converted some more samples to C++
This commit is contained in:
114
samples/cpp/image.cpp
Normal file
114
samples/cpp/image.cpp
Normal file
@@ -0,0 +1,114 @@
|
||||
#include "cv.h" // include standard OpenCV headers, same as before
|
||||
#include "highgui.h"
|
||||
#include "ml.h"
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include <opencv2/flann/flann.hpp>
|
||||
|
||||
using namespace cv; // all the new API is put into "cv" namespace. Export its content
|
||||
using namespace std;
|
||||
using namespace cv::flann;
|
||||
|
||||
// enable/disable use of mixed API in the code below.
|
||||
#define DEMO_MIXED_API_USE 1
|
||||
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
const char* imagename = argc > 1 ? argv[1] : "lena.jpg";
|
||||
#if DEMO_MIXED_API_USE
|
||||
Ptr<IplImage> iplimg = cvLoadImage(imagename); // Ptr<T> is safe ref-conting pointer class
|
||||
if(iplimg.empty())
|
||||
{
|
||||
fprintf(stderr, "Can not load image %s\n", imagename);
|
||||
return -1;
|
||||
}
|
||||
Mat img(iplimg); // cv::Mat replaces the CvMat and IplImage, but it's easy to convert
|
||||
// between the old and the new data structures (by default, only the header
|
||||
// is converted, while the data is shared)
|
||||
#else
|
||||
Mat img = imread(imagename); // the newer cvLoadImage alternative, MATLAB-style function
|
||||
if(img.empty())
|
||||
{
|
||||
fprintf(stderr, "Can not load image %s\n", imagename);
|
||||
return -1;
|
||||
}
|
||||
#endif
|
||||
|
||||
if( !img.data ) // check if the image has been loaded properly
|
||||
return -1;
|
||||
|
||||
Mat img_yuv;
|
||||
cvtColor(img, img_yuv, CV_BGR2YCrCb); // convert image to YUV color space. The output image will be created automatically
|
||||
|
||||
vector<Mat> planes; // Vector is template vector class, similar to STL's vector. It can store matrices too.
|
||||
split(img_yuv, planes); // split the image into separate color planes
|
||||
|
||||
#if 1
|
||||
// method 1. process Y plane using an iterator
|
||||
MatIterator_<uchar> it = planes[0].begin<uchar>(), it_end = planes[0].end<uchar>();
|
||||
for(; it != it_end; ++it)
|
||||
{
|
||||
double v = *it*1.7 + rand()%21-10;
|
||||
*it = saturate_cast<uchar>(v*v/255.);
|
||||
}
|
||||
|
||||
// method 2. process the first chroma plane using pre-stored row pointer.
|
||||
// method 3. process the second chroma plane using individual element access
|
||||
for( int y = 0; y < img_yuv.rows; y++ )
|
||||
{
|
||||
uchar* Uptr = planes[1].ptr<uchar>(y);
|
||||
for( int x = 0; x < img_yuv.cols; x++ )
|
||||
{
|
||||
Uptr[x] = saturate_cast<uchar>((Uptr[x]-128)/2 + 128);
|
||||
uchar& Vxy = planes[2].at<uchar>(y, x);
|
||||
Vxy = saturate_cast<uchar>((Vxy-128)/2 + 128);
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
Mat noise(img.size(), CV_8U); // another Mat constructor; allocates a matrix of the specified size and type
|
||||
randn(noise, Scalar::all(128), Scalar::all(20)); // fills the matrix with normally distributed random values;
|
||||
// there is also randu() for uniformly distributed random number generation
|
||||
GaussianBlur(noise, noise, Size(3, 3), 0.5, 0.5); // blur the noise a bit, kernel size is 3x3 and both sigma's are set to 0.5
|
||||
|
||||
const double brightness_gain = 0;
|
||||
const double contrast_gain = 1.7;
|
||||
#if DEMO_MIXED_API_USE
|
||||
// it's easy to pass the new matrices to the functions that only work with IplImage or CvMat:
|
||||
// step 1) - convert the headers, data will not be copied
|
||||
IplImage cv_planes_0 = planes[0], cv_noise = noise;
|
||||
// step 2) call the function; do not forget unary "&" to form pointers
|
||||
cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1, -128 + brightness_gain, &cv_planes_0);
|
||||
#else
|
||||
addWeighted(planes[0], contrast_gain, noise, 1, -128 + brightness_gain, planes[0]);
|
||||
#endif
|
||||
const double color_scale = 0.5;
|
||||
// Mat::convertTo() replaces cvConvertScale. One must explicitly specify the output matrix type (we keep it intact - planes[1].type())
|
||||
planes[1].convertTo(planes[1], planes[1].type(), color_scale, 128*(1-color_scale));
|
||||
// alternative form of cv::convertScale if we know the datatype at compile time ("uchar" here).
|
||||
// This expression will not create any temporary arrays and should be almost as fast as the above variant
|
||||
planes[2] = Mat_<uchar>(planes[2]*color_scale + 128*(1-color_scale));
|
||||
|
||||
// Mat::mul replaces cvMul(). Again, no temporary arrays are created in case of simple expressions.
|
||||
planes[0] = planes[0].mul(planes[0], 1./255);
|
||||
#endif
|
||||
|
||||
// now merge the results back
|
||||
merge(planes, img_yuv);
|
||||
// and produce the output RGB image
|
||||
cvtColor(img_yuv, img, CV_YCrCb2BGR);
|
||||
|
||||
// this is counterpart for cvNamedWindow
|
||||
namedWindow("image with grain", CV_WINDOW_AUTOSIZE);
|
||||
#if DEMO_MIXED_API_USE
|
||||
// this is to demonstrate that img and iplimg really share the data - the result of the above
|
||||
// processing is stored in img and thus in iplimg too.
|
||||
cvShowImage("image with grain", iplimg);
|
||||
#else
|
||||
imshow("image with grain", img);
|
||||
#endif
|
||||
waitKey();
|
||||
|
||||
return 0;
|
||||
// all the memory will automatically be released by Vector<>, Mat and Ptr<> destructors.
|
||||
}
|
Reference in New Issue
Block a user