a lot of refactoring

This commit is contained in:
Anatoly Baksheev
2010-08-13 16:50:07 +00:00
parent 35ebeb21bd
commit ef9a9d43a4
4 changed files with 286 additions and 323 deletions

View File

@@ -74,7 +74,7 @@ struct TypeLimits<float>
/////////////////////// load constants ////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
namespace csbp_krnls
{
__constant__ int cndisp;
@@ -101,20 +101,20 @@ namespace cv { namespace gpu { namespace csbp
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th,
const DevMem2D& left, const DevMem2D& right, const DevMem2D& temp)
{
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cndisp, &ndisp, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cndisp, &ndisp, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmax_data_term, &max_data_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdata_weight, &data_weight, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmax_disc_term, &max_disc_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisc_single_jump, &disc_single_jump, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmax_data_term, &max_data_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdata_weight, &data_weight, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmax_disc_term, &max_disc_term, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisc_single_jump, &disc_single_jump, sizeof(float)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cth, &min_disp_th, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cth, &min_disp_th, sizeof(int)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cimg_step, &left.step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cimg_step, &left.step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cleft, &left.ptr, sizeof(left.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cright, &right.ptr, sizeof(right.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::ctemp, &temp.ptr, sizeof(temp.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cleft, &left.ptr, sizeof(left.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cright, &right.ptr, sizeof(right.ptr)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::ctemp, &temp.ptr, sizeof(temp.ptr)) );
}
}}}
@@ -122,7 +122,7 @@ namespace cv { namespace gpu { namespace csbp
/////////////////////// init data cost ////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
namespace csbp_krnls
{
template <int channels>
struct DataCostPerPixel
@@ -306,7 +306,7 @@ namespace csbp_kernels
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void init_data_cost_caller_(int /*rows*/, int /*cols*/, int h, int w, int level, int /*ndisp*/, int channels, const cudaStream_t& stream)
void init_data_cost_caller_(int /*rows*/, int /*cols*/, int h, int w, int level, int /*ndisp*/, int channels, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
@@ -316,14 +316,14 @@ namespace cv { namespace gpu { namespace csbp
switch (channels)
{
case 1: csbp_kernels::init_data_cost<T, 1><<<grid, threads, 0, stream>>>(h, w, level); break;
case 3: csbp_kernels::init_data_cost<T, 3><<<grid, threads, 0, stream>>>(h, w, level); break;
case 1: csbp_krnls::init_data_cost<T, 1><<<grid, threads, 0, stream>>>(h, w, level); break;
case 3: csbp_krnls::init_data_cost<T, 3><<<grid, threads, 0, stream>>>(h, w, level); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
}
template <typename T, int winsz>
void init_data_cost_reduce_caller_(int rows, int cols, int h, int w, int level, int ndisp, int channels, const cudaStream_t& stream)
void init_data_cost_reduce_caller_(int rows, int cols, int h, int w, int level, int ndisp, int channels, cudaStream_t stream)
{
const int threadsNum = 256;
const size_t smem_size = threadsNum * sizeof(float);
@@ -334,83 +334,64 @@ namespace cv { namespace gpu { namespace csbp
switch (channels)
{
case 1: csbp_kernels::init_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
case 3: csbp_kernels::init_data_cost_reduce<T, winsz, 3><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
case 1: csbp_krnls::init_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
case 3: csbp_krnls::init_data_cost_reduce<T, winsz, 3><<<grid, threads, smem_size, stream>>>(level, rows, cols, h); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
}
typedef void (*InitDataCostCaller)(int cols, int rows, int w, int h, int level, int ndisp, int channels, const cudaStream_t& stream);
template <typename T>
void get_first_k_initial_local_caller_(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, int h, int w, int nr_plane, const cudaStream_t& stream)
