[3] = {(size_t)result.cols, (size_t)result.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
vector< pair<size_t, const void *> > args; vector< pair<size_t, const void *> > args;
@ -394,7 +394,7 @@ namespace cv
string kernelName; string kernelName;
kernelName = "matchTemplate_Prepared_CCOFF_NORMED"; kernelName = "matchTemplate_Prepared_CCOFF_NORMED";
size_t globalThreads[3] = {result.cols, result.rows, 1}; size_t globalThreads[3] = {(size_t)result.cols, (size_t)result.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
vector< pair<size_t, const void *> > args; vector< pair<size_t, const void *> > args;
@ -492,7 +492,7 @@ namespace cv
string kernelName; string kernelName;
kernelName = "extractFirstChannel"; kernelName = "extractFirstChannel";
size_t globalThreads[3] = {result.cols, result.rows, 1}; size_t globalThreads[3] = {(size_t)result.cols, (size_t)result.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
vector< pair<size_t, const void *> > args; vector< pair<size_t, const void *> > args;

View File

@ -238,7 +238,7 @@ static void copy_to_with_mask(const oclMat &src, oclMat &dst, const oclMat &mask
char compile_option[32]; char compile_option[32];
sprintf(compile_option, "-D GENTYPE=%s", string_types[dst.oclchannels() - 1][dst.depth()].c_str()); sprintf(compile_option, "-D GENTYPE=%s", string_types[dst.oclchannels() - 1][dst.depth()].c_str());
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize(); int dststep_in_pixel = dst.step / dst.elemSize(), dstoffset_in_pixel = dst.offset / dst.elemSize();
int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize(); int srcstep_in_pixel = src.step / src.elemSize(), srcoffset_in_pixel = src.offset / src.elemSize();
@ -426,7 +426,7 @@ static void set_to_withoutmask_run(const oclMat &dst, const Scalar &scalar, stri
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize(); int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize();
if (dst.type() == CV_8UC1) if (dst.type() == CV_8UC1)
@ -469,7 +469,7 @@ static void set_to_withmask_run(const oclMat &dst, const Scalar &scalar, const o
CV_DbgAssert( dst.rows == mask.rows && dst.cols == mask.cols); CV_DbgAssert( dst.rows == mask.rows && dst.cols == mask.cols);
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
size_t localThreads[3] = { 16, 16, 1 }; size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { dst.cols, dst.rows, 1 }; size_t globalThreads[3] = { (size_t)dst.cols, (size_t)dst.rows, 1 };
int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize(); int step_in_pixel = dst.step / dst.elemSize(), offset_in_pixel = dst.offset / dst.elemSize();
const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" }; const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" };

View File

@ -184,14 +184,14 @@ namespace cv
&err); &err);
} }
size_t origin[] = { 0, 0, 0 }; size_t origin[] = { 0, 0, 0 };
size_t region[] = { mat.cols, mat.rows, 1 }; size_t region[] = { (size_t)mat.cols, (size_t)mat.rows, 1 };
cl_mem devData; cl_mem devData;
if (mat.cols * mat.elemSize() != mat.step) if (mat.cols * mat.elemSize() != mat.step)
{ {
devData = clCreateBuffer(*(cl_context*)mat.clCxt->getOpenCLContextPtr(), CL_MEM_READ_ONLY, mat.cols * mat.rows devData = clCreateBuffer(*(cl_context*)mat.clCxt->getOpenCLContextPtr(), CL_MEM_READ_ONLY, mat.cols * mat.rows
* mat.elemSize(), NULL, NULL); * mat.elemSize(), NULL, NULL);
const size_t regin[3] = {mat.cols * mat.elemSize(), mat.rows, 1}; const size_t regin[3] = {(size_t)mat.cols * mat.elemSize(), (size_t)mat.rows, 1};
clEnqueueCopyBufferRect(*(cl_command_queue*)mat.clCxt->getOpenCLCommandQueuePtr(), (cl_mem)mat.data, devData, origin, origin, clEnqueueCopyBufferRect(*(cl_command_queue*)mat.clCxt->getOpenCLCommandQueuePtr(), (cl_mem)mat.data, devData, origin, origin,
regin, mat.step, 0, mat.cols * mat.elemSize(), 0, 0, NULL, NULL); regin, mat.step, 0, mat.cols * mat.elemSize(), 0, 0, NULL, NULL);
clFlush(*(cl_command_queue*)mat.clCxt->getOpenCLCommandQueuePtr()); clFlush(*(cl_command_queue*)mat.clCxt->getOpenCLCommandQueuePtr());

View File

@ -54,42 +54,42 @@ namespace cv
namespace ocl namespace ocl
{ {
// The function calculates center of gravity and the central second order moments // The function calculates center of gravity and the central second order moments
static void icvCompleteMomentState( CvMoments* moments ) static void icvCompleteMomentState( CvMoments* lmoments )
{ {
double cx = 0, cy = 0; double cx = 0, cy = 0;
double mu20, mu11, mu02; double mu20, mu11, mu02;
assert( moments != 0 ); assert( lmoments != 0 );
moments->inv_sqrt_m00 = 0; lmoments->inv_sqrt_m00 = 0;
if( fabs(moments->m00) > DBL_EPSILON ) if( fabs(lmoments->m00) > DBL_EPSILON )
{ {
double inv_m00 = 1. / moments->m00; double inv_m00 = 1. / lmoments->m00;
cx = moments->m10 * inv_m00; cx = lmoments->m10 * inv_m00;
cy = moments->m01 * inv_m00; cy = lmoments->m01 * inv_m00;
moments->inv_sqrt_m00 = std::sqrt( fabs(inv_m00) ); lmoments->inv_sqrt_m00 = std::sqrt( fabs(inv_m00) );
} }
// mu20 = m20 - m10*cx // mu20 = m20 - m10*cx
mu20 = moments->m20 - moments->m10 * cx; mu20 = lmoments->m20 - lmoments->m10 * cx;
// mu11 = m11 - m10*cy // mu11 = m11 - m10*cy
mu11 = moments->m11 - moments->m10 * cy; mu11 = lmoments->m11 - lmoments->m10 * cy;
// mu02 = m02 - m01*cy // mu02 = m02 - m01*cy
mu02 = moments->m02 - moments->m01 * cy; mu02 = lmoments->m02 - lmoments->m01 * cy;
moments->mu20 = mu20; lmoments->mu20 = mu20;
moments->mu11 = mu11; lmoments->mu11 = mu11;
moments->mu02 = mu02; lmoments->mu02 = mu02;
// mu30 = m30 - cx*(3*mu20 + cx*m10) // mu30 = m30 - cx*(3*mu20 + cx*m10)
moments->mu30 = moments->m30 - cx * (3 * mu20 + cx * moments->m10); lmoments->mu30 = lmoments->m30 - cx * (3 * mu20 + cx * lmoments->m10);
mu11 += mu11; mu11 += mu11;
// mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20 // mu21 = m21 - cx*(2*mu11 + cx*m01) - cy*mu20
moments->mu21 = moments->m21 - cx * (mu11 + cx * moments->m01) - cy * mu20; lmoments->mu21 = lmoments->m21 - cx * (mu11 + cx * lmoments->m01) - cy * mu20;
// mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02 // mu12 = m12 - cy*(2*mu11 + cy*m10) - cx*mu02
moments->mu12 = moments->m12 - cy * (mu11 + cy * moments->m10) - cx * mu02; lmoments->mu12 = lmoments->m12 - cy * (mu11 + cy * lmoments->m10) - cx * mu02;
// mu03 = m03 - cy*(3*mu02 + cy*m01) // mu03 = m03 - cy*(3*mu02 + cy*m01)
moments->mu03 = moments->m03 - cy * (3 * mu02 + cy * moments->m01); lmoments->mu03 = lmoments->m03 - cy * (3 * mu02 + cy * lmoments->m01);
} }
@ -135,8 +135,8 @@ namespace cv
cv::ocl::oclMat dst_a(10, lpt, CV_64FC1); cv::ocl::oclMat dst_a(10, lpt, CV_64FC1);
cv::ocl::oclMat reader_oclmat(reader_mat); cv::ocl::oclMat reader_oclmat(reader_mat);
int llength = std::min(lpt,128); int llength = std::min(lpt,128);
size_t localThreads[3] = { llength, 1, 1}; size_t localThreads[3] = { (size_t)llength, 1, 1};
size_t globalThreads[3] = { lpt, 1, 1}; size_t globalThreads[3] = { (size_t)lpt, 1, 1};
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_int) , (void *)&contour->total )); args.push_back( make_pair( sizeof(cl_int) , (void *)&contour->total ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&reader_oclmat.data )); args.push_back( make_pair( sizeof(cl_mem) , (void *)&reader_oclmat.data ));
@ -252,8 +252,8 @@ namespace cv
oclMat dst_m; oclMat dst_m;
int tile_height = TILE_SIZE; int tile_height = TILE_SIZE;
size_t localThreads[3] = {1, tile_height, 1}; size_t localThreads[3] = {1, (size_t)tile_height, 1};
size_t globalThreads[3] = {blockx, size.height, 1}; size_t globalThreads[3] = {(size_t)blockx, (size_t)size.height, 1};
if(Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE)) if(Context::getContext()->supportsFeature(FEATURE_CL_DOUBLE))
{ {

