Warning fixes continued
This commit is contained in:
@@ -63,48 +63,48 @@ private:
|
||||
GSD_INTENSITY_LT = 15,
|
||||
GSD_INTENSITY_UT = 250
|
||||
};
|
||||
|
||||
|
||||
class CV_EXPORTS Histogram
|
||||
{
|
||||
private:
|
||||
enum {
|
||||
HistogramSize = (GSD_HUE_UT - GSD_HUE_LT + 1)
|
||||
};
|
||||
|
||||
|
||||
protected:
|
||||
int findCoverageIndex(double surfaceToCover, int defaultValue = 0);
|
||||
|
||||
|
||||
public:
|
||||
CvHistogram *fHistogram;
|
||||
Histogram();
|
||||
virtual ~Histogram();
|
||||
|
||||
|
||||
void findCurveThresholds(int &x1, int &x2, double percent = 0.05);
|
||||
void mergeWith(Histogram *source, double weight);
|
||||
};
|
||||
|
||||
|
||||
int nStartCounter, nFrameCount, nSkinHueLowerBound, nSkinHueUpperBound, nMorphingMethod, nSamplingDivider;
|
||||
double fHistogramMergeFactor, fHuePercentCovered;
|
||||
Histogram histogramHueMotion, skinHueHistogram;
|
||||
IplImage *imgHueFrame, *imgSaturationFrame, *imgLastGrayFrame, *imgMotionFrame, *imgFilteredFrame;
|
||||
IplImage *imgShrinked, *imgTemp, *imgGrayFrame, *imgHSVFrame;
|
||||
|
||||
|
||||
protected:
|
||||
void initData(IplImage *src, int widthDivider, int heightDivider);
|
||||
void adaptiveFilter();
|
||||
|
||||
|
||||
public:
|
||||
|
||||
|
||||
enum {
|
||||
MORPHING_METHOD_NONE = 0,
|
||||
MORPHING_METHOD_ERODE = 1,
|
||||
MORPHING_METHOD_ERODE_ERODE = 2,
|
||||
MORPHING_METHOD_ERODE_DILATE = 3
|
||||
};
|
||||
|
||||
|
||||
CvAdaptiveSkinDetector(int samplingDivider = 1, int morphingMethod = MORPHING_METHOD_NONE);
|
||||
virtual ~CvAdaptiveSkinDetector();
|
||||
|
||||
|
||||
virtual void process(IplImage *inputBGRImage, IplImage *outputHueMask);
|
||||
};
|
||||
|
||||
@@ -116,7 +116,7 @@ public:
|
||||
class CV_EXPORTS CvFuzzyPoint {
|
||||
public:
|
||||
double x, y, value;
|
||||
|
||||
|
||||
CvFuzzyPoint(double _x, double _y);
|
||||
};
|
||||
|
||||
@@ -124,13 +124,13 @@ class CV_EXPORTS CvFuzzyCurve {
|
||||
private:
|
||||
std::vector<CvFuzzyPoint> points;
|
||||
double value, centre;
|
||||
|
||||
|
||||
bool between(double x, double x1, double x2);
|
||||
|
||||
|
||||
public:
|
||||
CvFuzzyCurve();
|
||||
~CvFuzzyCurve();
|
||||
|
||||
|
||||
void setCentre(double _centre);
|
||||
double getCentre();
|
||||
void clear();
|
||||
@@ -143,7 +143,7 @@ public:
|
||||
class CV_EXPORTS CvFuzzyFunction {
|
||||
public:
|
||||
std::vector<CvFuzzyCurve> curves;
|
||||
|
||||
|
||||
CvFuzzyFunction();
|
||||
~CvFuzzyFunction();
|
||||
void addCurve(CvFuzzyCurve *curve, double value = 0);
|
||||
@@ -186,7 +186,7 @@ private:
|
||||
FuzzyResizer();
|
||||
int calcOutput(double edgeDensity, double density);
|
||||
};
|
||||
|
||||
|
||||
class SearchWindow
|
||||
{
|
||||
public:
|
||||
@@ -200,7 +200,7 @@ private:
|
||||
double density;
|
||||
unsigned int depthLow, depthHigh;
|
||||
int verticalEdgeLeft, verticalEdgeRight, horizontalEdgeTop, horizontalEdgeBottom;
|
||||
|
||||
|
||||
SearchWindow();
|
||||
~SearchWindow();
|
||||
void setSize(int _x, int _y, int _width, int _height);
|
||||
@@ -212,7 +212,7 @@ private:
|
||||
void getResizeAttribsEdgeDensityFuzzy(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
|
||||
bool meanShift(IplImage *maskImage, IplImage *depthMap, int maxIteration, bool initDepth);
|
||||