{
template<class T>
void init_data_cost_tmpl(int rows, int cols, T* disp_selected_pyr, T* data_cost_selected,
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream)
{
typedef void (*InitDataCostCaller)(int cols, int rows, int w, int h, int level, int ndisp, int channels, cudaStream_t stream);
static const InitDataCostCaller init_data_cost_callers[] =
{
init_data_cost_caller_<T>, init_data_cost_caller_<T>, init_data_cost_reduce_caller_<T, 4>,
init_data_cost_reduce_caller_<T, 8>, init_data_cost_reduce_caller_<T, 16>, init_data_cost_reduce_caller_<T, 32>,
init_data_cost_reduce_caller_<T, 64>, init_data_cost_reduce_caller_<T, 128>, init_data_cost_reduce_caller_<T, 256>
};
size_t disp_step = msg_step * h;
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step, sizeof(size_t)) );
init_data_cost_callers[level](rows, cols, h, w, level, ndisp, channels, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x);
grid.y = divUp(h, threads.y);
csbp_kernels::get_first_k_initial_local<T><<<grid, threads, 0, stream>>>((T*)data_cost_selected.ptr, (T*)disp_selected_pyr.ptr, h, w, nr_plane);
}
typedef void (*GetFirstKInitialLocalCaller)(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected, int h, int w, int nr_plane, const cudaStream_t& stream);
void init_data_cost(int rows, int cols, const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost_selected,
size_t msg_step, int msg_type, int h, int w, int level, int nr_plane, int ndisp, int channels, const cudaStream_t& stream)
{
static const InitDataCostCaller init_data_cost_callers[8][9] =
{
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{init_data_cost_caller_<short>, init_data_cost_caller_<short>, init_data_cost_reduce_caller_<short, 4>,
init_data_cost_reduce_caller_<short, 8>, init_data_cost_reduce_caller_<short, 16>, init_data_cost_reduce_caller_<short, 32>,
init_data_cost_reduce_caller_<short, 64>, init_data_cost_reduce_caller_<short, 128>, init_data_cost_reduce_caller_<short, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{init_data_cost_caller_<float>, init_data_cost_caller_<float>, init_data_cost_reduce_caller_<float, 4>,
init_data_cost_reduce_caller_<float, 8>, init_data_cost_reduce_caller_<float, 16>, init_data_cost_reduce_caller_<float, 32>,
init_data_cost_reduce_caller_<float, 64>, init_data_cost_reduce_caller_<float, 128>, init_data_cost_reduce_caller_<float, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}
};
static const GetFirstKInitialLocalCaller get_first_k_initial_local_callers[8] =
{
0, 0, 0,
get_first_k_initial_local_caller_<short>,
0,
get_first_k_initial_local_caller_<float>,
0, 0
};
InitDataCostCaller init_data_cost_caller = init_data_cost_callers[msg_type][level];
GetFirstKInitialLocalCaller get_first_k_initial_local_caller = get_first_k_initial_local_callers[msg_type];
if (!init_data_cost_caller || !get_first_k_initial_local_caller)
cv::gpu::error("Unsupported message type or levels count", __FILE__, __LINE__);
size_t disp_step = msg_step * h;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) );
init_data_cost_caller(rows, cols, h, w, level, ndisp, channels, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
get_first_k_initial_local_caller(disp_selected_pyr, data_cost_selected, h, w, nr_plane, stream);
csbp_krnls::get_first_k_initial_local<<<grid, threads, 0, stream>>>(data_cost_selected, disp_selected_pyr, h, w, nr_plane);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void init_data_cost(int rows, int cols, short* disp_selected_pyr, short* data_cost_selected,
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream)
{
init_data_cost_tmpl(rows, cols, disp_selected_pyr, data_cost_selected, msg_step, h, w, level, nr_plane, ndisp, channels, stream);
}
void init_data_cost(int rows, int cols, float* disp_selected_pyr, float* data_cost_selected,
size_t msg_step, int h, int w, int level, int nr_plane, int ndisp, int channels, cudaStream_t stream)
{
init_data_cost_tmpl(rows, cols, disp_selected_pyr, data_cost_selected, msg_step, h, w, level, nr_plane, ndisp, channels, stream);
}
}}}
///////////////////////////////////////////////////////////////
////////////////////// compute data cost //////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
namespace csbp_krnls
{
template <typename T, int channels>
__global__ void compute_data_cost(const T* selected_disp_pyr, T* data_cost_, int h, int w, int level, int nr_plane)
@@ -504,7 +485,7 @@ namespace csbp_kernels