View File

@ -66,7 +66,7 @@ static void updateMatricesOcl(const oclMat &flowx, const oclMat &flowy, const oc
#else #else
size_t localThreads[3] = { 32, 8, 1 }; size_t localThreads[3] = { 32, 8, 1 };
#endif #endif
size_t globalThreads[3] = { flowx.cols, flowx.rows, 1 }; size_t globalThreads[3] = { (size_t)flowx.cols, (size_t)flowx.rows, 1 };
std::vector< std::pair<size_t, const void *> > args; std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&M.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void *)&M.data));
@ -95,7 +95,7 @@ static void boxFilter5Ocl(const oclMat &src, int ksizeHalf, oclMat &dst)
#else #else
size_t localThreads[3] = { 256, 1, 1 }; size_t localThreads[3] = { 256, 1, 1 };
#endif #endif
size_t globalThreads[3] = { src.cols, height, 1 }; size_t globalThreads[3] = { (size_t)src.cols, (size_t)height, 1 };
int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float); int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float);
std::vector< std::pair<size_t, const void *> > args; std::vector< std::pair<size_t, const void *> > args;
@ -121,7 +121,7 @@ static void updateFlowOcl(const oclMat &M, oclMat &flowx, oclMat &flowy)
#else #else
size_t localThreads[3] = { 32, 8, 1 }; size_t localThreads[3] = { 32, 8, 1 };
#endif #endif
size_t globalThreads[3] = { cols, flowx.rows, 1 }; size_t globalThreads[3] = { (size_t)cols, (size_t)flowx.rows, 1 };
std::vector< std::pair<size_t, const void *> > args; std::vector< std::pair<size_t, const void *> > args;
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowx.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void *)&flowx.data));
@ -161,7 +161,7 @@ void cv::ocl::FarnebackOpticalFlow::gaussianBlurOcl(const oclMat &src, int ksize
#else #else
size_t localThreads[3] = { 256, 1, 1 }; size_t localThreads[3] = { 256, 1, 1 };
#endif #endif
size_t globalThreads[3] = { src.cols, src.rows, 1 }; size_t globalThreads[3] = { (size_t)src.cols, (size_t)src.rows, 1 };
int smem_size = (localThreads[0] + 2*ksizeHalf) * sizeof(float); int smem_size = (localThreads[0] + 2*ksizeHalf) * sizeof(float);
CV_Assert(dst.size() == src.size()); CV_Assert(dst.size() == src.size());
@ -180,7 +180,7 @@ void cv::ocl::FarnebackOpticalFlow::gaussianBlurOcl(const oclMat &src, int ksize
globalThreads, localThreads, args, -1, -1); globalThreads, localThreads, args, -1, -1);
} }
void cv::ocl::FarnebackOpticalFlow::polynomialExpansionOcl(const oclMat &src, int polyN, oclMat &dst) void cv::ocl::FarnebackOpticalFlow::polynomialExpansionOcl(const oclMat &src, int lpolyN, oclMat &dst)
{ {
string kernelName("polynomialExpansion"); string kernelName("polynomialExpansion");
@ -189,7 +189,7 @@ void cv::ocl::FarnebackOpticalFlow::polynomialExpansionOcl(const oclMat &src, in
#else #else
size_t localThreads[3] = { 256, 1, 1 }; size_t localThreads[3] = { 256, 1, 1 };
#endif #endif
size_t globalThreads[3] = { divUp(src.cols, localThreads[0] - 2*polyN) * localThreads[0], src.rows, 1 }; size_t globalThreads[3] = { divUp(src.cols, localThreads[0] - 2*lpolyN) * localThreads[0], (size_t)src.rows, 1 };
int smem_size = 3 * localThreads[0] * sizeof(float); int smem_size = 3 * localThreads[0] * sizeof(float);
std::vector< std::pair<size_t, const void *> > args; std::vector< std::pair<size_t, const void *> > args;
@ -206,7 +206,7 @@ void cv::ocl::FarnebackOpticalFlow::polynomialExpansionOcl(const oclMat &src, in
args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step)); args.push_back(std::make_pair(sizeof(cl_int), (void *)&src.step));
char opt [128]; char opt [128];
sprintf(opt, "-D polyN=%d", polyN); sprintf(opt, "-D polyN=%d", lpolyN);
openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName, openCLExecuteKernel(Context::getContext(), &optical_flow_farneback, kernelName,
globalThreads, localThreads, args, -1, -1, opt); globalThreads, localThreads, args, -1, -1, opt);
@ -221,7 +221,7 @@ void cv::ocl::FarnebackOpticalFlow::gaussianBlur5Ocl(const oclMat &src, int ksiz
#else #else
size_t localThreads[3] = { 256, 1, 1 }; size_t localThreads[3] = { 256, 1, 1 };
#endif #endif
size_t globalThreads[3] = { src.cols, height, 1 }; size_t globalThreads[3] = { (size_t)src.cols, (size_t)height, 1 };
int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float); int smem_size = (localThreads[0] + 2*ksizeHalf) * 5 * sizeof(float);
std::vector< std::pair<size_t, const void *> > args; std::vector< std::pair<size_t, const void *> > args;

View File

@ -63,7 +63,7 @@ static void pyrdown_run(const oclMat &src, const oclMat &dst)
string kernelName = "pyrDown"; string kernelName = "pyrDown";
size_t localThreads[3] = { 256, 1, 1 }; size_t localThreads[3] = { 256, 1, 1 };
size_t globalThreads[3] = { src.cols, dst.rows, 1}; size_t globalThreads[3] = { (size_t)src.cols, (size_t)dst.rows, 1};
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data )); args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data ));

