Changed tests for support intersection between expected and actual lists of lines.
This commit is contained in:
@@ -8,6 +8,11 @@ using namespace perf;
|
|||||||
using std::tr1::make_tuple;
|
using std::tr1::make_tuple;
|
||||||
using std::tr1::get;
|
using std::tr1::get;
|
||||||
|
|
||||||
|
bool polarComp(Vec2f a, Vec2f b)
|
||||||
|
{
|
||||||
|
return a[1] > b[1] || (a[1] == b[1] && a[0] < b[0]);
|
||||||
|
}
|
||||||
|
|
||||||
typedef std::tr1::tuple<string, double, double, int> Image_RhoStep_ThetaStep_Threshold_t;
|
typedef std::tr1::tuple<string, double, double, int> Image_RhoStep_ThetaStep_Threshold_t;
|
||||||
typedef perf::TestBaseWithParam<Image_RhoStep_ThetaStep_Threshold_t> Image_RhoStep_ThetaStep_Threshold;
|
typedef perf::TestBaseWithParam<Image_RhoStep_ThetaStep_Threshold_t> Image_RhoStep_ThetaStep_Threshold;
|
||||||
|
|
||||||
@@ -36,6 +41,6 @@ PERF_TEST_P(Image_RhoStep_ThetaStep_Threshold, HoughLines,
|
|||||||
|
|
||||||
TEST_CYCLE() HoughLines(image, lines, rhoStep, thetaStep, threshold);
|
TEST_CYCLE() HoughLines(image, lines, rhoStep, thetaStep, threshold);
|
||||||
|
|
||||||
transpose(lines, lines);
|
EXPECT_FALSE(lines.empty());
|
||||||
SANITY_CHECK(lines);
|
SANITY_CHECK_NOTHING();
|
||||||
}
|
}
|
||||||
|
@@ -12,6 +12,7 @@
|
|||||||
//
|
//
|
||||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||||
|
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
|
||||||
// Third party copyrights are property of their respective owners.
|
// Third party copyrights are property of their respective owners.
|
||||||
//
|
//
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
@@ -97,7 +98,7 @@ HoughLinesStandard( const Mat& img, float rho, float theta,
|
|||||||
int numangle = cvRound((max_theta - min_theta) / theta);
|
int numangle = cvRound((max_theta - min_theta) / theta);
|
||||||
int numrho = cvRound(((width + height) * 2 + 1) / rho);
|
int numrho = cvRound(((width + height) * 2 + 1) / rho);
|
||||||
|
|
||||||
#if (defined(HAVE_IPP) && IPP_VERSION_MAJOR >= 8)
|
#if (defined(HAVE_IPP) && !defined(HAVE_IPP_ICV_ONLY) && IPP_VERSION_X100 >= 801)
|
||||||
IppiSize srcSize = { width, height };
|
IppiSize srcSize = { width, height };
|
||||||
IppPointPolar delta = { rho, theta };
|
IppPointPolar delta = { rho, theta };
|
||||||
IppPointPolar dstRoi[2] = {{(Ipp32f) -(width + height), (Ipp32f) min_theta},{(Ipp32f) (width + height), (Ipp32f) max_theta}};
|
IppPointPolar dstRoi[2] = {{(Ipp32f) -(width + height), (Ipp32f) min_theta},{(Ipp32f) (width + height), (Ipp32f) max_theta}};
|
||||||
|
@@ -12,6 +12,7 @@
|
|||||||
//
|
//
|
||||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||||
|
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
|
||||||
// Third party copyrights are property of their respective owners.
|
// Third party copyrights are property of their respective owners.
