Initial commit of LINE-MOD source code to objdetect module.

This commit is contained in:
Patrick Mihelich 2012-02-26 23:55:18 +00:00
parent 8df208cf56
commit f174b001f3
3 changed files with 2306 additions and 1 deletions

View File

@ -47,6 +47,9 @@
#include "opencv2/features2d/features2d.hpp"
#ifdef __cplusplus
#include <map>
#include <deque>
extern "C" {
#endif
@ -655,8 +658,532 @@ struct CV_EXPORTS CvDataMatrixCode {
CvMat *corners;
};
#include <deque>
CV_EXPORTS std::deque<CvDataMatrixCode> cvFindDataMatrix(CvMat *im);
/****************************************************************************************\
* LINE-MOD *
\****************************************************************************************/
namespace cv {
namespace linemod {
using cv::FileNode;
using cv::FileStorage;
using cv::Mat;
using cv::noArray;
using cv::OutputArrayOfArrays;
using cv::Point;
using cv::Ptr;
using cv::Rect;
using cv::Size;
/// @todo Convert doxy comments to rst
/// @todo Move stuff that doesn't need to be public into linemod.cpp
/**
* \brief Compute quantized orientation image from color image.
*
* Implements section 2.2 "Computing the Gradient Orientations."
*
* \param[in] src The source 8-bit, 3-channel image.
* \param[out] magnitude Destination floating-point array of squared magnitudes.
* \param[out] angle Destination 8-bit array of orientations. Each bit
* represents one bin of the orientation space.
* \param threshold Magnitude threshold. Keep only gradients whose norms are
* larger than this.
*/
void quantizedOrientations(const Mat& src, Mat& magnitude,
Mat& angle, float threshold);
/**
* \brief Compute quantized normal image from depth image.
*
* Implements section 2.6 "Extension to Dense Depth Sensors."
*
* \param[in] src The source 16-bit depth image (in mm).
* \param[out] dst The destination 8-bit image. Each bit represents one bin of
* the view cone.
* \param distance_threshold Ignore pixels beyond this distance.
* \param difference_threshold When computing normals, ignore contributions of pixels whose
* depth difference with the central pixel is above this threshold.
*
* \todo Should also need camera model, or at least focal lengths? Replace distance_threshold with mask?
*/
void quantizedNormals(const Mat& src, Mat& dst, int distance_threshold,
int difference_threshold = 50);
/**
* \brief Discriminant feature described by its location and label.
*/
struct Feature
{
int x; ///< x offset
int y; ///< y offset
int label; ///< Quantization
Feature() {}
Feature(int x, int y, int label) : x(x), y(y), label(label) {}
void read(const FileNode& fn);
void write(FileStorage& fs) const;
};
struct Template
{
int width;
int height;
int pyramid_level;
std::vector<Feature> features;
void read(const FileNode& fn);
void write(FileStorage& fs) const;
};
/**
* \brief Crop a set of overlapping templates from different modalities.
*
* \param[in,out] templates Set of templates representing the same object view.
*
* \return The bounding box of all the templates in original image coordinates.
*/
Rect cropTemplates(std::vector<Template>& templates);
/**
* \brief Represents a modality operating over an image pyramid.
*/
class QuantizedPyramid
{
public:
// Virtual destructor
virtual ~QuantizedPyramid() {}
/**
* \brief Compute quantized image at current pyramid level for online detection.
*
* \param[out] dst The destination 8-bit image. For each pixel at most one bit is set,
* representing its classification.
*/
virtual void quantize(Mat& dst) const =0;
/**
* \brief Extract most discriminant features at current pyramid level to form a new template.
*
* \param[out] templ The new template.
*/
virtual bool extractTemplate(Template& templ) const =0;
/**
* \brief Go to the next pyramid level.
