moved to double in EM; fixed bug
This commit is contained in:
@@ -205,6 +205,7 @@ CvEM::CvEM( const Mat& samples, const Mat& sample_idx, CvEMParams params )
|
||||
bool CvEM::train( const Mat& _samples, const Mat& _sample_idx,
|
||||
CvEMParams _params, Mat* _labels )
|
||||
{
|
||||
CV_Assert(_sample_idx.empty());
|
||||
Mat prbs, weights, means, likelihoods;
|
||||
std::vector<Mat> covsHdrs;
|
||||
init_params(_params, prbs, weights, means, covsHdrs);
|
||||
|
@@ -578,7 +578,7 @@ public:
|
||||
CV_WRAP virtual bool train(InputArray samples,
|
||||
OutputArray labels=noArray(),
|
||||
OutputArray probs=noArray(),
|
||||
OutputArray likelihoods=noArray());
|
||||
OutputArray logLikelihoods=noArray());
|
||||
|
||||
CV_WRAP virtual bool trainE(InputArray samples,
|
||||
InputArray means0,
|
||||
@@ -586,17 +586,17 @@ public:
|
||||
InputArray weights0=noArray(),
|
||||
OutputArray labels=noArray(),
|
||||
OutputArray probs=noArray(),
|
||||
OutputArray likelihoods=noArray());
|
||||
OutputArray logLikelihoods=noArray());
|
||||
|
||||
CV_WRAP virtual bool trainM(InputArray samples,
|
||||
InputArray probs0,
|
||||
OutputArray labels=noArray(),
|
||||
OutputArray probs=noArray(),
|
||||
OutputArray likelihoods=noArray());
|
||||
OutputArray logLikelihoods=noArray());
|
||||
|
||||
CV_WRAP int predict(InputArray sample,
|
||||
OutputArray probs=noArray(),
|
||||
CV_OUT double* likelihood=0) const;
|
||||
CV_OUT double* logLikelihood=0) const;
|
||||
|
||||
CV_WRAP bool isTrained() const;
|
||||
|
||||
@@ -614,7 +614,7 @@ protected:
|
||||
bool doTrain(int startStep,
|
||||
OutputArray labels,
|
||||
OutputArray probs,
|
||||
OutputArray likelihoods);
|
||||
OutputArray logLikelihoods);
|
||||
virtual void eStep();
|
||||
virtual void mStep();
|
||||
|
||||
@@ -622,9 +622,9 @@ protected:
|
||||
void decomposeCovs();
|
||||
void computeLogWeightDivDet();
|
||||
|
||||
void computeProbabilities(const Mat& sample, int& label, Mat* probs, float* likelihood) const;
|
||||
void computeProbabilities(const Mat& sample, int& label, Mat* probs, double* logLikelihood) const;
|
||||
|
||||
// all inner matrices have type CV_32FC1
|
||||
// all inner matrices have type CV_64FC1
|
||||
CV_PROP_RW int nclusters;
|
||||
CV_PROP_RW int covMatType;
|
||||
CV_PROP_RW int maxIters;
|
||||
@@ -632,7 +632,7 @@ protected:
|
||||
|
||||
Mat trainSamples;
|
||||
Mat trainProbs;
|
||||
Mat trainLikelihoods;
|
||||
Mat trainLogLikelihoods;
|
||||
Mat trainLabels;
|
||||
Mat trainCounts;
|
||||
|
||||
|
@@ -44,7 +44,7 @@
|
||||
namespace cv
|
||||
{
|
||||
|
||||
const float minEigenValue = 1.e-3f;
|
||||
const double minEigenValue = 1.e-5;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@@ -65,7 +65,7 @@ void EM::clear()
|
||||
{
|
||||
trainSamples.release();
|
||||
trainProbs.release();
|
||||
trainLikelihoods.release();
|
||||
trainLogLikelihoods.release();
|
||||
trainLabels.release();
|
||||
trainCounts.release();
|
||||
|
||||
@@ -84,10 +84,10 @@ void EM::clear()
|
||||
bool EM::train(InputArray samples,
|
||||
OutputArray labels,
|
||||
OutputArray probs,
|
||||
OutputArray likelihoods)
|
||||
OutputArray logLikelihoods)
|
||||
{
|
||||
setTrainData(START_AUTO_STEP, samples.getMat(), 0, 0, 0, 0);
|
||||
return doTrain(START_AUTO_STEP, labels, probs, likelihoods);
|
||||
return doTrain(START_AUTO_STEP, labels, probs, logLikelihoods);
|
||||
}
|
||||
|
||||
bool EM::trainE(InputArray samples,
|
||||
@@ -96,7 +96,7 @@ bool EM::trainE(InputArray samples,
|
||||
InputArray _weights0,
|
||||
OutputArray labels,
|
||||
OutputArray probs,
|
||||
OutputArray likelihoods)
|
||||
OutputArray logLikelihoods)
|
||||
{
|
||||
vector<Mat> covs0;
|
||||
_covs0.getMatVector(covs0);
|
||||