|
||||||
//
|
//
|
||||||
// Redistribution and use in source and binary forms, with or without modification,
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
@@ -45,107 +46,173 @@
|
|||||||
using namespace cv;
|
using namespace cv;
|
||||||
using namespace std;
|
using namespace std;
|
||||||
|
|
||||||
class CV_HoughLinesTest : public cvtest::BaseTest
|
template<typename T>
|
||||||
|
struct SimilarWith
|
||||||
|
{
|
||||||
|
T value;
|
||||||
|
double eps;
|
||||||
|
double rho_eps;
|
||||||
|
SimilarWith<T>(T val, double e, double r_e): value(val), eps(e), rho_eps(r_e) { };
|
||||||
|
bool operator()(T other);
|
||||||
|
};
|
||||||
|
|
||||||
|
template<>
|
||||||
|
bool SimilarWith<Vec2f>::operator()(Vec2f other)
|
||||||
|
{
|
||||||
|
return abs(other[0] - value[0]) < rho_eps && abs(other[1] - value[1]) < eps;
|
||||||
|
}
|
||||||
|
|
||||||
|
template<>
|
||||||
|
bool SimilarWith<Vec4i>::operator()(Vec4i other)
|
||||||
|
{
|
||||||
|
return abs(other[0] - value[0]) < eps && abs(other[1] - value[1]) < eps && abs(other[2] - value[2]) < eps && abs(other[2] - value[2]) < eps;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
int countMatIntersection(Mat expect, Mat actual, double eps, double rho_eps)
|
||||||
|
{
|
||||||
|
int count = 0;
|
||||||
|
if (!expect.empty() && !actual.empty())
|
||||||
|
{
|
||||||
|
for (MatIterator_<T> it=expect.begin<T>(); it!=expect.end<T>(); it++)
|
||||||
|
{
|
||||||
|
MatIterator_<T> f = std::find_if(actual.begin<T>(), actual.end<T>(), SimilarWith<T>(*it, eps, rho_eps));
|
||||||
|
if (f != actual.end<T>())
|
||||||
|
count++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return count;
|
||||||
|
}
|
||||||
|
|
||||||
|
String getTestCaseName(String filename)
|
||||||
|
{
|
||||||
|
string temp(filename);
|
||||||
|
size_t pos = temp.find_first_of("\\/.");
|
||||||
|
while ( pos != string::npos ) {
|
||||||
|
temp.replace( pos, 1, "_" );
|
||||||
|
pos = temp.find_first_of("\\/.");
|
||||||
|
}
|
||||||
|
return String(temp);
|
||||||
|
}
|
||||||
|
|
||||||
|
class BaseHoughLineTest
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
enum {STANDART = 0, PROBABILISTIC};
|
enum {STANDART = 0, PROBABILISTIC};
|
||||||
CV_HoughLinesTest() {}
|
|
||||||
~CV_HoughLinesTest() {}
|
|
||||||
protected:
|
protected:
|
||||||
void run_test(int type);
|
void run_test(int type);
|
||||||
|
|
||||||
|
string picture_name;
|
||||||
|
double rhoStep;
|
||||||
|
double thetaStep;
|
||||||
|
int threshold;
|
||||||
|
int minLineLength;
|
||||||
|
int maxGap;
|
||||||
};
|
};
|
||||||
|
|
||||||
class CV_StandartHoughLinesTest : public CV_HoughLinesTest
|
typedef std::tr1::tuple<string, double, double, int> Image_RhoStep_ThetaStep_Threshold_t;
|
||||||
|
class StandartHoughLinesTest : public BaseHoughLineTest, public testing::TestWithParam<Image_RhoStep_ThetaStep_Threshold_t>
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
CV_StandartHoughLinesTest() {}
|
StandartHoughLinesTest()
|
||||||
~CV_StandartHoughLinesTest() {}
|
{
|
||||||
virtual void run(int);
|
picture_name = get<0>(GetParam());
|
||||||
|
rhoStep = get<1>(GetParam());
|
||||||
|
thetaStep = get<2>(GetParam());