};
|
||||
|
||||
|
||||
public:
|
||||
enum TrackingState
|
||||
{
|
||||
@@ -222,40 +222,40 @@ public:
|
||||
tsSetWindow = 3,
|
||||
tsDisabled = 10
|
||||
};
|
||||
|
||||
|
||||
enum ResizeMethod {
|
||||
rmEdgeDensityLinear = 0,
|
||||
rmEdgeDensityFuzzy = 1,
|
||||
rmInnerDensity = 2
|
||||
};
|
||||
|
||||
|
||||
enum {
|
||||
MinKernelMass = 1000
|
||||
};
|
||||
|
||||
|
||||
SearchWindow kernel;
|
||||
int searchMode;
|
||||
|
||||
|
||||
private:
|
||||
enum
|
||||
{
|
||||
MaxMeanShiftIteration = 5,
|
||||
MaxSetSizeIteration = 5
|
||||
};
|
||||
|
||||
|
||||
void findOptimumSearchWindow(SearchWindow &searchWindow, IplImage *maskImage, IplImage *depthMap, int maxIteration, int resizeMethod, bool initDepth);
|
||||
|
||||
|
||||
public:
|
||||
CvFuzzyMeanShiftTracker();
|
||||
~CvFuzzyMeanShiftTracker();
|
||||
|
||||
|
||||
void track(IplImage *maskImage, IplImage *depthMap, int resizeMethod, bool resetSearch, int minKernelMass = MinKernelMass);
|
||||
};
|
||||
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
|
||||
class CV_EXPORTS Octree
|
||||
{
|
||||
public:
|
||||
@@ -268,11 +268,11 @@ namespace cv
|
||||
bool isLeaf;
|
||||
int children[8];
|
||||
};
|
||||
|
||||
|
||||
Octree();
|
||||
Octree( const vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 );
|
||||
virtual ~Octree();
|
||||
|
||||
|
||||
virtual void buildTree( const vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 );
|
||||
virtual void getPointsWithinSphere( const Point3f& center, float radius,
|
||||
vector<Point3f>& points ) const;
|
||||
@@ -281,85 +281,85 @@ namespace cv
|
||||
int minPoints;
|
||||
vector<Point3f> points;
|
||||
vector<Node> nodes;
|
||||
|
||||
|
||||
virtual void buildNext(size_t node_ind);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
class CV_EXPORTS Mesh3D
|
||||
{
|
||||
public:
|
||||
struct EmptyMeshException {};
|
||||
|
||||
|
||||
Mesh3D();
|
||||
Mesh3D(const vector<Point3f>& vtx);
|
||||
~Mesh3D();
|
||||
|
||||
|
||||
void buildOctree();
|
||||
void clearOctree();
|
||||
float estimateResolution(float tryRatio = 0.1f);
|
||||
void computeNormals(float normalRadius, int minNeighbors = 20);
|
||||
void computeNormals(const vector<int>& subset, float normalRadius, int minNeighbors = 20);
|
||||
|
||||
|
||||
void writeAsVrml(const String& file, const vector<Scalar>& colors = vector<Scalar>()) const;
|
||||
|
||||
|
||||
vector<Point3f> vtx;
|
||||
vector<Point3f> normals;
|
||||
float resolution;
|
||||
Octree octree;
|
||||
|
||||
|
||||
const static Point3f allzero;
|
||||
};
|
||||
|
||||
|
||||
class CV_EXPORTS SpinImageModel
|
||||
{
|
||||
public:
|
||||
|
||||
|
||||
/* model parameters, leave unset for default or auto estimate */
|
||||
float normalRadius;
|
||||
int minNeighbors;
|
||||
|
||||
|
||||
float binSize;
|
||||
int imageWidth;
|
||||
|
||||
|
||||
float lambda;
|
||||
float gamma;
|
||||
|
||||
|
||||
float T_GeometriccConsistency;
|
||||
float T_GroupingCorespondances;
|
||||
|
||||
|
||||
/* public interface */
|
||||
SpinImageModel();
|
||||
explicit SpinImageModel(const Mesh3D& mesh);
|
||||
~SpinImageModel();
|
||||
|
||||
|
||||
void setLogger(std::ostream* log);
|
||||
void selectRandomSubset(float ratio);
|
||||
void setSubset(const vector<int>& subset);
|
||||
