fixed warnings; restored fixed_size parameter in AutoBuffer
This commit is contained in:
@@ -1,342 +1,341 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of OpenCV Foundation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of OpenCV Foundation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
struct MinAreaState
|
||||
struct MinAreaState
|
||||
{
|
||||
int bottom;
|
||||
int left;
|
||||
float height;
|
||||
float width;
|
||||
float base_a;
|
||||
float base_b;
|
||||
};
|
||||
|
||||
enum { CALIPERS_MAXHEIGHT=0, CALIPERS_MINAREARECT=1, CALIPERS_MAXDIST=2 };
|
||||
|
||||
/*F///////////////////////////////////////////////////////////////////////////////////////
|
||||
// Name: rotatingCalipers
|
||||
// Purpose:
|
||||
// Rotating calipers algorithm with some applications
|
||||
//
|
||||
// Context:
|
||||
// Parameters:
|
||||
// points - convex hull vertices ( any orientation )
|
||||
// n - number of vertices
|
||||
// mode - concrete application of algorithm
|
||||
// can be CV_CALIPERS_MAXDIST or
|
||||
// CV_CALIPERS_MINAREARECT
|
||||
// left, bottom, right, top - indexes of extremal points
|
||||
// out - output info.
|
||||
// In case CV_CALIPERS_MAXDIST it points to float value -
|
||||
// maximal height of polygon.
|
||||
// In case CV_CALIPERS_MINAREARECT
|
||||
// ((CvPoint2D32f*)out)[0] - corner
|
||||
// ((CvPoint2D32f*)out)[1] - vector1
|
||||
// ((CvPoint2D32f*)out)[0] - corner2
|
||||
//
|
||||
// ^
|
||||
// |
|
||||
// vector2 |
|
||||
// |
|
||||
// |____________\
|
||||
// corner /
|
||||
// vector1
|
||||
//
|
||||
// Returns:
|
||||
// Notes:
|
||||
//F*/
|
||||
|
||||
/* we will use usual cartesian coordinates */
|
||||
static void rotatingCalipers( const Point2f* points, int n, int mode, float* out )
|
||||
{
|
||||
float minarea = FLT_MAX;
|
||||
float max_dist = 0;
|
||||
char buffer[32] = {};
|
||||
int i, k;
|
||||
AutoBuffer<float> abuf(n*3);
|
||||
float* inv_vect_length = abuf;
|
||||
Point2f* vect = (Point2f*)(inv_vect_length + n);
|
||||
int left = 0, bottom = 0, right = 0, top = 0;
|
||||
int seq[4] = { -1, -1, -1, -1 };
|
||||
|
||||
/* rotating calipers sides will always have coordinates
|
||||
(a,b) (-b,a) (-a,-b) (b, -a)
|
||||
*/
|
||||
/* this is a first base bector (a,b) initialized by (1,0) */
|
||||
float orientation = 0;
|
||||
float base_a;
|
||||
float base_b = 0;
|
||||
|
||||
float left_x, right_x, top_y, bottom_y;
|
||||
Point2f pt0 = points[0];
|
||||
|
||||
left_x = right_x = pt0.x;
|
||||
top_y = bottom_y = pt0.y;
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
int bottom;
|
||||
int left;
|
||||
float height;
|
||||
float width;
|
||||
float base_a;
|
||||
float base_b;
|
||||
};
|
||||
double dx, dy;
|
||||
|
||||
enum { CALIPERS_MAXHEIGHT=0, CALIPERS_MINAREARECT=1, CALIPERS_MAXDIST=2 };
|
||||
if( pt0.x < left_x )
|
||||
left_x = pt0.x, left = i;
|
||||
|
||||
/*F///////////////////////////////////////////////////////////////////////////////////////
|
||||
// Name: rotatingCalipers
|
||||
// Purpose:
|
||||
// Rotating calipers algorithm with some applications
|
||||
//
|
||||
// Context:
|
||||
// Parameters:
|
||||
// points - convex hull vertices ( any orientation )
|
||||
// n - number of vertices
|
||||
// mode - concrete application of algorithm
|
||||
// can be CV_CALIPERS_MAXDIST or
|
||||
// CV_CALIPERS_MINAREARECT
|
||||
// left, bottom, right, top - indexes of extremal points
|
||||
// out - output info.