@@ -105,41 +105,46 @@ bool EM::trainE(InputArray samples,
|
||||
|
||||
setTrainData(START_E_STEP, samples.getMat(), 0, !_means0.empty() ? &means0 : 0,
|
||||
!_covs0.empty() ? &covs0 : 0, _weights0.empty() ? &weights0 : 0);
|
||||
return doTrain(START_E_STEP, labels, probs, likelihoods);
|
||||
return doTrain(START_E_STEP, labels, probs, logLikelihoods);
|
||||
}
|
||||
|
||||
bool EM::trainM(InputArray samples,
|
||||
InputArray _probs0,
|
||||
OutputArray labels,
|
||||
OutputArray probs,
|
||||
OutputArray likelihoods)
|
||||
OutputArray logLikelihoods)
|
||||
{
|
||||
Mat probs0 = _probs0.getMat();
|
||||
|
||||
setTrainData(START_M_STEP, samples.getMat(), !_probs0.empty() ? &probs0 : 0, 0, 0, 0);
|
||||
return doTrain(START_M_STEP, labels, probs, likelihoods);
|
||||
return doTrain(START_M_STEP, labels, probs, logLikelihoods);
|
||||
}
|
||||
|
||||
|
||||
int EM::predict(InputArray _sample, OutputArray _probs, double* _likelihood) const
|
||||
int EM::predict(InputArray _sample, OutputArray _probs, double* _logLikelihood) const
|
||||
{
|
||||
Mat sample = _sample.getMat();
|
||||
CV_Assert(isTrained());
|
||||
|
||||
CV_Assert(!sample.empty());
|
||||
CV_Assert(sample.type() == CV_32FC1);
|
||||
if(sample.type() != CV_64FC1)
|
||||
{
|
||||
Mat tmp;
|
||||
sample.convertTo(tmp, CV_64FC1);
|
||||
sample = tmp;
|
||||
}
|
||||
|
||||
int label;
|
||||
float likelihood = 0.f;
|
||||
double logLikelihood = 0.;
|
||||
Mat probs;
|
||||
if( _probs.needed() )
|
||||
{
|
||||
_probs.create(1, nclusters, CV_32FC1);
|
||||
_probs.create(1, nclusters, CV_64FC1);
|
||||
probs = _probs.getMat();
|
||||
}
|
||||
computeProbabilities(sample, label, !probs.empty() ? &probs : 0, _likelihood ? &likelihood : 0);
|
||||
if(_likelihood)
|
||||
*_likelihood = static_cast<double>(likelihood);
|
||||
computeProbabilities(sample, label, !probs.empty() ? &probs : 0, _logLikelihood ? &logLikelihood : 0);
|
||||
if(_logLikelihood)
|
||||
*_logLikelihood = logLikelihood;
|
||||
|
||||
return label;
|
||||
}
|
||||
@@ -157,7 +162,7 @@ void checkTrainData(int startStep, const Mat& samples,
|
||||
{
|
||||
// Check samples.
|
||||
CV_Assert(!samples.empty());
|
||||
CV_Assert(samples.type() == CV_32FC1);
|
||||
CV_Assert(samples.channels() == 1);
|
||||
|
||||
int nsamples = samples.rows;
|
||||
int dim = samples.cols;
|
||||
@@ -168,21 +173,24 @@ void checkTrainData(int startStep, const Mat& samples,
|
||||
CV_Assert(startStep == EM::START_AUTO_STEP ||
|
||||
startStep == EM::START_E_STEP ||
|
||||
startStep == EM::START_M_STEP);
|
||||
CV_Assert(covMatType == EM::COV_MAT_GENERIC ||
|
||||
covMatType == EM::COV_MAT_DIAGONAL ||
|
||||
covMatType == EM::COV_MAT_SPHERICAL);
|
||||
|
||||
CV_Assert(!probs ||
|
||||
(!probs->empty() &&
|
||||
probs->rows == nsamples && probs->cols == nclusters &&
|
||||
probs->type() == CV_32FC1));
|
||||
(probs->type() == CV_32FC1 || probs->type() == CV_64FC1)));
|
||||
|
||||
CV_Assert(!weights ||
|
||||
(!weights->empty() &&
|
||||
(weights->cols == 1 || weights->rows == 1) && static_cast<int>(weights->total()) == nclusters &&
|
||||
weights->type() == CV_32FC1));
|
||||
(weights->type() == CV_32FC1 || weights->type() == CV_64FC1)));
|
||||
|
||||
CV_Assert(!means ||
|
||||
(!means->empty() &&
|
||||
means->rows == nclusters && means->cols == dim &&
|
||||
means->type() == CV_32FC1));
|
||||
means->channels() == 1));
|
||||
|
||||
CV_Assert(!covs ||
|
||||
(!covs->empty() &&
|
||||
@@ -193,7 +201,7 @@ void checkTrainData(int startStep, const Mat& samples,
|
||||
for(size_t i = 0; i < covs->size(); i++)
|
||||
{
|
||||
const Mat& m = (*covs)[i];
|
||||
CV_Assert(!m.empty() && m.size() == covSize && (m.type() == CV_32FC1));
|
||||