void compute();
|
||||
|
||||
|
||||
void match(const SpinImageModel& scene, vector< vector<Vec2i> >& result);
|
||||
|
||||
|
||||
Mat packRandomScaledSpins(bool separateScale = false, size_t xCount = 10, size_t yCount = 10) const;
|
||||
|
||||
|
||||
size_t getSpinCount() const { return spinImages.rows; }
|
||||
Mat getSpinImage(size_t index) const { return spinImages.row((int)index); }
|
||||
const Point3f& getSpinVertex(size_t index) const { return mesh.vtx[subset[index]]; }
|
||||
const Point3f& getSpinNormal(size_t index) const { return mesh.normals[subset[index]]; }
|
||||
|
||||
|
||||
const Mesh3D& getMesh() const { return mesh; }
|
||||
Mesh3D& getMesh() { return mesh; }
|
||||
|
||||
|
||||
/* static utility functions */
|
||||
static bool spinCorrelation(const Mat& spin1, const Mat& spin2, float lambda, float& result);
|
||||
|
||||
|
||||
static Point2f calcSpinMapCoo(const Point3f& point, const Point3f& vertex, const Point3f& normal);
|
||||
|
||||
|
||||
static float geometricConsistency(const Point3f& pointScene1, const Point3f& normalScene1,
|
||||
const Point3f& pointModel1, const Point3f& normalModel1,
|
||||
const Point3f& pointScene2, const Point3f& normalScene2,
|
||||
const Point3f& pointModel2, const Point3f& normalModel2);
|
||||
|
||||
|
||||
static float groupingCreteria(const Point3f& pointScene1, const Point3f& normalScene1,
|
||||
const Point3f& pointModel1, const Point3f& normalModel1,
|
||||
const Point3f& pointScene2, const Point3f& normalScene2,
|
||||
@@ -367,40 +367,40 @@ namespace cv
|
||||
float gamma);
|
||||
protected:
|
||||
void defaultParams();
|
||||
|
||||
|
||||
void matchSpinToModel(const Mat& spin, vector<int>& indeces,
|
||||
vector<float>& corrCoeffs, bool useExtremeOutliers = true) const;
|
||||
|
||||
|
||||
void repackSpinImages(const vector<uchar>& mask, Mat& spinImages, bool reAlloc = true) const;
|
||||
|
||||
|
||||
vector<int> subset;
|
||||
Mesh3D mesh;
|
||||
Mat spinImages;
|
||||
std::ostream* out;
|
||||
};
|
||||
|
||||
|
||||
class CV_EXPORTS TickMeter
|
||||
{
|
||||
public:
|
||||
TickMeter();
|
||||
void start();
|
||||
void stop();
|
||||
|
||||
|
||||
int64 getTimeTicks() const;
|
||||
double getTimeMicro() const;
|
||||
double getTimeMilli() const;
|
||||
double getTimeSec() const;
|
||||
int64 getCounter() const;
|
||||
|
||||
|
||||
void reset();
|
||||
private:
|
||||
int64 counter;
|
||||
int64 sumTime;
|
||||
int64 startTime;
|
||||
};
|
||||
|
||||
|
||||
CV_EXPORTS std::ostream& operator<<(std::ostream& out, const TickMeter& tm);
|
||||
|
||||
|
||||
class CV_EXPORTS SelfSimDescriptor
|
||||
{
|
||||
public:
|
||||
@@ -412,29 +412,29 @@ namespace cv
|
||||
SelfSimDescriptor(const SelfSimDescriptor& ss);
|
||||
virtual ~SelfSimDescriptor();
|
||||
SelfSimDescriptor& operator = (const SelfSimDescriptor& ss);
|
||||
|
||||
|
||||
size_t getDescriptorSize() const;
|
||||
Size getGridSize( Size imgsize, Size winStride ) const;
|
||||
|
||||
|
||||
virtual void compute(const Mat& img, vector<float>& descriptors, Size winStride=Size(),
|
||||
const vector<Point>& locations=vector<Point>()) const;
|
||||
virtual void computeLogPolarMapping(Mat& mappingMask) const;
|
||||
virtual void SSD(const Mat& img, Point pt, Mat& ssd) const;
|
||||
|
||||
|
||||
int smallSize;