|
||||||
|
threshold = get<3>(GetParam());
|
||||||
|
minLineLength = 0;
|
||||||
|
maxGap = 0;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
class CV_ProbabilisticHoughLinesTest : public CV_HoughLinesTest
|
typedef std::tr1::tuple<string, double, double, int, int, int> Image_RhoStep_ThetaStep_Threshold_MinLine_MaxGap_t;
|
||||||
|
class ProbabilisticHoughLinesTest : public BaseHoughLineTest, public testing::TestWithParam<Image_RhoStep_ThetaStep_Threshold_MinLine_MaxGap_t>
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
CV_ProbabilisticHoughLinesTest() {}
|
ProbabilisticHoughLinesTest()
|
||||||
~CV_ProbabilisticHoughLinesTest() {}
|
{
|
||||||
virtual void run(int);
|
picture_name = get<0>(GetParam());
|
||||||
|
rhoStep = get<1>(GetParam());
|
||||||
|
thetaStep = get<2>(GetParam());
|
||||||
|
threshold = get<3>(GetParam());
|
||||||
|
minLineLength = get<4>(GetParam());
|
||||||
|
maxGap = get<5>(GetParam());
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
void CV_StandartHoughLinesTest::run(int)
|
void BaseHoughLineTest::run_test(int type)
|
||||||
|
{
|
||||||
|
string filename = cvtest::TS::ptr()->get_data_path() + picture_name;
|
||||||
|
Mat src = imread(filename, IMREAD_GRAYSCALE);
|
||||||
|
EXPECT_FALSE(src.empty()) << "Invalid test image: " << filename;
|
||||||
|
|
||||||
|
string xml;
|
||||||
|
if (type == STANDART)
|
||||||
|
xml = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/HoughLines.xml";
|
||||||
|
else if (type == PROBABILISTIC)
|
||||||
|
xml = string(cvtest::TS::ptr()->get_data_path()) + "imgproc/HoughLinesP.xml";
|
||||||
|
|
||||||
|
Mat dst;
|
||||||
|
Canny(src, dst, 50, 200, 3);
|
||||||
|
EXPECT_FALSE(dst.empty()) << "Failed Canny edge detector";
|
||||||
|
|
||||||
|
Mat lines;
|
||||||
|
if (type == STANDART)
|
||||||
|
HoughLines(dst, lines, rhoStep, thetaStep, threshold, 0, 0);
|
||||||
|
else if (type == PROBABILISTIC)
|
||||||
|
HoughLinesP(dst, lines, rhoStep, thetaStep, threshold, minLineLength, maxGap);
|
||||||
|
|
||||||
|
String test_case_name = format("lines_%s_%.0f_%.2f_%d_%d_%d", picture_name.c_str(), rhoStep, thetaStep,
|
||||||
|
threshold, minLineLength, maxGap);
|
||||||
|
test_case_name = getTestCaseName(test_case_name);
|
||||||
|
|
||||||
|
FileStorage fs(xml, FileStorage::READ);
|
||||||
|
FileNode node = fs[test_case_name];
|
||||||
|
if (node.empty())
|
||||||
|
{
|
||||||
|
fs.release();
|
||||||
|
fs.open(xml, FileStorage::APPEND);
|
||||||
|
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
||||||
|
fs << test_case_name << lines;
|
||||||
|
fs.release();
|
||||||
|
fs.open(xml, FileStorage::READ);
|
||||||
|
EXPECT_TRUE(fs.isOpened()) << "Cannot open sanity data file: " << xml;
|
||||||
|
}
|
||||||
|
|
||||||
|
Mat exp_lines;
|
||||||
|
read( fs[test_case_name], exp_lines, Mat() );
|
||||||
|
fs.release();
|
||||||
|
|
||||||
|
float eps = 1e-2f;
|
||||||
|
int count = -1;
|
||||||
|
if (type == STANDART)
|
||||||
|
count = countMatIntersection<Vec2f>(exp_lines, lines, thetaStep + FLT_EPSILON, rhoStep + FLT_EPSILON);
|
||||||
|
else if (type == PROBABILISTIC)
|
||||||
|