CV_Assert(!m.empty() && m.size() == covSize && (m.channels() == 1));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -221,7 +229,7 @@ void preprocessProbability(Mat& probs)
|
||||
{
|
||||
max(probs, 0., probs);
|
||||
|
||||
const float uniformProbability = (float)(1./probs.cols);
|
||||
const double uniformProbability = (double)(1./probs.cols);
|
||||
for(int y = 0; y < probs.rows; y++)
|
||||
{
|
||||
Mat sampleProbs = probs.row(y);
|
||||
@@ -245,34 +253,35 @@ void EM::setTrainData(int startStep, const Mat& samples,
|
||||
|
||||
checkTrainData(startStep, samples, nclusters, covMatType, probs0, means0, covs0, weights0);
|
||||
|
||||
bool isKMeansInit = (startStep == EM::START_AUTO_STEP) || (startStep == EM::START_E_STEP && (covs0 == 0 || weights0 == 0));
|
||||
// Set checked data
|
||||
preprocessSampleData(samples, trainSamples, CV_32FC1, false);
|
||||
preprocessSampleData(samples, trainSamples, isKMeansInit ? CV_32FC1 : CV_64FC1, false);
|
||||
|
||||
// set probs
|
||||
if(probs0 && startStep == EM::START_M_STEP)
|
||||
{
|
||||
preprocessSampleData(*probs0, trainProbs, CV_32FC1, true);
|
||||
preprocessSampleData(*probs0, trainProbs, CV_64FC1, true);
|
||||
preprocessProbability(trainProbs);
|
||||
}
|
||||
|
||||
// set weights
|
||||
if(weights0 && (startStep == EM::START_E_STEP && covs0))
|
||||
{
|
||||
weights0->convertTo(weights, CV_32FC1);
|
||||
weights0->convertTo(weights, CV_64FC1);
|
||||
weights.reshape(1,1);
|
||||
preprocessProbability(weights);
|
||||
}
|
||||
|
||||
// set means
|
||||
if(means0 && (startStep == EM::START_E_STEP || startStep == EM::START_AUTO_STEP))
|
||||
means0->convertTo(means, CV_32FC1);
|
||||
if(means0 && (startStep == EM::START_E_STEP/* || startStep == EM::START_AUTO_STEP*/))
|
||||
means0->convertTo(means, isKMeansInit ? CV_32FC1 : CV_64FC1);
|
||||
|
||||
// set covs
|
||||
if(covs0 && (startStep == EM::START_E_STEP && weights0))
|
||||
{
|
||||
covs.resize(nclusters);
|
||||
for(size_t i = 0; i < covs0->size(); i++)
|
||||
(*covs0)[i].convertTo(covs[i], CV_32FC1);
|
||||
(*covs0)[i].convertTo(covs[i], CV_64FC1);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -288,13 +297,11 @@ void EM::decomposeCovs()
|
||||
CV_Assert(!covs[clusterIndex].empty());
|
||||
|
||||
SVD svd(covs[clusterIndex], SVD::MODIFY_A + SVD::FULL_UV);
|
||||
CV_DbgAssert(svd.w.rows == 1 || svd.w.cols == 1);
|
||||
CV_DbgAssert(svd.w.type() == CV_32FC1 && svd.u.type() == CV_32FC1);
|
||||
|
||||
if(covMatType == EM::COV_MAT_SPHERICAL)
|
||||
{
|
||||
float maxSingularVal = svd.w.at<float>(0);
|
||||
covsEigenValues[clusterIndex] = Mat(1, 1, CV_32FC1, Scalar(maxSingularVal));
|
||||
double maxSingularVal = svd.w.at<double>(0);
|
||||
covsEigenValues[clusterIndex] = Mat(1, 1, CV_64FC1, Scalar(maxSingularVal));
|
||||
}
|
||||
else if(covMatType == EM::COV_MAT_DIAGONAL)
|
||||
{
|
||||
@@ -315,14 +322,29 @@ void EM::clusterTrainSamples()
|
||||
int nsamples = trainSamples.rows;
|
||||
|
||||
// Cluster samples, compute/update means
|
||||
Mat trainSamplesFlt, meansFlt;
|
||||
if(trainSamples.type() != CV_32FC1)
|
||||
trainSamples.convertTo(trainSamplesFlt, CV_32FC1);
|
||||
else
|
||||
trainSamplesFlt = trainSamples;
|
||||
if(!means.empty())
|
||||
{
|
||||
if(means.type() != CV_32FC1)
|
||||
means.convertTo(meansFlt, CV_32FC1);
|
||||
else
|
||||
meansFlt = means;
|
||||
}
|
||||
|
||||
Mat labels;
|
||||
kmeans(trainSamples, nclusters, labels,
|
||||
TermCriteria(TermCriteria::COUNT, means.empty() ? 10 : 1, 0.5),
|
||||
10, KMEANS_PP_CENTERS, means);
|
||||
CV_Assert(means.type() == CV_32FC1);
|
||||
kmeans(trainSamplesFlt, nclusters, labels, TermCriteria(TermCriteria::COUNT, means.empty() ? 10 : 1, 0.5), 10, KMEANS_PP_CENTERS, meansFlt);
|
||||
|
||||
CV_Assert(meansFlt.type() == CV_32FC1);
|
||||