|
||||
int largeSize;
|
||||
int startDistanceBucket;
|
||||
int numberOfDistanceBuckets;
|
||||
int numberOfAngles;
|
||||
|
||||
|
||||
enum { DEFAULT_SMALL_SIZE = 5, DEFAULT_LARGE_SIZE = 41,
|
||||
DEFAULT_NUM_ANGLES = 20, DEFAULT_START_DISTANCE_BUCKET = 3,
|
||||
DEFAULT_NUM_DISTANCE_BUCKETS = 7 };
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
typedef bool (*BundleAdjustCallback)(int iteration, double norm_error, void* user_data);
|
||||
|
||||
|
||||
class LevMarqSparse {
|
||||
public:
|
||||
LevMarqSparse();
|
||||
@@ -447,9 +447,9 @@ namespace cv
|
||||
Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
|
||||
// 1 - point is visible for the camera, 0 - invisible
|
||||
Mat& P0, // starting vector of parameters, first cameras then points
|
||||
Mat& X, // measurements, in order of visibility. non visible cases are skipped
|
||||
Mat& X, // measurements, in order of visibility. non visible cases are skipped
|
||||
TermCriteria criteria, // termination criteria
|
||||
|
||||
|
||||
// callback for estimation of Jacobian matrices
|
||||
void (CV_CDECL * fjac)(int i, int j, Mat& point_params,
|
||||
Mat& cam_params, Mat& A, Mat& B, void* data),
|
||||
@@ -459,9 +459,9 @@ namespace cv
|
||||
void* data, // user-specific data passed to the callbacks
|
||||
BundleAdjustCallback cb, void* user_data
|
||||
);
|
||||
|
||||
|
||||
virtual ~LevMarqSparse();
|
||||
|
||||
|
||||
virtual void run( int npoints, // number of points
|
||||
int ncameras, // number of cameras
|
||||
int nPointParams, // number of params per one point (3 in case of 3D points)
|
||||
@@ -471,9 +471,9 @@ namespace cv
|
||||
Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
|
||||
// 1 - point is visible for the camera, 0 - invisible
|
||||
Mat& P0, // starting vector of parameters, first cameras then points
|
||||
Mat& X, // measurements, in order of visibility. non visible cases are skipped
|
||||
Mat& X, // measurements, in order of visibility. non visible cases are skipped
|
||||
TermCriteria criteria, // termination criteria
|
||||
|
||||
|
||||
// callback for estimation of Jacobian matrices
|
||||
void (CV_CDECL * fjac)(int i, int j, Mat& point_params,
|
||||
Mat& cam_params, Mat& A, Mat& B, void* data),
|
||||
@@ -482,13 +482,13 @@ namespace cv
|
||||
Mat& cam_params, Mat& estim, void* data),
|
||||
void* data // user-specific data passed to the callbacks
|
||||
);
|
||||
|
||||
|
||||
virtual void clear();
|
||||
|
||||
|
||||
// useful function to do simple bundle adjustment tasks
|
||||
static void bundleAdjust(vector<Point3d>& points, // positions of points in global coordinate system (input and output)
|
||||
const vector<vector<Point2d> >& imagePoints, // projections of 3d points for every camera
|
||||
const vector<vector<int> >& visibility, // visibility of 3d points for every camera
|
||||
const vector<vector<int> >& visibility, // visibility of 3d points for every camera
|
||||
vector<Mat>& cameraMatrix, // intrinsic matrices of all cameras (input and output)
|
||||
vector<Mat>& R, // rotation matrices of all cameras (input and output)
|
||||
vector<Mat>& T, // translation vector of all cameras (input and output)
|
||||
@@ -496,123 +496,123 @@ namespace cv
|
||||
const TermCriteria& criteria=
|
||||