View File

@ -84,7 +84,7 @@ static void lkSparse_run(oclMat &I, oclMat &J,
Context *clCxt = I.clCxt; Context *clCxt = I.clCxt;
string kernelName = "lkSparse"; string kernelName = "lkSparse";
size_t localThreads[3] = { 8, 8, 1 }; size_t localThreads[3] = { 8, 8, 1 };
size_t globalThreads[3] = { 8 * ptcount, 8, 1}; size_t globalThreads[3] = { 8 * (size_t)ptcount, 8, 1};
int cn = I.oclchannels(); int cn = I.oclchannels();
char calcErr = level==0?1:0; char calcErr = level==0?1:0;
@ -217,7 +217,7 @@ static void lkDense_run(oclMat &I, oclMat &J, oclMat &u, oclMat &v,
string kernelName = "lkDense"; string kernelName = "lkDense";
size_t localThreads[3] = { 16, 16, 1 }; size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { I.cols, I.rows, 1}; size_t globalThreads[3] = { (size_t)I.cols, (size_t)I.rows, 1};
cl_char calcErr = err ? 1 : 0; cl_char calcErr = err ? 1 : 0;

View File

@ -93,7 +93,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int), (void *)&srcstep)); args.push_back( make_pair( sizeof(cl_int), (void *)&srcstep));
args.push_back( make_pair( sizeof(cl_int), (void *)&dststep)); args.push_back( make_pair( sizeof(cl_int), (void *)&dststep));
size_t globalThreads[3] = {dst.cols, dst.rows, 1}; size_t globalThreads[3] = {(size_t)dst.cols, (size_t)dst.rows, 1};
size_t localThreads[3] = {16, 16, 1}; size_t localThreads[3] = {16, 16, 1};

View File

@ -358,18 +358,18 @@ static void sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, bool isGreater
{ {
Context * cxt = Context::getContext(); Context * cxt = Context::getContext();
const size_t GROUP_SIZE = cxt->getDeviceInfo().maxWorkGroupSize >= 256 ? 256: 128; const size_t groupSize = cxt->getDeviceInfo().maxWorkGroupSize >= 256 ? 256: 128;
size_t globalThreads[3] = {vecSize, 1, 1}; size_t globalThreads[3] = {vecSize, 1, 1};
size_t localThreads[3] = {GROUP_SIZE, 1, 1}; size_t localThreads[3] = {groupSize, 1, 1};
std::vector< std::pair<size_t, const void *> > args; std::vector< std::pair<size_t, const void *> > args;
char build_opt_buf [100]; char build_opt_buf [100];
genSortBuildOption(keys, vals, isGreaterThan, build_opt_buf); genSortBuildOption(keys, vals, isGreaterThan, build_opt_buf);
String kernelname[] = {String("blockInsertionSort"), String("merge")}; String kernelname[] = {String("blockInsertionSort"), String("merge")};
int keylds_size = GROUP_SIZE * keys.elemSize(); int keylds_size = groupSize * keys.elemSize();
int vallds_size = GROUP_SIZE * vals.elemSize(); int vallds_size = groupSize * vals.elemSize();
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&keys.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void *)&keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&vals.data)); args.push_back(std::make_pair(sizeof(cl_mem), (void *)&vals.data));
args.push_back(std::make_pair(sizeof(cl_uint), (void *)&vecSize)); args.push_back(std::make_pair(sizeof(cl_uint), (void *)&vecSize));
@ -379,7 +379,7 @@ static void sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, bool isGreater
openCLExecuteKernel(cxt, &kernel_stablesort_by_key, kernelname[0], globalThreads, localThreads, args, -1, -1, build_opt_buf); openCLExecuteKernel(cxt, &kernel_stablesort_by_key, kernelname[0], globalThreads, localThreads, args, -1, -1, build_opt_buf);
// Early exit for the case of no merge passes, values are already in destination vector // Early exit for the case of no merge passes, values are already in destination vector
if(vecSize <= GROUP_SIZE) if(vecSize <= groupSize)
{ {
return; return;
} }

View File

@ -80,7 +80,7 @@ namespace cv
int cols = divUp(mat_dst.cols + offset_cols, vector_length); int cols = divUp(mat_dst.cols + offset_cols, vector_length);
size_t localThreads[3] = { 64, 4, 1 }; size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { cols, mat_dst.rows, 1 }; size_t globalThreads[3] = { (size_t)cols, (size_t)mat_dst.rows, 1 };
int dst_step1 = mat_dst.cols * mat_dst.elemSize(); int dst_step1 = mat_dst.cols * mat_dst.elemSize();
vector<pair<size_t , const void *> > args; vector<pair<size_t , const void *> > args;
@ -254,7 +254,7 @@ namespace cv
|| devInfo.deviceVersion.find("Build 78712") != std::string::npos)) || devInfo.deviceVersion.find("Build 78712") != std::string::npos))
build_options += " -D BYPASS_VSTORE=true"; build_options += " -D BYPASS_VSTORE=true";
size_t globalThreads[3] = { divUp(src.cols, VEC_SIZE), src.rows, 1 }; size_t globalThreads[3] = { divUp(src.cols, VEC_SIZE), (size_t)src.rows, 1 };
openCLExecuteKernel(clCtx, &split_mat, kernelName, globalThreads, NULL, args, -1, -1, build_options.c_str()); openCLExecuteKernel(clCtx, &split_mat, kernelName, globalThreads, NULL, args, -1, -1, build_options.c_str());
} }
static void split(const oclMat &mat_src, oclMat *mat_dst) static void split(const oclMat &mat_src, oclMat *mat_dst)

View File

@ -133,7 +133,7 @@ namespace cv
const int threadsNum = 256; const int threadsNum = 256;
//size_t blockSize = threadsNum; //size_t blockSize = threadsNum;
size_t localThreads[3] = {win_size, 1, threadsNum / win_size}; size_t localThreads[3] = {(size_t)win_size, 1, (size_t)threadsNum / win_size};
size_t globalThreads[3] = { w *localThreads[0], size_t globalThreads[3] = { w *localThreads[0],
h * divUp(rthis.ndisp, localThreads[2]) *localThreads[1], 1 * localThreads[2] h * divUp(rthis.ndisp, localThreads[2]) *localThreads[1], 1 * localThreads[2]
}; };
@ -316,7 +316,7 @@ namespace cv
const size_t threadsNum = 256; const size_t threadsNum = 256;
//size_t blockSize = threadsNum; //size_t blockSize = threadsNum;
size_t localThreads[3] = { win_size, 1, threadsNum / win_size }; size_t localThreads[3] = { (size_t)win_size, 1, (size_t)threadsNum / win_size };
size_t globalThreads[3] = { w *localThreads[0], size_t globalThreads[3] = { w *localThreads[0],
h * divUp(nr_plane, localThreads[2]) *localThreads[1], 1 * localThreads[2] h * divUp(nr_plane, localThreads[2]) *localThreads[1], 1 * localThreads[2]
}; };

View File

@ -65,7 +65,7 @@ static void prefilter_xsobel(const oclMat &input, oclMat &output, int prefilterC
string kernelName = "prefilter_xsobel"; string kernelName = "prefilter_xsobel";
size_t blockSize = 1; size_t blockSize = 1;
size_t globalThreads[3] = { input.cols, input.rows, 1 }; size_t globalThreads[3] = { (size_t)input.cols, (size_t)input.rows, 1 };
size_t localThreads[3] = { blockSize, blockSize, 1 }; size_t localThreads[3] = { blockSize, blockSize, 1 };
std::vector< std::pair<size_t, const void *> > args; std::vector< std::pair<size_t, const void *> > args;
@ -103,7 +103,7 @@ static void stereo_bm(const oclMat &left, const oclMat &right, oclMat &disp,
sizeof(cl_uint); sizeof(cl_uint);
//size_t blockSize = 1; //size_t blockSize = 1;
size_t localThreads[] = { BLOCK_W, 1, 1 }; size_t localThreads[] = { BLOCK_W, 1, 1 };
size_t globalThreads[] = { left.cols - maxdisp - 2 * winsz2, size_t globalThreads[] = { (size_t)left.cols - maxdisp - 2 * winsz2,
divUp(left.rows - 2 * winsz2, ROWSperTHREAD), divUp(left.rows - 2 * winsz2, ROWSperTHREAD),
1 }; 1 };
@ -135,7 +135,7 @@ static void postfilter_textureness(oclMat &left, int winSize,
size_t blockSize = 1; size_t blockSize = 1;
size_t localThreads[] = { BLOCK_W, blockSize ,1}; size_t localThreads[] = { BLOCK_W, blockSize ,1};
size_t globalThreads[] = { left.cols, size_t globalThreads[] = { (size_t)left.cols,
divUp(left.rows, 2 * ROWSperTHREAD), divUp(left.rows, 2 * ROWSperTHREAD),
1 }; 1 };