__syncthreads();
if (winsz >= 256) { if (tid < 128) { dline[tid] += dline[tid + 128]; } __syncthreads(); }
if (winsz >= 128) { if (tid < 64) { dline[tid] += dline[tid + 64]; } __syncthreads(); }
if (winsz >= 128) { if (tid < 64) { dline[tid] += dline[tid + 64]; } __syncthreads(); }
if (winsz >= 64) if (tid < 32) dline[tid] += dline[tid + 32];
if (winsz >= 32) if (tid < 16) dline[tid] += dline[tid + 16];
@@ -522,8 +503,8 @@ namespace csbp_kernels
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_data_cost_caller_(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, int /*rows*/, int /*cols*/,
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream)
void compute_data_cost_caller_(const T* disp_selected_pyr, T* data_cost, int /*rows*/, int /*cols*/,
int h, int w, int level, int nr_plane, int channels, cudaStream_t stream)
{
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
@@ -533,15 +514,15 @@ namespace cv { namespace gpu { namespace csbp
switch(channels)
{
case 1: csbp_kernels::compute_data_cost<T, 1><<<grid, threads, 0, stream>>>((const T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break;
case 3: csbp_kernels::compute_data_cost<T, 3><<<grid, threads, 0, stream>>>((const T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, h, w, level, nr_plane); break;
case 1: csbp_krnls::compute_data_cost<T, 1><<<grid, threads, 0, stream>>>(disp_selected_pyr, data_cost, h, w, level, nr_plane); break;
case 3: csbp_krnls::compute_data_cost<T, 3><<<grid, threads, 0, stream>>>(disp_selected_pyr, data_cost, h, w, level, nr_plane); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
}
template <typename T, int winsz>
void compute_data_cost_reduce_caller_(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, int rows, int cols,
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream)
void compute_data_cost_reduce_caller_(const T* disp_selected_pyr, T* data_cost, int rows, int cols,
int h, int w, int level, int nr_plane, int channels, cudaStream_t stream)
{
const int threadsNum = 256;
const size_t smem_size = threadsNum * sizeof(float);
@@ -552,57 +533,58 @@ namespace cv { namespace gpu { namespace csbp
switch (channels)
{
case 1: csbp_kernels::compute_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>((const T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, level, rows, cols, h, nr_plane); break;
case 3: csbp_kernels::compute_data_cost_reduce<T, winsz, 3><<<grid, threads, smem_size, stream>>>((const T*)disp_selected_pyr.ptr, (T*)data_cost.ptr, level, rows, cols, h, nr_plane); break;
case 1: csbp_krnls::compute_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane); break;
case 3: csbp_krnls::compute_data_cost_reduce<T, winsz, 3><<<grid, threads, smem_size, stream>>>(disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane); break;
default: cv::gpu::error("Unsupported channels count", __FILE__, __LINE__);
}
}
typedef void (*ComputeDataCostCaller)(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, int rows, int cols,
int h, int w, int level, int nr_plane, int channels, const cudaStream_t& stream);
void compute_data_cost(const DevMem2D& disp_selected_pyr, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type,
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, const cudaStream_t& stream)
template<class T>
void compute_data_cost_tmpl(const T* disp_selected_pyr, T* data_cost, size_t msg_step1, size_t msg_step2,
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream)
{
static const ComputeDataCostCaller callers[8][9] =
{
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{compute_data_cost_caller_<short>, compute_data_cost_caller_<short>, compute_data_cost_reduce_caller_<short, 4>,
compute_data_cost_reduce_caller_<short, 8>, compute_data_cost_reduce_caller_<short, 16>, compute_data_cost_reduce_caller_<short, 32>,
compute_data_cost_reduce_caller_<short, 64>, compute_data_cost_reduce_caller_<short, 128>, compute_data_cost_reduce_caller_<short, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{compute_data_cost_caller_<float>, compute_data_cost_caller_<float>, compute_data_cost_reduce_caller_<float, 4>,
compute_data_cost_reduce_caller_<float, 8>, compute_data_cost_reduce_caller_<float, 16>, compute_data_cost_reduce_caller_<float, 32>,
compute_data_cost_reduce_caller_<float, 64>, compute_data_cost_reduce_caller_<float, 128>, compute_data_cost_reduce_caller_<float, 256>},
{0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0}
};