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON),
|
||||
BundleAdjustCallback cb = 0, void* user_data = 0);
|
||||
|
||||
|
||||
public:
|
||||
virtual void optimize(CvMat &_vis); //main function that runs minimization
|
||||
|
||||
|
||||
//iteratively asks for measurement for visible camera-point pairs
|
||||
void ask_for_proj(CvMat &_vis,bool once=false);
|
||||
//iteratively asks for Jacobians for every camera_point pair
|
||||
void ask_for_projac(CvMat &_vis);
|
||||
|
||||
|
||||
CvMat* err; //error X-hX
|
||||
double prevErrNorm, errNorm;
|
||||
double lambda;
|
||||
CvTermCriteria criteria;
|
||||
int iters;
|
||||
|
||||
|
||||
CvMat** U; //size of array is equal to number of cameras
|
||||
CvMat** V; //size of array is equal to number of points
|
||||
CvMat** inv_V_star; //inverse of V*
|
||||
|
||||
|
||||
CvMat** A;
|
||||
CvMat** B;
|
||||
CvMat** W;
|
||||
|
||||
CvMat* X; //measurement
|
||||
CvMat* hX; //current measurement extimation given new parameter vector
|
||||
|
||||
CvMat* prevP; //current already accepted parameter.
|
||||
|
||||
CvMat* X; //measurement
|
||||
CvMat* hX; //current measurement extimation given new parameter vector
|
||||
|
||||
CvMat* prevP; //current already accepted parameter.
|
||||
CvMat* P; // parameters used to evaluate function with new params
|
||||
// this parameters may be rejected
|
||||
|
||||
// this parameters may be rejected
|
||||
|
||||
CvMat* deltaP; //computed increase of parameters (result of normal system solution )
|
||||
|
||||
|
||||
CvMat** ea; // sum_i AijT * e_ij , used as right part of normal equation
|
||||
// length of array is j = number of cameras
|
||||
// length of array is j = number of cameras
|
||||
CvMat** eb; // sum_j BijT * e_ij , used as right part of normal equation
|
||||
// length of array is i = number of points
|
||||
|
||||
|
||||
CvMat** Yj; //length of array is i = num_points
|
||||
|
||||
CvMat* S; //big matrix of block Sjk , each block has size num_cam_params x num_cam_params
|
||||
|
||||
|
||||
CvMat* S; //big matrix of block Sjk , each block has size num_cam_params x num_cam_params
|
||||
|
||||
CvMat* JtJ_diag; //diagonal of JtJ, used to backup diagonal elements before augmentation
|
||||
|
||||
|
||||
CvMat* Vis_index; // matrix which element is index of measurement for point i and camera j
|
||||
|
||||
|
||||
int num_cams;
|
||||
int num_points;
|
||||
int num_err_param;
|
||||
int num_cam_param;
|
||||
int num_point_param;
|
||||
|
||||
//target function and jacobian pointers, which needs to be initialized
|
||||
|
||||
//target function and jacobian pointers, which needs to be initialized
|
||||
void (*fjac)(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data);
|
||||
void (*func)(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data);
|
||||
|
||||
|
||||
void* data;
|
||||
|
||||
|
||||
BundleAdjustCallback cb;
|
||||
void* user_data;
|
||||
};
|
||||
|
||||
};
|
||||
|
||||
CV_EXPORTS int chamerMatching( Mat& img, Mat& templ,
|
||||
vector<vector<Point> >& results, vector<float>& cost,
|
||||
double templScale=1, int maxMatches = 20,
|
||||
double minMatchDistance = 1.0, int padX = 3,
|
||||
int padY = 3, int scales = 5, double minScale = 0.6, double maxScale = 1.6,
|
||||
double orientationWeight = 0.5, double truncate = 20);
|
||||