*
* \todo Allow pyramid scale factor other than 2
*/
virtual void pyrDown() =0;
protected:
/// Candidate feature with a score
struct Candidate
{
Candidate(int x, int y, int label, float score)
: f(x, y, label), score(score)
{
}
/// Sort candidates with high score to the front
bool operator<(const Candidate& rhs) const
{
return score > rhs.score;
}
Feature f;
float score;
};
/**
* \brief Choose candidate features so that they are not bunched together.
*
* \param[in] candidates Candidate features sorted by score.
* \param[out] features Destination vector of selected features.
* \param[in] num_features Number of candidates to select.
* \param[in] distance Hint for desired distance between features.
*/
static void selectScatteredFeatures(const std::vector<Candidate>& candidates,
std::vector<Feature>& features,
size_t num_features, float distance);
};
/**
* \brief Interface for modalities that plug into the LINE template matching representation.
*
* \todo Max response, to allow optimization of summing (255/MAX) features as uint8
*/
class Modality
{
public:
// Virtual destructor
virtual ~Modality() {}
/**
* \brief Form a quantized image pyramid from a source image.
*
* \param[in] src The source image. Type depends on the modality.
* \param[in] mask Optional mask. If not empty, unmasked pixels are set to zero
* in quantized image and cannot be extracted as features.
*/
Ptr<QuantizedPyramid> process(const Mat& src,
const Mat& mask = Mat()) const
{
return processImpl(src, mask);
}
virtual std::string name() const =0;
virtual void read(const FileNode& fn) =0;
virtual void write(FileStorage& fs) const =0;
/**
* \brief Create modality by name.
*
* The following modality types are supported:
* - "ColorGradient"
* - "DepthNormal"
*/
static Ptr<Modality> create(const std::string& modality_type);
/**
* \brief Load a modality from file.
*/
static Ptr<Modality> create(const FileNode& fn);
protected:
// Indirection is because process() has a default parameter.
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
const Mat& mask) const =0;
};
/**
* \brief Modality that computes quantized gradient orientations from a color image.
*/
class ColorGradient : public Modality
{
public:
/**
* \brief Default constructor. Uses reasonable default parameter values.
*/
ColorGradient();
/**
* \brief Constructor.
*
* \param weak_threshold When quantizing, discard gradients with magnitude less than this.
* \param num_features How many features a template must contain.
* \param strong_threshold Consider as candidate features only gradients whose norms are
* larger than this.
*/
ColorGradient(float weak_threshold, size_t num_features, float strong_threshold);
virtual std::string name() const;
virtual void read(const FileNode& fn);
virtual void write(FileStorage& fs) const;
float weak_threshold;
size_t num_features;
float strong_threshold;
protected:
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
const Mat& mask) const;
};
/**
* \brief Modality that computes quantized surface normals from a dense depth map.
*/
class DepthNormal : public Modality
{
public:
/**
* \brief Default constructor. Uses reasonable default parameter values.
*/
DepthNormal();
/**
* \brief Constructor.
*
* \param distance_threshold Ignore pixels beyond this distance.
* \param difference_threshold When computing normals, ignore contributions of pixels whose
* depth difference with the central pixel is above this threshold.
* \param num_features How many features a template must contain.
* \param extract_threshold Consider as candidate feature only if there are no differing
* orientations within a distance of extract_threshold.
*/
DepthNormal(int distance_threshold, int difference_threshold, size_t num_features,
int extract_threshold);
virtual std::string name() const;
virtual void read(const FileNode& fn);
virtual void write(FileStorage& fs) const;
int distance_threshold;
int difference_threshold;
size_t num_features;
int extract_threshold;
protected:
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
const Mat& mask) const;
};
/**
* \brief Debug function to colormap a quantized image for viewing.
*/
void colormap(const Mat& quantized, Mat& dst);
/**
* \brief Spread binary labels in a quantized image.
*
* Implements section 2.3 "Spreading the Orientations."
*
* \param[in] src The source 8-bit quantized image.