|
||||
// In case CV_CALIPERS_MAXDIST it points to float value -
|
||||
// maximal height of polygon.
|
||||
// In case CV_CALIPERS_MINAREARECT
|
||||
// ((CvPoint2D32f*)out)[0] - corner
|
||||
// ((CvPoint2D32f*)out)[1] - vector1
|
||||
// ((CvPoint2D32f*)out)[0] - corner2
|
||||
//
|
||||
// ^
|
||||
// |
|
||||
// vector2 |
|
||||
// |
|
||||
// |____________\
|
||||
// corner /
|
||||
// vector1
|
||||
//
|
||||
// Returns:
|
||||
// Notes:
|
||||
//F*/
|
||||
if( pt0.x > right_x )
|
||||
right_x = pt0.x, right = i;
|
||||
|
||||
/* we will use usual cartesian coordinates */
|
||||
static void rotatingCalipers( const Point2f* points, int n, int mode, float* out )
|
||||
if( pt0.y > top_y )
|
||||
top_y = pt0.y, top = i;
|
||||
|
||||
if( pt0.y < bottom_y )
|
||||
bottom_y = pt0.y, bottom = i;
|
||||
|
||||
Point2f pt = points[(i+1) & (i+1 < n ? -1 : 0)];
|
||||
|
||||
dx = pt.x - pt0.x;
|
||||
dy = pt.y - pt0.y;
|
||||
|
||||
vect[i].x = (float)dx;
|
||||
vect[i].y = (float)dy;
|
||||
inv_vect_length[i] = (float)(1./sqrt(dx*dx + dy*dy));
|
||||
|
||||
pt0 = pt;
|
||||
}
|
||||
|
||||
// find convex hull orientation
|
||||
{
|
||||
float minarea = FLT_MAX;
|
||||
float max_dist = 0;
|
||||
char buffer[32] = {};
|
||||
int i, k;
|
||||
AutoBuffer<float> buf(n*3);
|
||||
float* inv_vect_length = buf;
|
||||
Point2f* vect = (Point2f*)(inv_vect_length + n);
|
||||
int left = 0, bottom = 0, right = 0, top = 0;
|
||||
int seq[4] = { -1, -1, -1, -1 };
|
||||
|
||||
/* rotating calipers sides will always have coordinates
|
||||
(a,b) (-b,a) (-a,-b) (b, -a)
|
||||
*/
|
||||
/* this is a first base bector (a,b) initialized by (1,0) */
|
||||
float orientation = 0;
|
||||
float base_a;
|
||||
float base_b = 0;
|
||||
|
||||
float left_x, right_x, top_y, bottom_y;
|
||||
Point2f pt0 = points[0];
|
||||
|
||||
left_x = right_x = pt0.x;
|
||||
top_y = bottom_y = pt0.y;
|
||||
double ax = vect[n-1].x;
|
||||
double ay = vect[n-1].y;
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
double dx, dy;
|
||||
double bx = vect[i].x;
|
||||
double by = vect[i].y;
|
||||
|
||||
if( pt0.x < left_x )
|
||||
left_x = pt0.x, left = i;
|
||||
double convexity = ax * by - ay * bx;
|
||||
|
||||
if( pt0.x > right_x )
|
||||
right_x = pt0.x, right = i;
|
||||
|
||||
if( pt0.y > top_y )
|
||||
top_y = pt0.y, top = i;
|
||||
|
||||
if( pt0.y < bottom_y )
|
||||
bottom_y = pt0.y, bottom = i;
|
||||
|
||||
Point2f pt = points[(i+1) & (i+1 < n ? -1 : 0)];
|
||||
|
||||
dx = pt.x - pt0.x;
|
||||
dy = pt.y - pt0.y;
|
||||
|
||||
vect[i].x = (float)dx;
|
||||
vect[i].y = (float)dy;
|
||||
inv_vect_length[i] = (float)(1./sqrt(dx*dx + dy*dy));
|
||||
|
||||
pt0 = pt;
|
||||
}
|
||||
|
||||
// find convex hull orientation
|
||||
{
|