if(trainSamples.type() != CV_64FC1)
|
||||
trainSamplesFlt.convertTo(trainSamples, CV_64FC1);
|
||||
meansFlt.convertTo(means, CV_64FC1);
|
||||
|
||||
// Compute weights and covs
|
||||
weights = Mat(1, nclusters, CV_32FC1, Scalar(0));
|
||||
weights = Mat(1, nclusters, CV_64FC1, Scalar(0));
|
||||
covs.resize(nclusters);
|
||||
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
|
||||
{
|
||||
@@ -338,8 +360,8 @@ void EM::clusterTrainSamples()
|
||||
CV_Assert(!clusterSamples.empty());
|
||||
|
||||
calcCovarMatrix(clusterSamples, covs[clusterIndex], means.row(clusterIndex),
|
||||
CV_COVAR_NORMAL + CV_COVAR_ROWS + CV_COVAR_USE_AVG + CV_COVAR_SCALE, CV_32FC1);
|
||||
weights.at<float>(clusterIndex) = static_cast<float>(clusterSamples.rows)/static_cast<float>(nsamples);
|
||||
CV_COVAR_NORMAL + CV_COVAR_ROWS + CV_COVAR_USE_AVG + CV_COVAR_SCALE, CV_64FC1);
|
||||
weights.at<double>(clusterIndex) = static_cast<double>(clusterSamples.rows)/static_cast<double>(nsamples);
|
||||
}
|
||||
|
||||
decomposeCovs();
|
||||
@@ -352,28 +374,28 @@ void EM::computeLogWeightDivDet()
|
||||
Mat logWeights;
|
||||
log(weights, logWeights);
|
||||
|
||||
logWeightDivDet.create(1, nclusters, CV_32FC1);
|
||||
logWeightDivDet.create(1, nclusters, CV_64FC1);
|
||||
// note: logWeightDivDet = log(weight_k) - 0.5 * log(|det(cov_k)|)
|
||||
|
||||
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
|
||||
{
|
||||
float logDetCov = 0.;
|
||||
double logDetCov = 0.;
|
||||
for(int di = 0; di < covsEigenValues[clusterIndex].cols; di++)
|
||||
logDetCov += std::log(covsEigenValues[clusterIndex].at<float>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0));
|
||||
logDetCov += std::log(covsEigenValues[clusterIndex].at<double>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0));
|
||||
|
||||
logWeightDivDet.at<float>(clusterIndex) = logWeights.at<float>(clusterIndex) - 0.5f * logDetCov;
|
||||
logWeightDivDet.at<double>(clusterIndex) = logWeights.at<double>(clusterIndex) - 0.5 * logDetCov;
|
||||
}
|
||||
}
|
||||
|
||||
bool EM::doTrain(int startStep, OutputArray labels, OutputArray probs, OutputArray likelihoods)
|
||||
bool EM::doTrain(int startStep, OutputArray labels, OutputArray probs, OutputArray logLikelihoods)
|
||||
{
|
||||
int dim = trainSamples.cols;
|
||||
// Precompute the empty initial train data in the cases of EM::START_E_STEP and START_AUTO_STEP
|
||||
if(startStep != EM::START_M_STEP)
|
||||
{
|
||||
if(weights.empty())
|
||||
if(covs.empty())
|
||||
{
|
||||
CV_Assert(covs.empty());
|
||||
CV_Assert(weights.empty());
|
||||
clusterTrainSamples();
|
||||
}
|
||||
}
|
||||
@@ -387,27 +409,27 @@ bool EM::doTrain(int startStep, OutputArray labels, OutputArray probs, OutputArr
|
||||
if(startStep == EM::START_M_STEP)
|
||||
mStep();
|
||||
|
||||
double trainLikelihood, prevTrainLikelihood = 0.;
|
||||
double trainLogLikelihood, prevTrainLogLikelihood = 0.;
|
||||
for(int iter = 0; ; iter++)
|
||||
{
|
||||
eStep();
|
||||
trainLikelihood = sum(trainLikelihoods)[0];
|
||||
trainLogLikelihood = sum(trainLogLikelihoods)[0];
|
||||
|
||||
if(iter >= maxIters - 1)
|
||||
break;
|
||||
|
||||
double trainLikelihoodDelta = trainLikelihood - (iter > 0 ? prevTrainLikelihood : 0);
|
||||
double trainLogLikelihoodDelta = trainLogLikelihood - prevTrainLogLikelihood;
|
||||
if( iter != 0 &&
|
||||
(trainLikelihoodDelta < -DBL_EPSILON ||
|
||||
trainLikelihoodDelta < epsilon * std::fabs(trainLikelihood)))
|
||||
(trainLogLikelihoodDelta < -DBL_EPSILON ||
|
||||
trainLogLikelihoodDelta < epsilon * std::fabs(trainLogLikelihood)))
|
||||
break;
|
||||
|
||||
mStep();
|
||||
|
||||
prevTrainLikelihood = trainLikelihood;
|
||||
prevTrainLogLikelihood = trainLogLikelihood;
|
||||
}
|
||||
|