|
||||
|
||||
|
||||
|
||||
class CV_EXPORTS StereoVar
|
||||
{
|
||||
public:
|
||||
// Flags
|
||||
// Flags
|
||||
enum {USE_INITIAL_DISPARITY = 1, USE_EQUALIZE_HIST = 2, USE_SMART_ID = 4, USE_AUTO_PARAMS = 8, USE_MEDIAN_FILTERING = 16};
|
||||
enum {CYCLE_O, CYCLE_V};
|
||||
enum {PENALIZATION_TICHONOV, PENALIZATION_CHARBONNIER, PENALIZATION_PERONA_MALIK};
|
||||
|
||||
|
||||
//! the default constructor
|
||||
CV_WRAP StereoVar();
|
||||
|
||||
|
||||
//! the full constructor taking all the necessary algorithm parameters
|
||||
CV_WRAP StereoVar(int levels, double pyrScale, int nIt, int minDisp, int maxDisp, int poly_n, double poly_sigma, float fi, float lambda, int penalization, int cycle, int flags);
|
||||
|
||||
|
||||
//! the destructor
|
||||
virtual ~StereoVar();
|
||||
|
||||
|
||||
//! the stereo correspondence operator that computes disparity map for the specified rectified stereo pair
|
||||
CV_WRAP_AS(compute) virtual void operator()(const Mat& left, const Mat& right, Mat& disp);
|
||||
|
||||
CV_PROP_RW int levels;
|
||||
CV_PROP_RW double pyrScale;
|
||||
CV_PROP_RW int nIt;
|
||||
CV_PROP_RW int minDisp;
|
||||
CV_PROP_RW int maxDisp;
|
||||
CV_PROP_RW int poly_n;
|
||||
CV_PROP_RW double poly_sigma;
|
||||
CV_PROP_RW float fi;
|
||||
CV_PROP_RW float lambda;
|
||||
CV_PROP_RW int penalization;
|
||||
CV_PROP_RW int cycle;
|
||||
CV_PROP_RW int flags;
|
||||
|
||||
|
||||
CV_PROP_RW int levels;
|
||||
CV_PROP_RW double pyrScale;
|
||||
CV_PROP_RW int nIt;
|
||||
CV_PROP_RW int minDisp;
|
||||
CV_PROP_RW int maxDisp;
|
||||
CV_PROP_RW int poly_n;
|
||||
CV_PROP_RW double poly_sigma;
|
||||
CV_PROP_RW float fi;
|
||||
CV_PROP_RW float lambda;
|
||||
CV_PROP_RW int penalization;
|
||||
CV_PROP_RW int cycle;
|
||||
CV_PROP_RW int flags;
|
||||
|
||||
private:
|
||||
void autoParams();
|
||||
void FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level);
|
||||
void FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level);
|
||||
void VCycle_MyFAS(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
|
||||
void VariationalSolver(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
|
||||
};
|
||||
|
||||
|
||||
CV_EXPORTS void polyfit(const Mat& srcx, const Mat& srcy, Mat& dst, int order);
|
||||
|
||||
class CV_EXPORTS Directory
|
||||
class CV_EXPORTS Directory
|
||||
{
|
||||
public:
|
||||
static std::vector<std::string> GetListFiles ( const std::string& path, const std::string & exten = "*", bool addPath = true );
|
||||
static std::vector<std::string> GetListFilesR ( const std::string& path, const std::string & exten = "*", bool addPath = true );
|
||||
static std::vector<std::string> GetListFolders( const std::string& path, const std::string & exten = "*", bool addPath = true );
|
||||
public:
|
||||
static std::vector<std::string> GetListFiles ( const std::string& path, const std::string & exten = "*", bool addPath = true );
|
||||
static std::vector<std::string> GetListFilesR ( const std::string& path, const std::string & exten = "*", bool addPath = true );
|
||||
static std::vector<std::string> GetListFolders( const std::string& path, const std::string & exten = "*", bool addPath = true );
|
||||
};
|
||||
|
||||
/*
|
||||
@@ -654,7 +654,7 @@ namespace cv
|
||||
class CV_EXPORTS LogPolar_Interp