||||
double ax = vect[n-1].x;
|
||||
double ay = vect[n-1].y;
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
if( convexity != 0 )
|
||||
{
|
||||
double bx = vect[i].x;
|
||||
double by = vect[i].y;
|
||||
|
||||
double convexity = ax * by - ay * bx;
|
||||
|
||||
if( convexity != 0 )
|
||||
{
|
||||
orientation = (convexity > 0) ? 1.f : (-1.f);
|
||||
break;
|
||||
}
|
||||
ax = bx;
|
||||
ay = by;
|
||||
orientation = (convexity > 0) ? 1.f : (-1.f);
|
||||
break;
|
||||
}
|
||||
CV_Assert( orientation != 0 );
|
||||
ax = bx;
|
||||
ay = by;
|
||||
}
|
||||
base_a = orientation;
|
||||
CV_Assert( orientation != 0 );
|
||||
}
|
||||
base_a = orientation;
|
||||
|
||||
/*****************************************************************************************/
|
||||
/* init calipers position */
|
||||
seq[0] = bottom;
|
||||
seq[1] = right;
|
||||
seq[2] = top;
|
||||
seq[3] = left;
|
||||
/*****************************************************************************************/
|
||||
/* Main loop - evaluate angles and rotate calipers */
|
||||
/*****************************************************************************************/
|
||||
/* init calipers position */
|
||||
seq[0] = bottom;
|
||||
seq[1] = right;
|
||||
seq[2] = top;
|
||||
seq[3] = left;
|
||||
/*****************************************************************************************/
|
||||
/* Main loop - evaluate angles and rotate calipers */
|
||||
|
||||
/* all of edges will be checked while rotating calipers by 90 degrees */
|
||||
for( k = 0; k < n; k++ )
|
||||
/* all of edges will be checked while rotating calipers by 90 degrees */
|
||||
for( k = 0; k < n; k++ )
|
||||
{
|
||||
/* sinus of minimal angle */
|
||||
/*float sinus;*/
|
||||
|
||||
/* compute cosine of angle between calipers side and polygon edge */
|
||||
/* dp - dot product */
|
||||
float dp0 = base_a * vect[seq[0]].x + base_b * vect[seq[0]].y;
|
||||
float dp1 = -base_b * vect[seq[1]].x + base_a * vect[seq[1]].y;
|
||||
float dp2 = -base_a * vect[seq[2]].x - base_b * vect[seq[2]].y;
|
||||
float dp3 = base_b * vect[seq[3]].x - base_a * vect[seq[3]].y;
|
||||
|
||||
float cosalpha = dp0 * inv_vect_length[seq[0]];
|
||||
float maxcos = cosalpha;
|
||||
|
||||
/* number of calipers edges, that has minimal angle with edge */
|
||||
int main_element = 0;
|
||||
|
||||
/* choose minimal angle */
|
||||
cosalpha = dp1 * inv_vect_length[seq[1]];
|
||||
maxcos = (cosalpha > maxcos) ? (main_element = 1, cosalpha) : maxcos;
|
||||
cosalpha = dp2 * inv_vect_length[seq[2]];
|
||||
maxcos = (cosalpha > maxcos) ? (main_element = 2, cosalpha) : maxcos;
|
||||
cosalpha = dp3 * inv_vect_length[seq[3]];
|
||||
maxcos = (cosalpha > maxcos) ? (main_element = 3, cosalpha) : maxcos;