||||
if( trainLikelihood <= -DBL_MAX/10000. )
|
||||
if( trainLogLikelihood <= -DBL_MAX/10000. )
|
||||
{
|
||||
clear();
|
||||
return false;
|
||||
@@ -419,8 +441,8 @@ bool EM::doTrain(int startStep, OutputArray labels, OutputArray probs, OutputArr
|
||||
{
|
||||
if(covMatType == EM::COV_MAT_SPHERICAL)
|
||||
{
|
||||
covs[clusterIndex].create(dim, dim, CV_32FC1);
|
||||
setIdentity(covs[clusterIndex], Scalar(covsEigenValues[clusterIndex].at<float>(0)));
|
||||
covs[clusterIndex].create(dim, dim, CV_64FC1);
|
||||
setIdentity(covs[clusterIndex], Scalar(covsEigenValues[clusterIndex].at<double>(0)));
|
||||
}
|
||||
else if(covMatType == EM::COV_MAT_DIAGONAL)
|
||||
covs[clusterIndex] = Mat::diag(covsEigenValues[clusterIndex].t());
|
||||
@@ -430,31 +452,32 @@ bool EM::doTrain(int startStep, OutputArray labels, OutputArray probs, OutputArr
|
||||
trainLabels.copyTo(labels);
|
||||
if(probs.needed())
|
||||
trainProbs.copyTo(probs);
|
||||
if(likelihoods.needed())
|
||||
trainLikelihoods.copyTo(likelihoods);
|
||||
if(logLikelihoods.needed())
|
||||
trainLogLikelihoods.copyTo(logLikelihoods);
|
||||
|
||||
trainSamples.release();
|
||||
trainProbs.release();
|
||||
trainLabels.release();
|
||||
trainLikelihoods.release();
|
||||
trainLogLikelihoods.release();
|
||||
trainCounts.release();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void EM::computeProbabilities(const Mat& sample, int& label, Mat* probs, float* likelihood) const
|
||||
void EM::computeProbabilities(const Mat& sample, int& label, Mat* probs, double* logLikelihood) const
|
||||
{
|
||||
// L_ik = log(weight_k) - 0.5 * log(|det(cov_k)|) - 0.5 *(x_i - mean_k)' cov_k^(-1) (x_i - mean_k)]
|
||||
// q = arg(max_k(L_ik))
|
||||
// probs_ik = exp(L_ik - L_iq) / (1 + sum_j!=q (exp(L_jk))
|
||||
// probs_ik = exp(L_ik - L_iq) / (1 + sum_j!=q (exp(L_ij - L_iq))
|
||||
|
||||
CV_Assert(!means.empty());
|
||||
CV_Assert(sample.type() == CV_64FC1);
|
||||
CV_Assert(sample.rows == 1);
|
||||
CV_Assert(sample.cols == means.cols);
|
||||
|
||||
int dim = sample.cols;
|
||||
|
||||
Mat L(1, nclusters, CV_32FC1);
|
||||
Mat expL(1, nclusters, CV_32FC1);
|
||||
|
||||
Mat L(1, nclusters, CV_64FC1);
|
||||
label = 0;
|
||||
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
|
||||
{
|
||||
@@ -463,66 +486,66 @@ void EM::computeProbabilities(const Mat& sample, int& label, Mat* probs, float*
|
||||
Mat rotatedCenteredSample = covMatType != EM::COV_MAT_GENERIC ?
|
||||
centeredSample : centeredSample * covsRotateMats[clusterIndex];
|
||||
|
||||
float Lval = 0;
|
||||
double Lval = 0;
|
||||
for(int di = 0; di < dim; di++)
|
||||
{
|
||||
float w = invCovsEigenValues[clusterIndex].at<float>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0);
|
||||
float val = rotatedCenteredSample.at<float>(di);
|
||||
double w = invCovsEigenValues[clusterIndex].at<double>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0);
|
||||
double val = rotatedCenteredSample.at<double>(di);
|
||||
Lval += w * val * val;
|
||||
}
|
||||
CV_DbgAssert(!logWeightDivDet.empty());
|
||||
Lval = logWeightDivDet.at<float>(clusterIndex) - 0.5f * Lval;
|
||||
L.at<float>(clusterIndex) = Lval;
|
||||
Lval = logWeightDivDet.at<double>(clusterIndex) - 0.5 * Lval;
|
||||
L.at<double>(clusterIndex) = Lval;
|
||||
|
||||
if(Lval > L.at<float>(label))
|
||||
if(Lval > L.at<double>(label))
|
||||
label = clusterIndex;
|
||||
}
|
||||
|
||||
if(!probs && !likelihood)
|
||||
if(!probs && !logLikelihood)
|
||||
return;
|
||||
|
||||
// TODO maybe without finding max L value
|
||||
exp(L, expL);
|
||||
float partExpSum = 0, // sum_j!=q (exp(L_jk)
|
||||
factor; // 1/(1 + sum_j!=q (exp(L_jk))
|
||||
float prevL = expL.at<float>(label);
|
||||