typedef void (*ComputeDataCostCaller)(const T* disp_selected_pyr, T* data_cost, int rows, int cols,
int h, int w, int level, int nr_plane, int channels, cudaStream_t stream);
static const ComputeDataCostCaller callers[] =
{
compute_data_cost_caller_<T>, compute_data_cost_caller_<T>, compute_data_cost_reduce_caller_<T, 4>,
compute_data_cost_reduce_caller_<T, 8>, compute_data_cost_reduce_caller_<T, 16>, compute_data_cost_reduce_caller_<T, 32>,
compute_data_cost_reduce_caller_<T, 64>, compute_data_cost_reduce_caller_<T, 128>, compute_data_cost_reduce_caller_<T, 256>
};
size_t disp_step1 = msg_step1 * h;
size_t disp_step2 = msg_step2 * h2;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step2, &disp_step2, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step2, &msg_step2, sizeof(size_t)) );
ComputeDataCostCaller caller = callers[msg_type][level];
if (!caller)
cv::gpu::error("Unsopported message type", __FILE__, __LINE__);
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step2, &disp_step2, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step2, &msg_step2, sizeof(size_t)) );
caller(disp_selected_pyr, data_cost, rows, cols, h, w, level, nr_plane, channels, stream);
callers[level](disp_selected_pyr, data_cost, rows, cols, h, w, level, nr_plane, channels, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void compute_data_cost(const short* disp_selected_pyr, short* data_cost, size_t msg_step1, size_t msg_step2,
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream)
{
compute_data_cost_tmpl(disp_selected_pyr, data_cost, msg_step1, msg_step2, rows, cols, h, w, h2, level, nr_plane, channels, stream);
}
void compute_data_cost(const float* disp_selected_pyr, float* data_cost, size_t msg_step1, size_t msg_step2,
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream)
{
compute_data_cost_tmpl(disp_selected_pyr, data_cost, msg_step1, msg_step2, rows, cols, h, w, h2, level, nr_plane, channels, stream);
}
}}}
///////////////////////////////////////////////////////////////
//////////////////////// init message /////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
namespace csbp_krnls
{
template <typename T>
__device__ void get_first_k_element_increase(T* u_new, T* d_new, T* l_new, T* r_new,
@@ -641,7 +623,7 @@ namespace csbp_kernels
__global__ void init_message(T* u_new_, T* d_new_, T* l_new_, T* r_new_,
const T* u_cur_, const T* d_cur_, const T* l_cur_, const T* r_cur_,
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
T* data_cost_selected_, T* data_cost_,
T* data_cost_selected_, const T* data_cost_,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2)
{
int x = blockIdx.x * blockDim.x + threadIdx.x;
@@ -657,7 +639,7 @@ namespace csbp_kernels
T* data_cost_new = (T*)ctemp + y * cmsg_step1 + x;
const T* disparity_selected_cur = selected_disp_pyr_cur + y/2 * cmsg_step2 + x/2;
T* data_cost = data_cost_ + y * cmsg_step1 + x;
const T* data_cost = data_cost_ + y * cmsg_step1 + x;
for(int d = 0; d < nr_plane2; d++)
{
@@ -689,72 +671,65 @@ namespace csbp_kernels
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void init_message_caller_(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
const DevMem2D& data_cost_selected, const DevMem2D& data_cost,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream)
{
template<class T>
void init_message_tmpl(T* u_new, T* d_new, T* l_new, T* r_new,
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
T* data_cost_selected, const T* data_cost, size_t msg_step1, size_t msg_step2,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream)
{
size_t disp_step1 = msg_step1 * h;
size_t disp_step2 = msg_step2 * h2;
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step2, &disp_step2, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step2, &msg_step2, sizeof(size_t)) );
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x);
grid.y = divUp(h, threads.y);
csbp_kernels::init_message<T><<<grid, threads, 0, stream>>>((T*)u_new.ptr, (T*)d_new.ptr, (T*)l_new.ptr, (T*)r_new.ptr,
(const T*)u_cur.ptr, (const T*)d_cur.ptr, (const T*)l_cur.ptr, (const T*)r_cur.ptr,
(T*)selected_disp_pyr_new.ptr, (const T*)selected_disp_pyr_cur.ptr,
(T*)data_cost_selected.ptr, (T*)data_cost.ptr,
grid.y = divUp(h, threads.y);
csbp_krnls::init_message<<<grid, threads, 0, stream>>>(u_new, d_new, l_new, r_new,
u_cur, d_cur, l_cur, r_cur,
selected_disp_pyr_new, selected_disp_pyr_cur,
data_cost_selected, data_cost,
h, w, nr_plane, h2, w2, nr_plane2);
}
typedef void (*InitMessageCaller)(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