|
||||
|
||||
/*rotate calipers*/
|
||||
{
|
||||
/* sinus of minimal angle */
|
||||
/*float sinus;*/
|
||||
|
||||
/* compute cosine of angle between calipers side and polygon edge */
|
||||
/* dp - dot product */
|
||||
float dp0 = base_a * vect[seq[0]].x + base_b * vect[seq[0]].y;
|
||||
float dp1 = -base_b * vect[seq[1]].x + base_a * vect[seq[1]].y;
|
||||
float dp2 = -base_a * vect[seq[2]].x - base_b * vect[seq[2]].y;
|
||||
float dp3 = base_b * vect[seq[3]].x - base_a * vect[seq[3]].y;
|
||||
|
||||
float cosalpha = dp0 * inv_vect_length[seq[0]];
|
||||
float maxcos = cosalpha;
|
||||
|
||||
/* number of calipers edges, that has minimal angle with edge */
|
||||
int main_element = 0;
|
||||
|
||||
/* choose minimal angle */
|
||||
cosalpha = dp1 * inv_vect_length[seq[1]];
|
||||
maxcos = (cosalpha > maxcos) ? (main_element = 1, cosalpha) : maxcos;
|
||||
cosalpha = dp2 * inv_vect_length[seq[2]];
|
||||
maxcos = (cosalpha > maxcos) ? (main_element = 2, cosalpha) : maxcos;
|
||||
cosalpha = dp3 * inv_vect_length[seq[3]];
|
||||
maxcos = (cosalpha > maxcos) ? (main_element = 3, cosalpha) : maxcos;
|
||||
|
||||
/*rotate calipers*/
|
||||
//get next base
|
||||
int pindex = seq[main_element];
|
||||
float lead_x = vect[pindex].x*inv_vect_length[pindex];
|
||||
float lead_y = vect[pindex].y*inv_vect_length[pindex];
|
||||
switch( main_element )
|
||||
{
|
||||
//get next base
|
||||
int pindex = seq[main_element];
|
||||
float lead_x = vect[pindex].x*inv_vect_length[pindex];
|
||||
float lead_y = vect[pindex].y*inv_vect_length[pindex];
|
||||
switch( main_element )
|
||||
{
|
||||
case 0:
|
||||
base_a = lead_x;
|
||||
base_b = lead_y;
|
||||
break;
|
||||
case 1:
|
||||
base_a = lead_y;
|
||||
base_b = -lead_x;
|
||||
break;
|
||||
case 2:
|
||||
base_a = -lead_x;
|
||||
base_b = -lead_y;
|
||||
break;
|
||||
case 3:
|
||||
base_a = -lead_y;
|
||||
base_b = lead_x;
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsError, "main_element should be 0, 1, 2 or 3");
|
||||
}
|
||||
case 0:
|
||||
base_a = lead_x;
|
||||
base_b = lead_y;
|
||||
break;
|
||||
case 1:
|
||||
base_a = lead_y;
|
||||
base_b = -lead_x;
|
||||
break;
|
||||
case 2:
|
||||
base_a = -lead_x;
|
||||
base_b = -lead_y;
|
||||
break;
|
||||
case 3:
|
||||
base_a = -lead_y;
|
||||
base_b = lead_x;
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsError, "main_element should be 0, 1, 2 or 3");
|
||||
}
|
||||
/* change base point of main edge */
|
||||
seq[main_element] += 1;
|
||||
seq[main_element] = (seq[main_element] == n) ? 0 : seq[main_element];
|
||||
|
||||
switch (mode)
|
||||
{
|
||||
case CALIPERS_MAXHEIGHT:
|
||||
{
|
||||
/* now main element lies on edge alligned to calipers side */
|
||||
|
||||