View File

@ -116,7 +116,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&data.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&data.step));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&cl_con_struct)); args.push_back( make_pair( sizeof(cl_mem) , (void *)&cl_con_struct));
size_t gt[3] = {left.cols, left.rows, 1}, lt[3] = {16, 16, 1}; size_t gt[3] = {(size_t)left.cols, (size_t)left.rows, 1}, lt[3] = {16, 16, 1};
const int OPT_SIZE = 50; const int OPT_SIZE = 50;
char cn_opt [OPT_SIZE] = ""; char cn_opt [OPT_SIZE] = "";
@ -148,7 +148,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&disp)); args.push_back( make_pair( sizeof(cl_int) , (void *)&disp));
size_t gt[3] = {dst_cols, dst_rows, 1}, lt[3] = {16, 16, 1}; size_t gt[3] = {(size_t)dst_cols, (size_t)dst_rows, 1}, lt[3] = {16, 16, 1};
const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT";
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt);
} }
@ -173,7 +173,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&ndisp)); args.push_back( make_pair( sizeof(cl_int) , (void *)&ndisp));
size_t gt[3] = {dst_cols, dst_rows, 1}, lt[3] = {16, 16, 1}; size_t gt[3] = {(size_t)dst_cols, (size_t)dst_rows, 1}, lt[3] = {16, 16, 1};
const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT";
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt);
} }
@ -223,7 +223,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_float) , (void *)&cmax_disc_term)); args.push_back( make_pair( sizeof(cl_float) , (void *)&cmax_disc_term));
args.push_back( make_pair( sizeof(cl_float) , (void *)&cdisc_single_jump)); args.push_back( make_pair( sizeof(cl_float) , (void *)&cdisc_single_jump));
size_t gt[3] = {cols, rows, 1}, lt[3] = {16, 16, 1}; size_t gt[3] = {(size_t)cols, (size_t)rows, 1}, lt[3] = {16, 16, 1};
char opt[80] = ""; char opt[80] = "";
sprintf(opt, "-D %s -D CNDISP=%d", data_type == CV_16S ? "T_SHORT":"T_FLOAT", cndisp); sprintf(opt, "-D %s -D CNDISP=%d", data_type == CV_16S ? "T_SHORT":"T_FLOAT", cndisp);
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, opt); openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, opt);
@ -263,7 +263,7 @@ namespace cv
args.push_back( make_pair( sizeof(cl_int) , (void *)&disp.step)); args.push_back( make_pair( sizeof(cl_int) , (void *)&disp.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&ndisp)); args.push_back( make_pair( sizeof(cl_int) , (void *)&ndisp));
size_t gt[3] = {disp.cols, disp.rows, 1}, lt[3] = {16, 16, 1}; size_t gt[3] = {(size_t)disp.cols, (size_t)disp.rows, 1}, lt[3] = {16, 16, 1};
const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT"; const char* t_opt = data_type == CV_16S ? "-D T_SHORT":"-D T_FLOAT";
openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt); openCLExecuteKernel(clCxt, &stereobp, kernelName, gt, lt, args, -1, -1, t_opt);
} }

View File

@ -443,8 +443,8 @@ static void matmul_sigmod(oclMat & src, oclMat & src2, oclMat & dst, int src_row
int dst_step = (int)dst.step / dst.elemSize(); int dst_step = (int)dst.step / dst.elemSize();
int x = MIN(16, src_rows); int x = MIN(16, src_rows);
int y = MIN(16, src2_cols); int y = MIN(16, src2_cols);
size_t localThreads[] = {x, y, 1}; size_t localThreads[] = {(size_t)x, (size_t)y, 1};
size_t globalThreads[] = {src2_cols, src_rows, 1}; size_t globalThreads[] = {(size_t)src2_cols, (size_t)src_rows, 1};
int width = var_count; int width = var_count;
vector< pair<size_t, const void *> > args; vector< pair<size_t, const void *> > args;
@ -483,8 +483,8 @@ static void matmul_poly(oclMat & src, oclMat & src2, oclMat & dst, int src_rows,
int dst_step = (int)dst.step / dst.elemSize(); int dst_step = (int)dst.step / dst.elemSize();
int x = MIN(16, src_rows); int x = MIN(16, src_rows);
int y = MIN(16, src2_cols); int y = MIN(16, src2_cols);
size_t localThreads[] = {x, y, 1}; size_t localThreads[] = {(size_t)x, (size_t)y, 1};
size_t globalThreads[] = {src2_cols, src_rows, 1}; size_t globalThreads[] = {(size_t)src2_cols, (size_t)src_rows, 1};
int width = var_count; int width = var_count;
char build_options[50]; char build_options[50];
@ -532,8 +532,8 @@ static void matmul_linear(oclMat & src, oclMat & src2, oclMat & dst, int src_row
int dst_step = (int)dst.step / dst.elemSize(); int dst_step = (int)dst.step / dst.elemSize();
int x = MIN(16, src_rows); int x = MIN(16, src_rows);
int y = MIN(16, src2_cols); int y = MIN(16, src2_cols);
size_t localThreads[] = {x, y, 1}; size_t localThreads[] = {(size_t)x, (size_t)y, 1};
size_t globalThreads[] = {src2_cols, src_rows, 1}; size_t globalThreads[] = {(size_t)src2_cols, (size_t)src_rows, 1};
int width = var_count; int width = var_count;
vector< pair<size_t, const void *> > args; vector< pair<size_t, const void *> > args;
@ -579,8 +579,8 @@ static void matmul_rbf(oclMat& src, oclMat& src_e, oclMat& dst, int src_rows, in
int x = MIN(16, src_rows); int x = MIN(16, src_rows);
int y = MIN(16, src2_cols); int y = MIN(16, src2_cols);
size_t localThreads[] = {x, y, 1}; size_t localThreads[] = {(size_t)x, (size_t)y, 1};
size_t globalThreads[] = {src2_cols, src_rows, 1}; size_t globalThreads[] = {(size_t)src2_cols, (size_t)src_rows, 1};
char build_options[50]; char build_options[50];
if(flag) if(flag)
@ -788,11 +788,11 @@ bool CvSVMSolver_ocl::solve_generic( CvSVMSolutionInfo& si )
} }
Mat src1 = Mat(sample_count, var_count, CV_32FC1); Mat src1 = Mat(sample_count, var_count, CV_32FC1);
for(int i = 0; i < sample_count; ++i) for(int i2 = 0; i2 < sample_count; ++i2)
{ {
for(int j = 0; j < var_count; ++j) for(int j2 = 0; j2 < var_count; ++j2)
{ {
src1.at<float>(i, j) = samples[i][j]; src1.at<float>(i2, j2) = samples[i2][j2];
} }
} }
oclMat src, src_e; oclMat src, src_e;