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
|
||||
{
|
||||
if(clusterIndex != label)
|
||||
partExpSum += expL.at<float>(clusterIndex);
|
||||
}
|
||||
factor = 1.f/(1 + partExpSum);
|
||||
|
||||
exp(L - L.at<float>(label), expL);
|
||||
|
||||
if(probs)
|
||||
{
|
||||
probs->create(1, nclusters, CV_32FC1);
|
||||
Mat expL_Lmax;
|
||||
exp(L - L.at<double>(label), expL_Lmax);
|
||||
double partSum = 0, // sum_j!=q (exp(L_ij - L_iq))
|
||||
factor; // 1/(1 + partExpSum)
|
||||
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
|
||||
probs->at<float>(clusterIndex) = expL.at<float>(clusterIndex) * factor;
|
||||
if(clusterIndex != label)
|
||||
partSum += expL_Lmax.at<double>(clusterIndex);
|
||||
factor = 1./(1 + partSum);
|
||||
|
||||
probs->create(1, nclusters, CV_64FC1);
|
||||
expL_Lmax *= factor;
|
||||
expL_Lmax.copyTo(*probs);
|
||||
}
|
||||
|
||||
if(likelihood)
|
||||
if(logLikelihood)
|
||||
{
|
||||
// note likelihood = log (sum_j exp(L_ij)) - 0.5 * dims * ln2Pi
|
||||
*likelihood = std::log(prevL + partExpSum) - (float)(0.5 * dim * CV_LOG2PI);
|
||||
Mat expL;
|
||||
exp(L, expL);
|
||||
// note logLikelihood = log (sum_j exp(L_ij)) - 0.5 * dims * ln2Pi
|
||||
*logLikelihood = std::log(sum(expL)[0]) - (double)(0.5 * dim * CV_LOG2PI);
|
||||
}
|
||||
}
|
||||
|
||||
void EM::eStep()
|
||||
{
|
||||
// Compute probs_ik from means_k, covs_k and weights_k.
|
||||
trainProbs.create(trainSamples.rows, nclusters, CV_32FC1);
|
||||
trainProbs.create(trainSamples.rows, nclusters, CV_64FC1);
|
||||
trainLabels.create(trainSamples.rows, 1, CV_32SC1);
|
||||
trainLikelihoods.create(trainSamples.rows, 1, CV_32FC1);
|
||||
trainLogLikelihoods.create(trainSamples.rows, 1, CV_64FC1);
|
||||
|
||||
computeLogWeightDivDet();
|
||||
|
||||
CV_DbgAssert(trainSamples.type() == CV_64FC1);
|
||||
CV_DbgAssert(means.type() == CV_64FC1);
|
||||
|
||||
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
|
||||
{
|
||||
Mat sampleProbs = trainProbs.row(sampleIndex);
|
||||
computeProbabilities(trainSamples.row(sampleIndex), trainLabels.at<int>(sampleIndex),
|
||||
&sampleProbs, &trainLikelihoods.at<float>(sampleIndex));
|
||||
&sampleProbs, &trainLogLikelihoods.at<double>(sampleIndex));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -548,14 +571,14 @@ void EM::mStep()
|
||||
reduce(trainProbs, weights, 0, CV_REDUCE_SUM);
|
||||
|
||||
// Update means
|
||||
means.create(nclusters, dim, CV_32FC1);
|
||||
means.create(nclusters, dim, CV_64FC1);
|
||||
means = Scalar(0);
|
||||
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
|
||||
{
|
||||
Mat clusterMean = means.row(clusterIndex);
|
||||
for(int sampleIndex = 0; sampleIndex < trainSamples.rows; sampleIndex++)
|
||||
clusterMean += trainProbs.at<float>(sampleIndex, clusterIndex) * trainSamples.row(sampleIndex);
|
||||
clusterMean /= weights.at<float>(clusterIndex);
|
||||
clusterMean += trainProbs.at<double>(sampleIndex, clusterIndex) * trainSamples.row(sampleIndex);
|
||||
clusterMean /= weights.at<double>(clusterIndex);
|
||||
}
|
||||
|
||||
// Update covsEigenValues and invCovsEigenValues
|
||||
@@ -567,12 +590,12 @@ void EM::mStep()
|
||||
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
|
||||
{
|
||||
if(covMatType != EM::COV_MAT_SPHERICAL)
|
||||
covsEigenValues[clusterIndex].create(1, dim, CV_32FC1);
|
||||
covsEigenValues[clusterIndex].create(1, dim, CV_64FC1);
|
||||
else
|
||||
covsEigenValues[clusterIndex].create(1, 1, CV_32FC1);
|
||||
covsEigenValues[clusterIndex].create(1, 1, CV_64FC1);
|
||||
|
||||
if(covMatType == EM::COV_MAT_GENERIC)
|
||||
covs[clusterIndex].create(dim, dim, CV_32FC1);
|
||||
covs[clusterIndex].create(dim, dim, CV_64FC1);
|
||||
|
||||
Mat clusterCov = covMatType != EM::COV_MAT_GENERIC ?