/* find opposite element i.e. transform */
|
||||
/* 0->2, 1->3, 2->0, 3->1 */
|
||||
int opposite_el = main_element ^ 2;
|
||||
|
||||
float dx = points[seq[opposite_el]].x - points[seq[main_element]].x;
|
||||
float dy = points[seq[opposite_el]].y - points[seq[main_element]].y;
|
||||
float dist;
|
||||
|
||||
if( main_element & 1 )
|
||||
dist = (float)fabs(dx * base_a + dy * base_b);
|
||||
else
|
||||
dist = (float)fabs(dx * (-base_b) + dy * base_a);
|
||||
|
||||
if( dist > max_dist )
|
||||
max_dist = dist;
|
||||
|
||||
break;
|
||||
}
|
||||
case CALIPERS_MINAREARECT:
|
||||
/* find area of rectangle */
|
||||
{
|
||||
float height;
|
||||
float area;
|
||||
|
||||
/* find vector left-right */
|
||||
float dx = points[seq[1]].x - points[seq[3]].x;
|
||||
float dy = points[seq[1]].y - points[seq[3]].y;
|
||||
|
||||
/* dotproduct */
|
||||
float width = dx * base_a + dy * base_b;
|
||||
|
||||
/* find vector left-right */
|
||||
dx = points[seq[2]].x - points[seq[0]].x;
|
||||
dy = points[seq[2]].y - points[seq[0]].y;
|
||||
|
||||
/* dotproduct */
|
||||
height = -dx * base_b + dy * base_a;
|
||||
|
||||
area = width * height;
|
||||
if( area <= minarea )
|
||||
{
|
||||
float *buf = (float *) buffer;
|
||||
|
||||
minarea = area;
|
||||
/* leftist point */
|
||||
((int *) buf)[0] = seq[3];
|
||||
buf[1] = base_a;
|
||||
buf[2] = width;
|
||||
buf[3] = base_b;
|
||||
buf[4] = height;
|
||||
/* bottom point */
|
||||
((int *) buf)[5] = seq[0];
|
||||
buf[6] = area;
|
||||
}
|
||||
break;
|
||||
}
|
||||
} /*switch */
|
||||
} /* for */
|
||||
}
|
||||
/* change base point of main edge */
|
||||
seq[main_element] += 1;
|
||||
seq[main_element] = (seq[main_element] == n) ? 0 : seq[main_element];
|
||||
|
||||
switch (mode)
|
||||
{
|
||||
case CALIPERS_MINAREARECT:
|
||||
case CALIPERS_MAXHEIGHT:
|
||||
{
|
||||
/* now main element lies on edge alligned to calipers side */
|
||||
|
||||
/* find opposite element i.e. transform */
|
||||
/* 0->2, 1->3, 2->0, 3->1 */
|
||||
int opposite_el = main_element ^ 2;
|
||||
|
||||
float dx = points[seq[opposite_el]].x - points[seq[main_element]].x;
|
||||
float dy = points[seq[opposite_el]].y - points[seq[main_element]].y;
|
||||
float dist;
|
||||
|
||||
if( main_element & 1 )
|
||||
dist = (float)fabs(dx * base_a + dy * base_b);
|
||||
else
|
||||
dist = (float)fabs(dx * (-base_b) + dy * base_a);
|
||||
|
||||
if( dist > max_dist )
|
||||
max_dist = dist;
|
||||
}
|
||||
break;
|
||||
case CALIPERS_MINAREARECT:
|
||||
/* find area of rectangle */
|
||||
{
|
||||
float height;
|
||||
float area;
|
||||
|
||||
/* find vector left-right */
|
||||
float dx = points[seq[1]].x - points[seq[3]].x;
|
||||
float dy = points[seq[1]].y - points[seq[3]].y;
|
||||
|