const DevMem2D& data_cost_selected, const DevMem2D& data_cost,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream);
void init_message(const DevMem2D& u_new, const DevMem2D& d_new, const DevMem2D& l_new, const DevMem2D& r_new,
const DevMem2D& u_cur, const DevMem2D& d_cur, const DevMem2D& l_cur, const DevMem2D& r_cur,
const DevMem2D& selected_disp_pyr_new, const DevMem2D& selected_disp_pyr_cur,
const DevMem2D& data_cost_selected, const DevMem2D& data_cost, size_t msg_step1, size_t msg_step2, int msg_type,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, const cudaStream_t& stream)
{
static const InitMessageCaller callers[8] =
{
0, 0, 0,
init_message_caller_<short>,
0,
init_message_caller_<float>,
0, 0
};
size_t disp_step1 = msg_step1 * h;
size_t disp_step2 = msg_step2 * h2;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step2, &disp_step2, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step2, &msg_step2, sizeof(size_t)) );
InitMessageCaller caller = callers[msg_type];
if (!caller)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
caller(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost,
h, w, nr_plane, h2, w2, nr_plane2, stream);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void init_message(short* u_new, short* d_new, short* l_new, short* r_new,
const short* u_cur, const short* d_cur, const short* l_cur, const short* r_cur,
short* selected_disp_pyr_new, const short* selected_disp_pyr_cur,
short* data_cost_selected, const short* data_cost, size_t msg_step1, size_t msg_step2,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream)
{
init_message_tmpl(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost, msg_step1, msg_step2,
h, w, nr_plane, h2, w2, nr_plane2, stream);
}
void init_message(float* u_new, float* d_new, float* l_new, float* r_new,
const float* u_cur, const float* d_cur, const float* l_cur, const float* r_cur,
float* selected_disp_pyr_new, const float* selected_disp_pyr_cur,
float* data_cost_selected, const float* data_cost, size_t msg_step1, size_t msg_step2,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream)
{
init_message_tmpl(u_new, d_new, l_new, r_new, u_cur, d_cur, l_cur, r_cur,
selected_disp_pyr_new, selected_disp_pyr_cur, data_cost_selected, data_cost, msg_step1, msg_step2,
h, w, nr_plane, h2, w2, nr_plane2, stream);
}
}}}
///////////////////////////////////////////////////////////////
//////////////////// calc all iterations /////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
namespace csbp_krnls
{
template <typename T>
__device__ void message_per_pixel(const T* data, T* msg_dst, const T* msg1, const T* msg2, const T* msg3,
@@ -792,8 +767,7 @@ namespace csbp_kernels
}
template <typename T>
__global__ void compute_message(T* u_, T* d_, T* l_, T* r_, const T* data_cost_selected, const T* selected_disp_pyr_cur,
int h, int w, int nr_plane, int i)
__global__ void compute_message(T* u_, T* d_, T* l_, T* r_, const T* data_cost_selected, const T* selected_disp_pyr_cur, int h, int w, int nr_plane, int i)
{
int y = blockIdx.y * blockDim.y + threadIdx.y;
int x = ((blockIdx.x * blockDim.x + threadIdx.x) << 1) + ((y + i) & 1);
@@ -821,59 +795,48 @@ namespace csbp_kernels
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_message_caller_(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& selected_disp_pyr_cur, int h, int w, int nr_plane, int t, const cudaStream_t& stream)
{
template<class T>
void calc_all_iterations_tmpl(T* u, T* d, T* l, T* r, const T* data_cost_selected,
const T* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream)
{
size_t disp_step = msg_step * h;
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step, sizeof(size_t)) );
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(w, threads.x << 1);
grid.y = divUp(h, threads.y);
csbp_kernels::compute_message<T><<<grid, threads, 0, stream>>>((T*)u.ptr, (T*)d.ptr, (T*)l.ptr, (T*)r.ptr,
(const T*)data_cost_selected.ptr, (const T*)selected_disp_pyr_cur.ptr,
h, w, nr_plane, t & 1);
}
typedef void (*ComputeMessageCaller)(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& selected_disp_pyr_cur, int h, int w, int nr_plane, int t, const cudaStream_t& stream);
void calc_all_iterations(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& selected_disp_pyr_cur, size_t msg_step, int msg_type, int h, int w, int nr_plane, int iters, const cudaStream_t& stream)
{
static const ComputeMessageCaller callers[8] =
{
0, 0, 0,
compute_message_caller_<short>,
0,
compute_message_caller_<float>,