* \param[out] dst Destination 8-bit spread image.
* \param T Sampling step. Spread labels T/2 pixels in each direction.
*/
void spread(const Mat& src, Mat& dst, int T);
/**
* \brief Precompute response maps for a spread quantized image.
*
* Implements section 2.4 "Precomputing Response Maps."
*
* \param[in] src The source 8-bit spread quantized image.
* \param[out] response_maps Vector of 8 response maps, one for each bit label.
*/
void computeResponseMaps(const Mat& src, std::vector<Mat>& response_maps);
/**
* \brief Convert a response map to fast linearized ordering.
*
* Implements section 2.5 "Linearizing the Memory for Parallelization."
*
* \param[in] response_map The 2D response map, an 8-bit image.
* \param[out] linearized The response map in linearized order. It has T*T rows,
* each of which is a linear memory of length (W/T)*(H/T).
* \param T Sampling step.
*/
void linearize(const Mat& response_map, Mat& linearized, int T);
/**
* \brief Compute similarity measure for a given template at each sampled image location.
*
* Uses linear memories to compute the similarity measure as described in Fig. 7.
*
* \param[in] linear_memories Vector of 8 linear memories, one for each label.
* \param[in] templ Template to match against.
* \param[out] dst Destination 8-bit similarity image of size (W/T, H/T).
* \param size Size (W, H) of the original input image.
* \param T Sampling step.
*/
void similarity(const std::vector<Mat>& linear_memories, const Template& templ,
Mat& dst, Size size, int T);
/**
* \brief Compute similarity measure for a given template in a local region.
*
* \param[in] linear_memories Vector of 8 linear memories, one for each label.
* \param[in] templ Template to match against.
* \param[out] dst Destination 8-bit similarity image, 16x16.
* \param size Size (W, H) of the original input image.
* \param T Sampling step.
* \param center Center of the local region.
*/
void similarityLocal(const std::vector<Mat>& linear_memories, const Template& templ,
Mat& dst, Size size, int T, Point center);
/**
* \brief Accumulate one or more 8-bit similarity images.
*
* \param[in] similarities Source 8-bit similarity images.
* \param[out] dst Destination 16-bit similarity image.
*/
void addSimilarities(const std::vector<Mat>& similarities, Mat& dst);
/**
* \brief Represents a successful template match.
*/
struct Match
{
Match()
{
}
Match(int x, int y, float similarity, const std::string& class_id, int template_id)
: x(x), y(y), similarity(similarity), class_id(class_id), template_id(template_id)
{
}
/// Sort matches with high similarity to the front
bool operator<(const Match& rhs) const
{
// Secondarily sort on template_id for the sake of duplicate removal
if (similarity != rhs.similarity)
return similarity > rhs.similarity;
else
return template_id < rhs.template_id;
}
bool operator==(const Match& rhs) const
{
return x == rhs.x && y == rhs.y && similarity == rhs.similarity && class_id == rhs.class_id;
}
int x;
int y;
float similarity;
std::string class_id;
int template_id;
};
/**
* \brief Object detector using the LINE template matching algorithm with any set of
* modalities.
*/
class Detector
{
public:
/**
* \brief Empty constructor, initialize with read().
*/
Detector();
/**
* \brief Constructor.
*
* \param modalities Modalities to use (color gradients, depth normals, ...).
* \param T_pyramid Value of the sampling step T at each pyramid level. The
* number of pyramid levels is T_pyramid.size().
* \param pyramid_distance Scale factor between pyramid levels.
*/
Detector(const std::vector< Ptr<Modality> >& modalities,
const std::vector<int>& T_pyramid, double pyramid_distance = 2.0);
/**
* \brief Detect objects by template matching.
*
* Matches globally at the lowest pyramid level, then refines locally stepping up the pyramid.
*
* \param sources Source images, one for each modality.
* \param threshold Similarity threshold, a percentage between 0 and 100.