View File

@ -273,7 +273,7 @@ void ocl_tvl1flow::centeredGradient(const oclMat &src, oclMat &dx, oclMat &dy)
{ {
Context *clCxt = src.clCxt; Context *clCxt = src.clCxt;
size_t localThreads[3] = {32, 8, 1}; size_t localThreads[3] = {32, 8, 1};
size_t globalThreads[3] = {src.cols, src.rows, 1}; size_t globalThreads[3] = {(size_t)src.cols, (size_t)src.rows, 1};
int srcElementSize = src.elemSize(); int srcElementSize = src.elemSize();
int src_step = src.step/srcElementSize; int src_step = src.step/srcElementSize;
@ -301,8 +301,8 @@ void ocl_tvl1flow::estimateDualVariables(oclMat &u1, oclMat &u2, oclMat &p11, oc
size_t localThread[] = {32, 8, 1}; size_t localThread[] = {32, 8, 1};
size_t globalThread[] = size_t globalThread[] =
{ {
u1.cols, (size_t)u1.cols,
u1.rows, (size_t)u1.rows,
1 1
}; };
@ -355,8 +355,8 @@ void ocl_tvl1flow::estimateU(oclMat &I1wx, oclMat &I1wy, oclMat &grad,
size_t localThread[] = {32, 8, 1}; size_t localThread[] = {32, 8, 1};
size_t globalThread[] = size_t globalThread[] =
{ {
I1wx.cols, (size_t)I1wx.cols,
I1wx.rows, (size_t)I1wx.rows,
1 1
}; };
@ -433,8 +433,8 @@ void ocl_tvl1flow::warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x,
size_t localThread[] = {32, 8, 1}; size_t localThread[] = {32, 8, 1};
size_t globalThread[] = size_t globalThread[] =
{ {
I0.cols, (size_t)I0.cols,
I0.rows, (size_t)I0.rows,
1 1
}; };

View File

@ -64,7 +64,7 @@ TEST(TestAPI, openCLExecuteKernelInterop)
args.push_back( make_pair( sizeof(cl_mem), (void *) &gpuMat.data )); args.push_back( make_pair( sizeof(cl_mem), (void *) &gpuMat.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *) &gpuMatDst.data )); args.push_back( make_pair( sizeof(cl_mem), (void *) &gpuMatDst.data ));
size_t globalThreads[3] = { sz.width, 1, 1 }; size_t globalThreads[3] = { (size_t)sz.width, 1, 1 };
cv::ocl::openCLExecuteKernelInterop( cv::ocl::openCLExecuteKernelInterop(
gpuMat.clCxt, gpuMat.clCxt,
program, program,