|
||||
covsEigenValues[clusterIndex] : covs[clusterIndex];
|
||||
@@ -585,14 +608,14 @@ void EM::mStep()
|
||||
centeredSample = trainSamples.row(sampleIndex) - means.row(clusterIndex);
|
||||
|
||||
if(covMatType == EM::COV_MAT_GENERIC)
|
||||
clusterCov += trainProbs.at<float>(sampleIndex, clusterIndex) * centeredSample.t() * centeredSample;
|
||||
clusterCov += trainProbs.at<double>(sampleIndex, clusterIndex) * centeredSample.t() * centeredSample;
|
||||
else
|
||||
{
|
||||
float p = trainProbs.at<float>(sampleIndex, clusterIndex);
|
||||
double p = trainProbs.at<double>(sampleIndex, clusterIndex);
|
||||
for(int di = 0; di < dim; di++ )
|
||||
{
|
||||
float val = centeredSample.at<float>(di);
|
||||
clusterCov.at<float>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0) += p*val*val;
|
||||
double val = centeredSample.at<double>(di);
|
||||
clusterCov.at<double>(covMatType != EM::COV_MAT_SPHERICAL ? di : 0) += p*val*val;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -600,7 +623,7 @@ void EM::mStep()
|
||||
if(covMatType == EM::COV_MAT_SPHERICAL)
|
||||
clusterCov /= dim;
|
||||
|
||||
clusterCov /= weights.at<float>(clusterIndex);
|
||||
clusterCov /= weights.at<double>(clusterIndex);
|
||||
|
||||
// Update covsRotateMats for EM::COV_MAT_GENERIC only
|
||||
if(covMatType == EM::COV_MAT_GENERIC)
|
||||
|
@@ -45,33 +45,33 @@ using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
static
|
||||
void defaultDistribs( Mat& means, vector<Mat>& covs )
|
||||
void defaultDistribs( Mat& means, vector<Mat>& covs, int type=CV_32FC1 )
|
||||
{
|
||||
float mp0[] = {0.0f, 0.0f}, cp0[] = {0.67f, 0.0f, 0.0f, 0.67f};
|
||||
float mp1[] = {5.0f, 0.0f}, cp1[] = {1.0f, 0.0f, 0.0f, 1.0f};
|
||||
float mp2[] = {1.0f, 5.0f}, cp2[] = {1.0f, 0.0f, 0.0f, 1.0f};
|
||||
means.create(3, 2, CV_32FC1);
|
||||
means.create(3, 2, type);
|
||||
Mat m0( 1, 2, CV_32FC1, mp0 ), c0( 2, 2, CV_32FC1, cp0 );
|
||||
Mat m1( 1, 2, CV_32FC1, mp1 ), c1( 2, 2, CV_32FC1, cp1 );
|
||||
Mat m2( 1, 2, CV_32FC1, mp2 ), c2( 2, 2, CV_32FC1, cp2 );
|
||||
means.resize(3), covs.resize(3);
|
||||
|
||||
Mat mr0 = means.row(0);
|
||||
m0.copyTo(mr0);
|
||||
c0.copyTo(covs[0]);
|
||||
m0.convertTo(mr0, type);
|
||||
c0.convertTo(covs[0], type);
|
||||
|
||||
Mat mr1 = means.row(1);
|
||||
m1.copyTo(mr1);
|
||||
c1.copyTo(covs[1]);
|
||||
m1.convertTo(mr1, type);
|
||||
c1.convertTo(covs[1], type);
|
||||
|
||||
Mat mr2 = means.row(2);
|
||||
m2.copyTo(mr2);
|
||||
c2.copyTo(covs[2]);
|
||||
m2.convertTo(mr2, type);
|
||||
c2.convertTo(covs[2], type);
|
||||
}
|
||||
|
||||
// generate points sets by normal distributions
|
||||
static
|
||||
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int labelType )
|
||||
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int dataType, int labelType )
|
||||
{
|
||||
vector<int>::const_iterator sit = sizes.begin();
|
||||
int total = 0;
|
||||
@@ -79,7 +79,7 @@ void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat&
|
||||
total += *sit;
|
||||
assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() );
|
||||
assert( !data.empty() && data.rows == total );
|
||||
assert( data.type() == CV_32FC1 );
|
||||
assert( data.type() == dataType );
|
||||
|
||||
labels.create( data.rows, 1, labelType );
|
||||
|
||||
@@ -98,7 +98,7 @@ void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat&
|
||||
assert( cit->rows == data.cols && cit->cols == data.cols );
|
||||
for( int i = bi; i < ei; i++, p++ )
|
||||
{
|
||||
Mat r(1, data.cols, CV_32FC1, data.ptr<float>(i));
|
||||
Mat r = data.row(i);
|
||||
r = r * (*cit) + *mit;
|
||||
if( labelType == CV_32FC1 )
|
||||
labels.at<float>(p, 0) = (float)l;
|
||||
@@ -226,7 +226,7 @@ void CV_KMeansTest::run( int /*start_from*/ )
|
||||
Mat means;
|
||||
vector<Mat> covs;
|
||||
defaultDistribs( means, covs );
|
||||
generateData( data, labels, sizes, means, covs, CV_32SC1 );