* \param[out] matches Template matches, sorted by similarity score.
* \param class_ids If non-empty, only search for the desired object classes.
* \param[out] quantized_images Optionally return vector<Mat> of quantized images.
* \param masks The masks for consideration during matching. The masks should be CV_8UC1
* where 255 represents a valid pixel. If non-empty, the vector must be
* the same size as sources. Each element must be
* empty or the same size as its corresponding source.
*/
void match(const std::vector<Mat>& sources, float threshold, std::vector<Match>& matches,
const std::vector<std::string>& class_ids = std::vector<std::string>(),
OutputArrayOfArrays quantized_images = noArray(),
const std::vector<Mat>& masks = std::vector<Mat>()) const;
/**
* \brief Add new object template.
*
* \param sources Source images, one for each modality.
* \param class_id Object class ID.
* \param object_mask Mask separating object from background.
* \param[out] bounding_box Optionally return bounding box of the extracted features.
*
* \return Template ID, or -1 if failed to extract a valid template.
*/
int addTemplate(const std::vector<Mat>& sources, const std::string& class_id,
const Mat& object_mask, Rect* bounding_box = NULL);
/**
* \brief Add a new object template computed by external means.
*/
int addSyntheticTemplate(const std::vector<Template>& templates, const std::string& class_id);
/**
* \brief Get the modalities used by this detector.
*
* You are not permitted to add/remove modalities, but you may dynamic_cast them to
* tweak parameters.
*/
const std::vector< Ptr<Modality> >& getModalities() const { return modalities; }
/**
* \brief Get sampling step T at pyramid_level.
*/
int getT(int pyramid_level) const { return T_at_level[pyramid_level]; }
/**
* \brief Get number of pyramid levels used by this detector.
*/
int pyramidLevels() const { return pyramid_levels; }
/**
* \brief Get the template pyramid identified by template_id.
*
* For example, with 2 modalities (Gradient, Normal) and two pyramid levels
* (L0, L1), the order is (GradientL0, NormalL0, GradientL1, NormalL1).
*/
const std::vector<Template>& getTemplates(const std::string& class_id, int template_id) const;
int numTemplates() const;
int numTemplates(const std::string& class_id) const;
int numClasses() const { return class_templates.size(); }
std::vector<std::string> classIds() const;
void read(const FileNode& fn);
void write(FileStorage& fs) const;
std::string readClass(const FileNode& fn, const std::string &class_id_override = "");
void writeClass(const std::string& class_id, FileStorage& fs) const;
void readClasses(const std::vector<std::string>& class_ids,
const std::string& format = "templates_%s.yml.gz");
void writeClasses(const std::string& format = "templates_%s.yml.gz") const;
protected:
std::vector< Ptr<Modality> > modalities;
int pyramid_levels;
double pyramid_distance;
std::vector<int> T_at_level;
typedef std::vector<Template> TemplatePyramid;
typedef std::map<std::string, std::vector<TemplatePyramid> > TemplatesMap;
TemplatesMap class_templates;
typedef std::vector<Mat> LinearMemories;
// Indexed as [pyramid level][modality][quantized label]
typedef std::vector< std::vector<LinearMemories> > LinearMemoryPyramid;
void matchClass(const LinearMemoryPyramid& lm_pyramid,
const std::vector<Size>& sizes,
float threshold, std::vector<Match>& matches,
const std::string& class_id,
const std::vector<TemplatePyramid>& template_pyramids) const;
};
/**
* \brief Factory function for detector using LINE algorithm with color gradients.
*
* Default parameter settings suitable for VGA images.
*/
Ptr<Detector> getDefaultLINE();
/**
* \brief Factory function for detector using LINE-MOD algorithm with color gradients
* and depth normals.
*
* Default parameter settings suitable for VGA images.
*/
Ptr<Detector> getDefaultLINEMOD();
} // namespace linemod
} // namespace cv
#endif
#endif

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long