|
||||
{
|
||||
public:
|
||||
|
||||
|
||||
LogPolar_Interp() {}
|
||||
|
||||
/**
|
||||
@@ -664,11 +664,11 @@ namespace cv
|
||||
*\param center the transformation center: where the output precision is maximal
|
||||
*\param R the number of rings of the cortical image (default value 70 pixel)
|
||||
*\param ro0 the radius of the blind spot (default value 3 pixel)
|
||||
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
|
||||
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
|
||||
* \a 0 means that the retinal image is computed within the inscribed circle.
|
||||
*\param S the number of sectors of the cortical image (default value 70 pixel).
|
||||
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
|
||||
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
|
||||
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
|
||||
* \a 0 means that the parameter \a S is provided by the user.
|
||||
*/
|
||||
LogPolar_Interp(int w, int h, Point2i center, int R=70, double ro0=3.0,
|
||||
@@ -689,9 +689,9 @@ namespace cv
|
||||
*Destructor
|
||||
*/
|
||||
~LogPolar_Interp();
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
|
||||
Mat Rsri;
|
||||
Mat Csri;
|
||||
|
||||
@@ -716,10 +716,10 @@ namespace cv
|
||||
*More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
|
||||
*/
|
||||
class CV_EXPORTS LogPolar_Overlapping
|
||||
{
|
||||
{
|
||||
public:
|
||||
LogPolar_Overlapping() {}
|
||||
|
||||
|
||||
/**
|
||||
*Constructor
|
||||
*\param w the width of the input image
|
||||
@@ -727,11 +727,11 @@ namespace cv
|
||||
*\param center the transformation center: where the output precision is maximal
|
||||
*\param R the number of rings of the cortical image (default value 70 pixel)
|
||||
*\param ro0 the radius of the blind spot (default value 3 pixel)
|
||||
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
|
||||
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
|
||||
* \a 0 means that the retinal image is computed within the inscribed circle.
|
||||
*\param S the number of sectors of the cortical image (default value 70 pixel).
|
||||
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
|
||||
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
|
||||
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
|
||||
* \a 0 means that the parameter \a S is provided by the user.
|
||||
*/
|
||||
LogPolar_Overlapping(int w, int h, Point2i center, int R=70,
|
||||
@@ -752,9 +752,9 @@ namespace cv
|
||||
*Destructor
|
||||
*/
|
||||
~LogPolar_Overlapping();
|
||||
|
||||
|
||||
protected:
|
||||
|
||||
|
||||
Mat Rsri;
|
||||
Mat Csri;
|
||||
vector<int> Rsr;
|
||||
@@ -793,7 +793,7 @@ namespace cv
|
||||
{
|
||||
public:
|
||||
LogPolar_Adjacent() {}
|
||||
|
||||
|
||||
/**
|
||||
*Constructor
|
||||
*\param w the width of the input image
|
||||
@@ -802,13 +802,13 @@ namespace cv
|
||||
*\param R the number of rings of the cortical image (default value 70 pixel)
|
||||
*\param ro0 the radius of the blind spot (default value 3 pixel)
|
||||
*\param smin the size of the subpixel (default value 0.25 pixel)
|
||||
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
|
||||
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
|
||||
* \a 0 means that the retinal image is computed within the inscribed circle.