|
||||
generateData( data, labels, sizes, means, covs, CV_32FC1, CV_32SC1 );
|
||||
|
||||
int code = cvtest::TS::OK;
|
||||
float err;
|
||||
@@ -296,11 +296,11 @@ void CV_KNearestTest::run( int /*start_from*/ )
|
||||
Mat means;
|
||||
vector<Mat> covs;
|
||||
defaultDistribs( means, covs );
|
||||
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1 );
|
||||
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32FC1 );
|
||||
|
||||
// test data
|
||||
Mat testData( pointsCount, 2, CV_32FC1 ), testLabels, bestLabels;
|
||||
generateData( testData, testLabels, sizes, means, covs, CV_32FC1 );
|
||||
generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 );
|
||||
|
||||
int code = cvtest::TS::OK;
|
||||
KNearest knearest;
|
||||
@@ -392,7 +392,9 @@ int CV_EMTest::runCase( int caseIndex, const EM_Params& params,
|
||||
for( int i = 0; i < testData.rows; i++ )
|
||||
{
|
||||
Mat sample = testData.row(i);
|
||||
labels.at<int>(i,0) = (int)em.predict( sample, noArray() );
|
||||
double likelihood = 0;
|
||||
Mat probs;
|
||||
labels.at<int>(i,0) = (int)em.predict( sample, probs, &likelihood );
|
||||
}
|
||||
if( !calcErr( labels, testLabels, sizes, err, false ) )
|
||||
{
|
||||
@@ -416,22 +418,22 @@ void CV_EMTest::run( int /*start_from*/ )
|
||||
// Points distribution
|
||||
Mat means;
|
||||
vector<Mat> covs;
|
||||
defaultDistribs( means, covs );
|
||||
defaultDistribs( means, covs, CV_64FC1 );
|
||||
|
||||
// train data
|
||||
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels;
|
||||
Mat trainData( pointsCount, 2, CV_64FC1 ), trainLabels;
|
||||
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
|
||||
generateData( trainData, trainLabels, sizes, means, covs, CV_32SC1 );
|
||||
generateData( trainData, trainLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
|
||||
|
||||
// test data
|
||||
Mat testData( pointsCount, 2, CV_32FC1 ), testLabels;
|
||||
generateData( testData, testLabels, sizes, means, covs, CV_32SC1 );
|
||||
Mat testData( pointsCount, 2, CV_64FC1 ), testLabels;
|
||||
generateData( testData, testLabels, sizes, means, covs, CV_64FC1, CV_32SC1 );
|
||||
|
||||
EM_Params params;
|
||||
params.nclusters = 3;
|
||||
Mat probs(trainData.rows, params.nclusters, CV_32FC1, cv::Scalar(1));
|
||||
Mat probs(trainData.rows, params.nclusters, CV_64FC1, cv::Scalar(1));
|
||||
params.probs = &probs;
|
||||
Mat weights(1, params.nclusters, CV_32FC1, cv::Scalar(1));
|
||||
Mat weights(1, params.nclusters, CV_64FC1, cv::Scalar(1));
|
||||
params.weights = &weights;
|
||||
params.means = &means;
|
||||
params.covs = &covs;
|
||||
@@ -505,18 +507,18 @@ protected:
|
||||
int code = cvtest::TS::OK;
|
||||
cv::EM em(2);
|
||||
|
||||
Mat samples = Mat(3,1,CV_32F);
|
||||
samples.at<float>(0,0) = 1;
|
||||
samples.at<float>(1,0) = 2;
|
||||
samples.at<float>(2,0) = 3;
|
||||
Mat samples = Mat(3,1,CV_64FC1);
|
||||
samples.at<double>(0,0) = 1;
|
||||
samples.at<double>(1,0) = 2;
|
||||
samples.at<double>(2,0) = 3;
|
||||
|
||||
Mat labels;
|
||||
|
||||
em.train(samples, labels);
|
||||
|
||||
Mat firstResult(samples.rows, 1, CV_32FC1);
|
||||
Mat firstResult(samples.rows, 1, CV_32SC1);
|
||||
for( int i = 0; i < samples.rows; i++)
|
||||
firstResult.at<float>(i) = (float)em.predict( samples.row(i) );
|
||||
firstResult.at<int>(i) = em.predict(samples.row(i));
|
||||
|
||||
// Write out
|
||||
string filename = tempfile() + ".xml";
|
||||
@@ -557,7 +559,7 @@ protected:
|
||||
|
||||
int errCaseCount = 0;
|
||||
for( int i = 0; i < samples.rows; i++)
|
||||
errCaseCount = std::abs(em.predict(samples.row(i)) - firstResult.at<float>(i)) < FLT_EPSILON ? 0 : 1;
|
||||
errCaseCount = std::abs(em.predict(samples.row(i)) - firstResult.at<int>(i)) < FLT_EPSILON ? 0 : 1;
|
||||
|
||||
if( errCaseCount > 0 )
|
||||
{
|
||||
|
Reference in New Issue
Block a user