0, 0
};
size_t disp_step = msg_step * h;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) );
ComputeMessageCaller caller = callers[msg_type];
if (!caller)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
for(int t = 0; t < iters; ++t)
{
caller(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, h, w, nr_plane, t, stream);
csbp_krnls::compute_message<<<grid, threads, 0, stream>>>(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, h, w, nr_plane, t & 1);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
};
void calc_all_iterations(short* u, short* d, short* l, short* r, short* data_cost_selected,
const short* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream)
{
calc_all_iterations_tmpl(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, msg_step, h, w, nr_plane, iters, stream);
}
void calc_all_iterations(float*u, float* d, float* l, float* r, float* data_cost_selected,
const float* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream)
{
calc_all_iterations_tmpl(u, d, l, r, data_cost_selected, selected_disp_pyr_cur, msg_step, h, w, nr_plane, iters, stream);
}
}}}
///////////////////////////////////////////////////////////////
/////////////////////////// output ////////////////////////////
///////////////////////////////////////////////////////////////
namespace csbp_kernels
namespace csbp_krnls
{
template <typename T>
__global__ void compute_disp(const T* u_, const T* d_, const T* l_, const T* r_,
@@ -906,7 +869,6 @@ namespace csbp_kernels
best = saturate_cast<short>(disp_selected[idx]);
}
}
disp[res_step * y + x] = best;
}
}
@@ -914,47 +876,36 @@ namespace csbp_kernels
namespace cv { namespace gpu { namespace csbp
{
template <typename T>
void compute_disp_caller_(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& disp_selected, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream)
{
template<class T>
void compute_disp_tmpl(const T* u, const T* d, const T* l, const T* r, const T* data_cost_selected, const T* disp_selected, size_t msg_step,
const DevMem2D_<short>& disp, int nr_plane, cudaStream_t stream)
{
size_t disp_step = disp.rows * msg_step;
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_krnls::cmsg_step1, &msg_step, sizeof(size_t)) );
dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1);
grid.x = divUp(disp.cols, threads.x);
grid.y = divUp(disp.rows, threads.y);
csbp_kernels::compute_disp<T><<<grid, threads, 0, stream>>>((const T*)u.ptr, (const T*)d.ptr, (const T*)l.ptr, (const T*)r.ptr,
(const T*)data_cost_selected.ptr, (const T*)disp_selected.ptr,
(short*)disp.ptr, disp.step / sizeof(short), disp.cols, disp.rows, nr_plane);
}
typedef void (*ComputeDispCaller)(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& disp_selected, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream);
void compute_disp(const DevMem2D& u, const DevMem2D& d, const DevMem2D& l, const DevMem2D& r, const DevMem2D& data_cost_selected,
const DevMem2D& disp_selected, size_t msg_step, int msg_type, const DevMem2D& disp, int nr_plane, const cudaStream_t& stream)
{
static const ComputeDispCaller callers[8] =
{
0, 0, 0,
compute_disp_caller_<short>,
0,
compute_disp_caller_<float>,
0, 0
};
size_t disp_step = disp.rows * msg_step;
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cdisp_step1, &disp_step, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(csbp_kernels::cmsg_step1, &msg_step, sizeof(size_t)) );
ComputeDispCaller caller = callers[msg_type];
if (!caller)
cv::gpu::error("Unsupported message type", __FILE__, __LINE__);
caller(u, d, l, r, data_cost_selected, disp_selected, disp, nr_plane, stream);
csbp_krnls::compute_disp<<<grid, threads, 0, stream>>>(u, d, l, r, data_cost_selected, disp_selected,
disp.ptr, disp.step / disp.elemSize(), disp.cols, disp.rows, nr_plane);
if (stream == 0)
cudaSafeCall( cudaThreadSynchronize() );
}
void compute_disp(const short* u, const short* d, const short* l, const short* r, const short* data_cost_selected, const short* disp_selected, size_t msg_step,
DevMem2D_<short> disp, int nr_plane, cudaStream_t stream)
{
compute_disp_tmpl(u, d, l, r, data_cost_selected, disp_selected, msg_step, disp, nr_plane, stream);
}
void compute_disp(const float* u, const float* d, const float* l, const float* r, const float* data_cost_selected, const float* disp_selected, size_t msg_step,
DevMem2D_<short> disp, int nr_plane, cudaStream_t stream)
{
compute_disp_tmpl(u, d, l, r, data_cost_selected, disp_selected, msg_step, disp, nr_plane, stream);
}
}}}