||||
/* dotproduct */
|
||||
float width = dx * base_a + dy * base_b;
|
||||
|
||||
/* find vector left-right */
|
||||
dx = points[seq[2]].x - points[seq[0]].x;
|
||||
dy = points[seq[2]].y - points[seq[0]].y;
|
||||
|
||||
/* dotproduct */
|
||||
height = -dx * base_b + dy * base_a;
|
||||
|
||||
area = width * height;
|
||||
if( area <= minarea )
|
||||
{
|
||||
float *buf = (float *) buffer;
|
||||
|
||||
float A1 = buf[1];
|
||||
float B1 = buf[3];
|
||||
|
||||
float A2 = -buf[3];
|
||||
float B2 = buf[1];
|
||||
|
||||
float C1 = A1 * points[((int *) buf)[0]].x + points[((int *) buf)[0]].y * B1;
|
||||
float C2 = A2 * points[((int *) buf)[5]].x + points[((int *) buf)[5]].y * B2;
|
||||
|
||||
float idet = 1.f / (A1 * B2 - A2 * B1);
|
||||
|
||||
float px = (C1 * B2 - C2 * B1) * idet;
|
||||
float py = (A1 * C2 - A2 * C1) * idet;
|
||||
|
||||
out[0] = px;
|
||||
out[1] = py;
|
||||
|
||||
out[2] = A1 * buf[2];
|
||||
out[3] = B1 * buf[2];
|
||||
|
||||
out[4] = A2 * buf[4];
|
||||
out[5] = B2 * buf[4];
|
||||
minarea = area;
|
||||
/* leftist point */
|
||||
((int *) buf)[0] = seq[3];
|
||||
buf[1] = base_a;
|
||||
buf[2] = width;
|
||||
buf[3] = base_b;
|
||||
buf[4] = height;
|
||||
/* bottom point */
|
||||
((int *) buf)[5] = seq[0];
|
||||
buf[6] = area;
|
||||
}
|
||||
break;
|
||||
case CALIPERS_MAXHEIGHT:
|
||||
{
|
||||
out[0] = max_dist;
|
||||
}
|
||||
break;
|
||||
break;
|
||||
} /*switch */
|
||||
} /* for */
|
||||
|
||||
switch (mode)
|
||||
{
|
||||
case CALIPERS_MINAREARECT:
|
||||
{
|
||||
float *buf = (float *) buffer;
|
||||
|
||||
float A1 = buf[1];
|
||||
float B1 = buf[3];
|
||||
|
||||
float A2 = -buf[3];
|
||||
float B2 = buf[1];
|
||||
|
||||
float C1 = A1 * points[((int *) buf)[0]].x + points[((int *) buf)[0]].y * B1;
|
||||
float C2 = A2 * points[((int *) buf)[5]].x + points[((int *) buf)[5]].y * B2;
|
||||
|
||||
float idet = 1.f / (A1 * B2 - A2 * B1);
|
||||
|
||||
float px = (C1 * B2 - C2 * B1) * idet;
|
||||
float py = (A1 * C2 - A2 * C1) * idet;
|
||||
|
||||
out[0] = px;
|
||||
out[1] = py;
|
||||
|
||||
out[2] = A1 * buf[2];
|
||||
out[3] = B1 * buf[2];
|
||||
|
||||
out[4] = A2 * buf[4];
|
||||
out[5] = B2 * buf[4];
|
||||
}
|
||||
break;
|
||||
case CALIPERS_MAXHEIGHT:
|
||||
{
|
||||
out[0] = max_dist;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
@@ -390,7 +389,7 @@ cv::RotatedRect cv::minAreaRect( InputArray _points )
|
||||
|
||||
|
||||
CV_IMPL CvBox2D
|
||||
cvMinAreaRect2( const CvArr* array, CvMemStorage* storage )
|
||||
cvMinAreaRect2( const CvArr* array, CvMemStorage* /*storage*/ )
|
||||
{
|
||||
cv::AutoBuffer<double> abuf;
|
||||
cv::Mat points = cv::cvarrToMat(array, false, false, 0, &abuf);
|
||||
|
Reference in New Issue
Block a user