|
||||
*\param S the number of sectors of the cortical image (default value 70 pixel).
|
||||
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
|
||||
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
|
||||
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
|
||||
* \a 0 means that the parameter \a S is provided by the user.
|
||||
*/
|
||||
*/
|
||||
LogPolar_Adjacent(int w, int h, Point2i center, int R=70, double ro0=3.0, double smin=0.25, int full=1, int S=117, int sp=1);
|
||||
/**
|
||||
*Transformation from Cartesian image to cortical (log-polar) image.
|
||||
@@ -845,10 +845,10 @@ namespace cv
|
||||
bool get_uv(double x, double y, int&u, int&v);
|
||||
void create_map(int M, int N, int R, int S, double ro0, double smin);
|
||||
};
|
||||
|
||||
|
||||
CV_EXPORTS Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
|
||||
CV_EXPORTS Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
|
||||
|
||||
|
||||
class CV_EXPORTS LDA
|
||||
{
|
||||
public:
|
||||
@@ -908,7 +908,7 @@ namespace cv
|
||||
|
||||
// Returns the eigenvalues of this LDA.
|
||||
Mat eigenvalues() const { return _eigenvalues; }
|
||||
|
||||
|
||||
protected:
|
||||
bool _dataAsRow;
|
||||
int _num_components;
|
||||
@@ -917,7 +917,7 @@ namespace cv
|
||||
|
||||
void lda(InputArray src, InputArray labels);
|
||||
};
|
||||
|
||||
|
||||
class CV_EXPORTS FaceRecognizer : public Algorithm
|
||||
{
|
||||
public:
|
||||
@@ -941,16 +941,16 @@ namespace cv
|
||||
|
||||
// Deserializes this object from a given cv::FileStorage.
|
||||
virtual void load(const FileStorage& fs) = 0;
|
||||
|
||||
|
||||
// Returns eigenvectors (if any)
|
||||
virtual Mat eigenvectors() const { return Mat(); }
|
||||
};
|
||||
|
||||
|
||||
CV_EXPORTS Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components = 0);
|
||||
CV_EXPORTS Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components = 0);
|
||||
CV_EXPORTS Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius=1, int neighbors=8,
|
||||
int grid_x=8, int grid_y=8);
|
||||
|
||||
|
||||
enum
|
||||
{
|
||||
COLORMAP_AUTUMN = 0,
|
||||
@@ -968,9 +968,9 @@ namespace cv
|
||||
COLORMAP_MKPJ1 = 12,
|
||||
COLORMAP_MKPJ2 = 13
|
||||
};
|
||||
|
||||
|
||||
CV_EXPORTS void applyColorMap(InputArray src, OutputArray dst, int colormap);
|
||||
|
||||
|
||||
CV_EXPORTS bool initModule_contrib();
|
||||
}
|
||||
|
||||
|
@@ -86,10 +86,10 @@ struct CV_EXPORTS CvMeanShiftTrackerParams
|
||||
struct CV_EXPORTS CvFeatureTrackerParams
|
||||
{
|
||||
enum { SIFT = 0, SURF = 1, OPTICAL_FLOW = 2 };
|
||||
CvFeatureTrackerParams(int feature_type = 0, int window_size = 0)
|
||||
CvFeatureTrackerParams(int featureType = 0, int windowSize = 0)
|
||||
{
|
||||
feature_type = 0;
|
||||
window_size = 0;
|
||||
featureType = 0;
|
||||
windowSize = 0;
|
||||
}
|
||||
|
||||
int feature_type; // Feature type to use
|
||||
|
Reference in New Issue
Block a user