View File

@ -717,12 +717,12 @@ OCL_TEST_P(MinMax, MAT)
{ {
minVal = std::numeric_limits<double>::max(); minVal = std::numeric_limits<double>::max();
maxVal = -std::numeric_limits<double>::max(); maxVal = -std::numeric_limits<double>::max();
for (int i = 0; i < src1_roi.rows; ++i) for (int i2 = 0; i2 < src1_roi.rows; ++i2)
for (int j = 0; j < src1_roi.cols; ++j) for (int j2 = 0; j2 < src1_roi.cols; ++j2)
{ {
signed char val = src1_roi.at<signed char>(i, j); signed char oneVal = src1_roi.at<signed char>(i2, j2);
if (val < minVal) minVal = val; if (oneVal < minVal) minVal = oneVal;
if (val > maxVal) maxVal = val; if (oneVal > maxVal) maxVal = oneVal;
} }
} }
@ -739,10 +739,10 @@ OCL_TEST_P(MinMax, MASK)
enum { MAX_IDX = 0, MIN_IDX }; enum { MAX_IDX = 0, MIN_IDX };
static const double minMaxGolds[2][7] = static const double minMaxGolds[2][7] =
{ {
{ std::numeric_limits<uchar>::min(), std::numeric_limits<char>::min(), std::numeric_limits<ushort>::min(), { (double)std::numeric_limits<uchar>::min(), (double)std::numeric_limits<char>::min(), (double)std::numeric_limits<ushort>::min(),
std::numeric_limits<short>::min(), std::numeric_limits<int>::min(), -std::numeric_limits<float>::max(), -std::numeric_limits<double>::max() }, (double)std::numeric_limits<short>::min(), (double)std::numeric_limits<int>::min(), (double)-std::numeric_limits<float>::max(), (double)-std::numeric_limits<double>::max() },
{ std::numeric_limits<uchar>::max(), std::numeric_limits<char>::max(), std::numeric_limits<ushort>::max(), { (double)std::numeric_limits<uchar>::max(), (double)std::numeric_limits<char>::max(), (double)std::numeric_limits<ushort>::max(),
std::numeric_limits<short>::max(), std::numeric_limits<int>::max(), std::numeric_limits<float>::max(), std::numeric_limits<double>::max() }, (double)std::numeric_limits<short>::max(), (double)std::numeric_limits<int>::max(), (double)std::numeric_limits<float>::max(), (double)std::numeric_limits<double>::max() },
}; };
for (int j = 0; j < LOOP_TIMES; j++) for (int j = 0; j < LOOP_TIMES; j++)
@ -758,13 +758,13 @@ OCL_TEST_P(MinMax, MASK)
{ {
minVal = std::numeric_limits<double>::max(); minVal = std::numeric_limits<double>::max();
maxVal = -std::numeric_limits<double>::max(); maxVal = -std::numeric_limits<double>::max();
for (int i = 0; i < src1_roi.rows; ++i) for (int i2 = 0; i2 < src1_roi.rows; ++i2)
for (int j = 0; j < src1_roi.cols; ++j) for (int j2 = 0; j2 < src1_roi.cols; ++j2)
{ {
signed char val = src1_roi.at<signed char>(i, j); signed char oneVal = src1_roi.at<signed char>(i2, j2);
unsigned char m = mask_roi.at<unsigned char>(i, j); unsigned char m = mask_roi.at<unsigned char>(i2, j2);
if (val < minVal && m) minVal = val; if (oneVal < minVal && m) minVal = oneVal;
if (val > maxVal && m) maxVal = val; if (oneVal > maxVal && m) maxVal = oneVal;
} }
} }
@ -796,29 +796,29 @@ OCL_TEST_P(MinMaxLoc, MAT)
double minVal, maxVal; double minVal, maxVal;
cv::Point minLoc, maxLoc; cv::Point minLoc, maxLoc;
int depth = src1.depth(); int oneDepth = src1.depth();
if (depth != CV_8S) if (oneDepth != CV_8S)
cv::minMaxLoc(src1_roi, &minVal, &maxVal, &minLoc, &maxLoc); cv::minMaxLoc(src1_roi, &minVal, &maxVal, &minLoc, &maxLoc);
else else
{ {
minVal = std::numeric_limits<double>::max(); minVal = std::numeric_limits<double>::max();
maxVal = -std::numeric_limits<double>::max(); maxVal = -std::numeric_limits<double>::max();
for (int i = 0; i < src1_roi.rows; ++i) for (int i2 = 0; i2 < src1_roi.rows; ++i2)
for (int j = 0; j < src1_roi.cols; ++j) for (int j2 = 0; j2 < src1_roi.cols; ++j2)
{ {
signed char val = src1_roi.at<signed char>(i, j); signed char oneVal = src1_roi.at<signed char>(i2, j2);
if (val < minVal) if (oneVal < minVal)
{ {
minVal = val; minVal = oneVal;
minLoc.x = j; minLoc.x = j2;
minLoc.y = i; minLoc.y = i2;
} }
if (val > maxVal) if (oneVal > maxVal)
{ {
maxVal = val; maxVal = oneVal;
maxLoc.x = j; maxLoc.x = j2;
maxLoc.y = i; maxLoc.y = i2;
} }
} }
} }
@ -828,7 +828,7 @@ OCL_TEST_P(MinMaxLoc, MAT)
cv::ocl::minMaxLoc(gsrc1_roi, &minVal_, &maxVal_, &minLoc_, &maxLoc_, cv::ocl::oclMat()); cv::ocl::minMaxLoc(gsrc1_roi, &minVal_, &maxVal_, &minLoc_, &maxLoc_, cv::ocl::oclMat());
double error0 = 0., error1 = 0., minlocVal = 0., minlocVal_ = 0., maxlocVal = 0., maxlocVal_ = 0.; double error0 = 0., error1 = 0., minlocVal = 0., minlocVal_ = 0., maxlocVal = 0., maxlocVal_ = 0.;
if (depth == 0) if (oneDepth == 0)
{ {
minlocVal = src1_roi.at<unsigned char>(minLoc); minlocVal = src1_roi.at<unsigned char>(minLoc);
minlocVal_ = src1_roi.at<unsigned char>(minLoc_); minlocVal_ = src1_roi.at<unsigned char>(minLoc_);
@ -837,7 +837,7 @@ OCL_TEST_P(MinMaxLoc, MAT)
error0 = ::abs(src1_roi.at<unsigned char>(minLoc_) - src1_roi.at<unsigned char>(minLoc)); error0 = ::abs(src1_roi.at<unsigned char>(minLoc_) - src1_roi.at<unsigned char>(minLoc));
error1 = ::abs(src1_roi.at<unsigned char>(maxLoc_) - src1_roi.at<unsigned char>(maxLoc)); error1 = ::abs(src1_roi.at<unsigned char>(maxLoc_) - src1_roi.at<unsigned char>(maxLoc));
} }
if (depth == 1) if (oneDepth == 1)
{ {
minlocVal = src1_roi.at<signed char>(minLoc); minlocVal = src1_roi.at<signed char>(minLoc);
minlocVal_ = src1_roi.at<signed char>(minLoc_); minlocVal_ = src1_roi.at<signed char>(minLoc_);
@ -846,7 +846,7 @@ OCL_TEST_P(MinMaxLoc, MAT)
error0 = ::abs(src1_roi.at<signed char>(minLoc_) - src1_roi.at<signed char>(minLoc)); error0 = ::abs(src1_roi.at<signed char>(minLoc_) - src1_roi.at<signed char>(minLoc));
error1 = ::abs(src1_roi.at<signed char>(maxLoc_) - src1_roi.at<signed char>(maxLoc)); error1 = ::abs(src1_roi.at<signed char>(maxLoc_) - src1_roi.at<signed char>(maxLoc));
} }
if (depth == 2) if (oneDepth == 2)
{ {
minlocVal = src1_roi.at<unsigned short>(minLoc); minlocVal = src1_roi.at<unsigned short>(minLoc);
minlocVal_ = src1_roi.at<unsigned short>(minLoc_); minlocVal_ = src1_roi.at<unsigned short>(minLoc_);
@ -855,7 +855,7 @@ OCL_TEST_P(MinMaxLoc, MAT)
error0 = ::abs(src1_roi.at<unsigned short>(minLoc_) - src1_roi.at<unsigned short>(minLoc)); error0 = ::abs(src1_roi.at<unsigned short>(minLoc_) - src1_roi.at<unsigned short>(minLoc));
error1 = ::abs(src1_roi.at<unsigned short>(maxLoc_) - src1_roi.at<unsigned short>(maxLoc)); error1 = ::abs(src1_roi.at<unsigned short>(maxLoc_) - src1_roi.at<unsigned short>(maxLoc));
} }
if (depth == 3) if (oneDepth == 3)
{ {
minlocVal = src1_roi.at<signed short>(minLoc); minlocVal = src1_roi.at<signed short>(minLoc);
minlocVal_ = src1_roi.at<signed short>(minLoc_); minlocVal_ = src1_roi.at<signed short>(minLoc_);
@ -864,7 +864,7 @@ OCL_TEST_P(MinMaxLoc, MAT)
error0 = ::abs(src1_roi.at<signed short>(minLoc_) - src1_roi.at<signed short>(minLoc)); error0 = ::abs(src1_roi.at<signed short>(minLoc_) - src1_roi.at<signed short>(minLoc));
error1 = ::abs(src1_roi.at<signed short>(maxLoc_) - src1_roi.at<signed short>(maxLoc)); error1 = ::abs(src1_roi.at<signed short>(maxLoc_) - src1_roi.at<signed short>(maxLoc));