count = countMatIntersection<Vec4i>(exp_lines, lines, thetaStep, 0.0);
|
||||||
|
|
||||||
|
EXPECT_GE( count, (int) (exp_lines.total() * 0.8) );
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_P(StandartHoughLinesTest, regression)
|
||||||
{
|
{
|
||||||
run_test(STANDART);
|
run_test(STANDART);
|
||||||
}
|
}
|
||||||
|
|
||||||
void CV_ProbabilisticHoughLinesTest::run(int)
|
TEST_P(ProbabilisticHoughLinesTest, regression)
|
||||||
{
|
{
|
||||||
run_test(PROBABILISTIC);
|
run_test(PROBABILISTIC);
|
||||||
}
|
}
|
||||||
|
|
||||||
void CV_HoughLinesTest::run_test(int type)
|
INSTANTIATE_TEST_CASE_P( ImgProc, StandartHoughLinesTest, testing::Combine(testing::Values( "shared/pic5.png", "../stitching/a1.png" ),
|
||||||
{
|
testing::Values( 1, 10 ),
|
||||||
Mat src = imread(string(ts->get_data_path()) + "shared/pic1.png");
|
testing::Values( 0.01, 0.1 ),
|
||||||
if (src.empty())
|
testing::Values( 100, 200 )
|
||||||
{
|
));
|
||||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
string xml;
|
INSTANTIATE_TEST_CASE_P( ImgProc, ProbabilisticHoughLinesTest, testing::Combine(testing::Values( "shared/pic5.png", "shared/pic1.png" ),
|
||||||
if (type == STANDART)
|
testing::Values( 5, 10 ),
|
||||||
xml = string(ts->get_data_path()) + "imgproc/HoughLines.xml";
|
testing::Values( 0.01, 0.1 ),
|
||||||
else if (type == PROBABILISTIC)
|
testing::Values( 75, 150 ),
|
||||||
xml = string(ts->get_data_path()) + "imgproc/HoughLinesP.xml";
|
testing::Values( 0, 10 ),
|
||||||
else
|
testing::Values( 0, 4 )
|
||||||
{
|
));
|
||||||
ts->printf(cvtest::TS::LOG, "Error: unknown HoughLines algorithm type.\n");
|
|
||||||
ts->set_failed_test_info(cvtest::TS::FAIL_GENERIC);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
Mat dst;
|
|
||||||
Canny(src, dst, 50, 200, 3);
|
|
||||||
|
|
||||||
Mat lines;
|
|
||||||
if (type == STANDART)
|
|
||||||
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0);
|
|
||||||
else if (type == PROBABILISTIC)
|
|
||||||
HoughLinesP(dst, lines, 1, CV_PI/180, 100, 0, 0);
|
|
||||||
|
|
||||||
FileStorage fs(xml, FileStorage::READ);
|
|
||||||
if (!fs.isOpened())
|
|
||||||
{
|
|
||||||
fs.open(xml, FileStorage::WRITE);
|
|
||||||
if (!fs.isOpened())
|
|
||||||
{
|
|
||||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
fs << "exp_lines" << lines;
|
|
||||||
fs.release();
|
|
||||||
fs.open(xml, FileStorage::READ);
|
|
||||||
if (!fs.isOpened())
|
|
||||||
{
|
|
||||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
Mat exp_lines;
|
|
||||||
read( fs["exp_lines"], exp_lines, Mat() );
|
|
||||||
fs.release();
|
|
||||||
|
|
||||||
if( exp_lines.size != lines.size )
|
|
||||||
transpose(lines, lines);
|
|
||||||
|
|
||||||
if ( exp_lines.size != lines.size || cvtest::norm(exp_lines, lines, NORM_INF) > 1e-4 )
|
|
||||||
{
|
|
||||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
ts->set_failed_test_info(cvtest::TS::OK);
|
|
||||||
}
|
|
||||||
|
|
||||||
TEST(Imgproc_HoughLines, regression) { CV_StandartHoughLinesTest test; test.safe_run(); }
|
|
||||||
|
|
||||||
TEST(Imgproc_HoughLinesP, regression) { CV_ProbabilisticHoughLinesTest test; test.safe_run(); }
|
|
||||||
|
Reference in New Issue
Block a user