} }
if (depth == 4) if (oneDepth == 4)
{ {
minlocVal = src1_roi.at<int>(minLoc); minlocVal = src1_roi.at<int>(minLoc);
minlocVal_ = src1_roi.at<int>(minLoc_); minlocVal_ = src1_roi.at<int>(minLoc_);
@ -873,7 +873,7 @@ OCL_TEST_P(MinMaxLoc, MAT)
error0 = ::abs(src1_roi.at<int>(minLoc_) - src1_roi.at<int>(minLoc)); error0 = ::abs(src1_roi.at<int>(minLoc_) - src1_roi.at<int>(minLoc));
error1 = ::abs(src1_roi.at<int>(maxLoc_) - src1_roi.at<int>(maxLoc)); error1 = ::abs(src1_roi.at<int>(maxLoc_) - src1_roi.at<int>(maxLoc));
} }
if (depth == 5) if (oneDepth == 5)
{ {
minlocVal = src1_roi.at<float>(minLoc); minlocVal = src1_roi.at<float>(minLoc);
minlocVal_ = src1_roi.at<float>(minLoc_); minlocVal_ = src1_roi.at<float>(minLoc_);
@ -882,7 +882,7 @@ OCL_TEST_P(MinMaxLoc, MAT)
error0 = ::abs(src1_roi.at<float>(minLoc_) - src1_roi.at<float>(minLoc)); error0 = ::abs(src1_roi.at<float>(minLoc_) - src1_roi.at<float>(minLoc));
error1 = ::abs(src1_roi.at<float>(maxLoc_) - src1_roi.at<float>(maxLoc)); error1 = ::abs(src1_roi.at<float>(maxLoc_) - src1_roi.at<float>(maxLoc));
} }
if (depth == 6) if (oneDepth == 6)
{ {
minlocVal = src1_roi.at<double>(minLoc); minlocVal = src1_roi.at<double>(minLoc);
minlocVal_ = src1_roi.at<double>(minLoc_); minlocVal_ = src1_roi.at<double>(minLoc_);
@ -909,29 +909,29 @@ OCL_TEST_P(MinMaxLoc, MASK)
random_roi(); random_roi();
double minVal, maxVal; double minVal, maxVal;
cv::Point minLoc, maxLoc; cv::Point minLoc, maxLoc;
int depth = src1.depth(); int oneDepth = src1.depth();
if (depth != CV_8S) if (oneDepth != CV_8S)
cv::minMaxLoc(src1_roi, &minVal, &maxVal, &minLoc, &maxLoc, mask_roi); cv::minMaxLoc(src1_roi, &minVal, &maxVal, &minLoc, &maxLoc, mask_roi);
else else
{ {
minVal = std::numeric_limits<double>::max(); minVal = std::numeric_limits<double>::max();
maxVal = -std::numeric_limits<double>::max(); maxVal = -std::numeric_limits<double>::max();
for (int i = 0; i < src1_roi.rows; ++i) for (int i2 = 0; i2 < src1_roi.rows; ++i2)
for (int j = 0; j < src1_roi.cols; ++j) for (int j2 = 0; j2 < src1_roi.cols; ++j2)
{ {
signed char val = src1_roi.at<signed char>(i, j); signed char oneVal = src1_roi.at<signed char>(i2, j2);
unsigned char m = mask_roi.at<unsigned char>(i , j); unsigned char m = mask_roi.at<unsigned char>(i2 , j2);
if (val < minVal && m) if (oneVal < minVal && m)
{ {
minVal = val; minVal = oneVal;
minLoc.x = j; minLoc.x = j2;
minLoc.y = i; minLoc.y = i2;
} }
if (val > maxVal && m) if (oneVal > maxVal && m)
{ {
maxVal = val; maxVal = oneVal;
maxLoc.x = j; maxLoc.x = j2;
maxLoc.y = i; maxLoc.y = i2;
} }
} }
} }
@ -942,7 +942,7 @@ OCL_TEST_P(MinMaxLoc, MASK)
double error0 = 0., error1 = 0., minlocVal = 0., minlocVal_ = 0., maxlocVal = 0., maxlocVal_ = 0.; double error0 = 0., error1 = 0., minlocVal = 0., minlocVal_ = 0., maxlocVal = 0., maxlocVal_ = 0.;
if (minLoc_.x == -1 || minLoc_.y == -1 || maxLoc_.x == -1 || maxLoc_.y == -1) continue; if (minLoc_.x == -1 || minLoc_.y == -1 || maxLoc_.x == -1 || maxLoc_.y == -1) continue;
if (depth == 0) if (oneDepth == 0)
{ {
minlocVal = src1_roi.at<unsigned char>(minLoc); minlocVal = src1_roi.at<unsigned char>(minLoc);
minlocVal_ = src1_roi.at<unsigned char>(minLoc_); minlocVal_ = src1_roi.at<unsigned char>(minLoc_);
@ -951,7 +951,7 @@ OCL_TEST_P(MinMaxLoc, MASK)
error0 = ::abs(src1_roi.at<unsigned char>(minLoc_) - src1_roi.at<unsigned char>(minLoc)); error0 = ::abs(src1_roi.at<unsigned char>(minLoc_) - src1_roi.at<unsigned char>(minLoc));
error1 = ::abs(src1_roi.at<unsigned char>(maxLoc_) - src1_roi.at<unsigned char>(maxLoc)); error1 = ::abs(src1_roi.at<unsigned char>(maxLoc_) - src1_roi.at<unsigned char>(maxLoc));
} }
if (depth == 1) if (oneDepth == 1)
{ {
minlocVal = src1_roi.at<signed char>(minLoc); minlocVal = src1_roi.at<signed char>(minLoc);
minlocVal_ = src1_roi.at<signed char>(minLoc_); minlocVal_ = src1_roi.at<signed char>(minLoc_);
@ -960,7 +960,7 @@ OCL_TEST_P(MinMaxLoc, MASK)
error0 = ::abs(src1_roi.at<signed char>(minLoc_) - src1_roi.at<signed char>(minLoc)); error0 = ::abs(src1_roi.at<signed char>(minLoc_) - src1_roi.at<signed char>(minLoc));
error1 = ::abs(src1_roi.at<signed char>(maxLoc_) - src1_roi.at<signed char>(maxLoc)); error1 = ::abs(src1_roi.at<signed char>(maxLoc_) - src1_roi.at<signed char>(maxLoc));
} }
if (depth == 2) if (oneDepth == 2)
{ {
minlocVal = src1_roi.at<unsigned short>(minLoc); minlocVal = src1_roi.at<unsigned short>(minLoc);
minlocVal_ = src1_roi.at<unsigned short>(minLoc_); minlocVal_ = src1_roi.at<unsigned short>(minLoc_);
@ -969,7 +969,7 @@ OCL_TEST_P(MinMaxLoc, MASK)
error0 = ::abs(src1_roi.at<unsigned short>(minLoc_) - src1_roi.at<unsigned short>(minLoc)); error0 = ::abs(src1_roi.at<unsigned short>(minLoc_) - src1_roi.at<unsigned short>(minLoc));
error1 = ::abs(src1_roi.at<unsigned short>(maxLoc_) - src1_roi.at<unsigned short>(maxLoc)); error1 = ::abs(src1_roi.at<unsigned short>(maxLoc_) - src1_roi.at<unsigned short>(maxLoc));
} }
if (depth == 3) if (oneDepth == 3)
{ {
minlocVal = src1_roi.at<signed short>(minLoc); minlocVal = src1_roi.at<signed short>(minLoc);
minlocVal_ = src1_roi.at<signed short>(minLoc_); minlocVal_ = src1_roi.at<signed short>(minLoc_);
@ -978,7 +978,7 @@ OCL_TEST_P(MinMaxLoc, MASK)
error0 = ::abs(src1_roi.at<signed short>(minLoc_) - src1_roi.at<signed short>(minLoc)); error0 = ::abs(src1_roi.at<signed short>(minLoc_) - src1_roi.at<signed short>(minLoc));
error1 = ::abs(src1_roi.at<signed short>(maxLoc_) - src1_roi.at<signed short>(maxLoc)); error1 = ::abs(src1_roi.at<signed short>(maxLoc_) - src1_roi.at<signed short>(maxLoc));
} }
if (depth == 4) if (oneDepth == 4)
{ {
minlocVal = src1_roi.at<int>(minLoc); minlocVal = src1_roi.at<int>(minLoc);
minlocVal_ = src1_roi.at<int>(minLoc_); minlocVal_ = src1_roi.at<int>(minLoc_);
@ -987,7 +987,7 @@ OCL_TEST_P(MinMaxLoc, MASK)
error0 = ::abs(src1_roi.at<int>(minLoc_) - src1_roi.at<int>(minLoc)); error0 = ::abs(src1_roi.at<int>(minLoc_) - src1_roi.at<int>(minLoc));
error1 = ::abs(src1_roi.at<int>(maxLoc_) - src1_roi.at<int>(maxLoc)); error1 = ::abs(src1_roi.at<int>(maxLoc_) - src1_roi.at<int>(maxLoc));
} }
if (depth == 5) if (oneDepth == 5)
{ {
minlocVal = src1_roi.at<float>(minLoc); minlocVal = src1_roi.at<float>(minLoc);
minlocVal_ = src1_roi.at<float>(minLoc_); minlocVal_ = src1_roi.at<float>(minLoc_);
@ -996,7 +996,7 @@ OCL_TEST_P(MinMaxLoc, MASK)
error0 = ::abs(src1_roi.at<float>(minLoc_) - src1_roi.at<float>(minLoc)); error0 = ::abs(src1_roi.at<float>(minLoc_) - src1_roi.at<float>(minLoc));
error1 = ::abs(src1_roi.at<float>(maxLoc_) - src1_roi.at<float>(maxLoc)); error1 = ::abs(src1_roi.at<float>(maxLoc_) - src1_roi.at<float>(maxLoc));
} }
if (depth == 6) if (oneDepth == 6)
{ {
minlocVal = src1_roi.at<double>(minLoc); minlocVal = src1_roi.at<double>(minLoc);
minlocVal_ = src1_roi.at<double>(minLoc_); minlocVal_ = src1_roi.at<double>(minLoc_);

View File

@ -77,10 +77,10 @@ OCL_TEST_P(Canny, Accuracy)
cv::ocl::oclMat edges; cv::ocl::oclMat edges;
cv::ocl::Canny(ocl_img, edges, low_thresh, high_thresh, apperture_size, useL2gradient); cv::ocl::Canny(ocl_img, edges, low_thresh, high_thresh, apperture_size, useL2gradient);
cv::Mat edges_gold; cv::Mat local_edges_gold;
cv::Canny(img, edges_gold, low_thresh, high_thresh, apperture_size, useL2gradient); cv::Canny(img, local_edges_gold, low_thresh, high_thresh, apperture_size, useL2gradient);
EXPECT_MAT_SIMILAR(edges_gold, edges, 1e-2); EXPECT_MAT_SIMILAR(local_edges_gold, edges, 1e-2);
} }
INSTANTIATE_TEST_CASE_P(OCL_ImgProc, Canny, testing::Combine( INSTANTIATE_TEST_CASE_P(OCL_ImgProc, Canny, testing::Combine(

View File

@ -133,10 +133,10 @@ OCL_TEST_P(Kmeans, Mat){
// verify lables with ground truth resutls // verify lables with ground truth resutls
int label = labels.at<int>(row_idx); int label = labels.at<int>(row_idx);
int header_label = dd_labels.at<int>(row_idx); int header_label = dd_labels.at<int>(row_idx);
for(int j = 0; (j < MHEIGHT/K)||(i == K-1 && j < MHEIGHT/K+MHEIGHT%K); j++) for(int j2 = 0; (j2 < MHEIGHT/K)||(i == K-1 && j2 < MHEIGHT/K+MHEIGHT%K); j2++)
{ {
ASSERT_NEAR(labels.at<int>(row_idx+j), label, 0); ASSERT_NEAR(labels.at<int>(row_idx+j2), label, 0);
ASSERT_NEAR(dd_labels.at<int>(row_idx+j), header_label, 0); ASSERT_NEAR(dd_labels.at<int>(row_idx+j2), header_label, 0);
} }
// verify centers // verify centers

View File

@ -142,12 +142,12 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int)
kernel_type = GET_PARAM(0); kernel_type = GET_PARAM(0);
svm_type = GET_PARAM(1); svm_type = GET_PARAM(1);
K = GET_PARAM(2); K = GET_PARAM(2);
cv::Size size = cv::Size(MWIDTH, MHEIGHT); cv::Size sz = cv::Size(MWIDTH, MHEIGHT);
src.create(size, CV_32FC1); src.create(sz, CV_32FC1);
labels.create(1, size.height, CV_32SC1); labels.create(1, sz.height, CV_32SC1);
int row_idx = 0; int row_idx = 0;
const int max_number = size.height / K - 1; const int max_number = sz.height / K - 1;
CV_Assert(K <= size.height); CV_Assert(K <= sz.height);
for(int i = 0; i < K; i++ ) for(int i = 0; i < K; i++ )
{ {
Mat center_row_header = src.row(row_idx); Mat center_row_header = src.row(row_idx);
@ -159,7 +159,7 @@ PARAM_TEST_CASE(SVM_OCL, int, int, int)
} }
labels.at<int>(0, row_idx) = i; labels.at<int>(0, row_idx) = i;
for(int j = 0; (j < max_number) || for(int j = 0; (j < max_number) ||
(i == K - 1 && j < max_number + size.height % K); j ++) (i == K - 1 && j < max_number + sz.height % K); j ++)
{ {
Mat cur_row_header = src.row(row_idx + 1 + j); Mat cur_row_header = src.row(row_idx + 1 + j);
center_row_header.copyTo(cur_row_header); center_row_header.copyTo(cur_row_header);

View File

@ -1,6 +1,6 @@
#if defined(_MSC_VER) && (_MSC_VER >= 1800) #if defined(_MSC_VER) && (_MSC_VER >= 1800)
// eliminating duplicated round() declaration // eliminating duplicated round() declaration
#define HAVE_ROUND #define HAVE_ROUND 1
#endif #endif
#include <Python.h> #include <Python.h>

View File

@ -96,7 +96,7 @@ void btv_l1_device_ocl::buildMotionMaps(const oclMat& forwardMotionX, const oclM
Context* clCxt = Context::getContext(); Context* clCxt = Context::getContext();
size_t local_thread[] = {32, 8, 1}; size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {forwardMapX.cols, forwardMapX.rows, 1}; size_t global_thread[] = {(size_t)forwardMapX.cols, (size_t)forwardMapX.rows, 1};
int forwardMotionX_step = (int)(forwardMotionX.step/forwardMotionX.elemSize()); int forwardMotionX_step = (int)(forwardMotionX.step/forwardMotionX.elemSize());
int forwardMotionY_step = (int)(forwardMotionY.step/forwardMotionY.elemSize()); int forwardMotionY_step = (int)(forwardMotionY.step/forwardMotionY.elemSize());
@ -139,7 +139,7 @@ void btv_l1_device_ocl::upscale(const oclMat& src, oclMat& dst, int scale)
Context* clCxt = Context::getContext(); Context* clCxt = Context::getContext();
size_t local_thread[] = {32, 8, 1}; size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {src.cols, src.rows, 1}; size_t global_thread[] = {(size_t)src.cols, (size_t)src.rows, 1};
int src_step = (int)(src.step/src.elemSize()); int src_step = (int)(src.step/src.elemSize());
int dst_step = (int)(dst.step/dst.elemSize()); int dst_step = (int)(dst.step/dst.elemSize());
@ -175,7 +175,7 @@ void btv_l1_device_ocl::diffSign(const oclMat& src1, const oclMat& src2, oclMat&
int dst_step = (int)(dst_.step/dst_.elemSize()); int dst_step = (int)(dst_.step/dst_.elemSize());
size_t local_thread[] = {32, 8, 1}; size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {src1_.cols, src1_.rows, 1}; size_t global_thread[] = {(size_t)src1_.cols, (size_t)src1_.rows, 1};
String kernel_name = "diffSignKernel"; String kernel_name = "diffSignKernel";
vector< pair<size_t, const void*> > args; vector< pair<size_t, const void*> > args;
@ -201,7 +201,7 @@ void btv_l1_device_ocl::calcBtvRegularization(const oclMat& src, oclMat& dst, in
oclMat dst_ = dst.reshape(1); oclMat dst_ = dst.reshape(1);
size_t local_thread[] = {32, 8, 1}; size_t local_thread[] = {32, 8, 1};
size_t global_thread[] = {src.cols, src.rows, 1}; size_t global_thread[] = {(size_t)src.cols, (size_t)src.rows, 1};
int src_step = (int)(src_.step/src_.elemSize()); int src_step = (int)(src_.step/src_.elemSize());
int dst_step = (int)(dst_.step/dst_.elemSize()); int dst_step = (int)(dst_.step/dst_.elemSize());

View File

@ -226,11 +226,11 @@ namespace
static const double maxVals[] = static const double maxVals[] =
{ {
numeric_limits<uchar>::max(), (double)numeric_limits<uchar>::max(),
numeric_limits<schar>::max(), (double)numeric_limits<schar>::max(),
numeric_limits<ushort>::max(), (double)numeric_limits<ushort>::max(),
numeric_limits<short>::max(), (double)numeric_limits<short>::max(),
numeric_limits<int>::max(), (double)numeric_limits<int>::max(),
1.0, 1.0,
1.0, 1.0,
}; };
@ -329,11 +329,11 @@ namespace
static const double maxVals[] = static const double maxVals[] =
{ {
std::numeric_limits<uchar>::max(), (double)std::numeric_limits<uchar>::max(),
std::numeric_limits<schar>::max(), (double)std::numeric_limits<schar>::max(),
std::numeric_limits<ushort>::max(), (double)std::numeric_limits<ushort>::max(),
std::numeric_limits<short>::max(), (double)std::numeric_limits<short>::max(),
std::numeric_limits<int>::max(), (double)std::numeric_limits<int>::max(),
1.0, 1.0,
1.0, 1.0,
}; };

View File

@ -73,11 +73,6 @@ namespace perf
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name #define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name
#define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name #define DEF_PARAM_TEST_1(name, param_type) typedef ::perf::TestBaseWithParam< param_type > name
DEF_PARAM_TEST_1(Sz, cv::Size);
typedef perf::Size_MatType Sz_Type;
DEF_PARAM_TEST(Sz_Depth, cv::Size, perf::MatDepth);
DEF_PARAM_TEST(Sz_Depth_Cn, cv::Size, perf::MatDepth, MatCn);
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::sz720p, perf::szSXGA, perf::sz1080p) #define GPU_TYPICAL_MAT_SIZES testing::Values(perf::sz720p, perf::szSXGA, perf::sz1080p)
#define FAIL_NO_CPU() FAIL() << "No such CPU implementation analogy" #define FAIL_NO_CPU() FAIL() << "No such CPU implementation analogy"