Merge pull request #4025 from vpisarev:features2d_fixes

This commit is contained in:
Vadim Pisarevsky 2015-05-21 19:16:27 +00:00
commit ef8182e12a
6 changed files with 443 additions and 308 deletions

View File

@ -660,6 +660,7 @@ CV_EXPORTS void write( FileStorage& fs, const String& name, const String& value
CV_EXPORTS void write( FileStorage& fs, const String& name, const Mat& value );
CV_EXPORTS void write( FileStorage& fs, const String& name, const SparseMat& value );
CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector<KeyPoint>& value);
CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector<DMatch>& value);
CV_EXPORTS void writeScalar( FileStorage& fs, int value );
CV_EXPORTS void writeScalar( FileStorage& fs, float value );
@ -678,6 +679,7 @@ CV_EXPORTS void read(const FileNode& node, String& value, const String& default_
CV_EXPORTS void read(const FileNode& node, Mat& mat, const Mat& default_mat = Mat() );
CV_EXPORTS void read(const FileNode& node, SparseMat& mat, const SparseMat& default_mat = SparseMat() );
CV_EXPORTS void read(const FileNode& node, std::vector<KeyPoint>& keypoints);
CV_EXPORTS void read(const FileNode& node, std::vector<DMatch>& matches);
template<typename _Tp> static inline void read(const FileNode& node, Point_<_Tp>& value, const Point_<_Tp>& default_value)
{

View File

@ -5594,6 +5594,35 @@ void read(const FileNode& node, std::vector<KeyPoint>& keypoints)
}
}
void write(FileStorage& fs, const String& objname, const std::vector<DMatch>& matches)
{
cv::internal::WriteStructContext ws(fs, objname, CV_NODE_SEQ + CV_NODE_FLOW);
int i, n = (int)matches.size();
for( i = 0; i < n; i++ )
{
const DMatch& m = matches[i];
cv::write(fs, m.queryIdx);
cv::write(fs, m.trainIdx);
cv::write(fs, m.imgIdx);
cv::write(fs, m.distance);
}
}
void read(const FileNode& node, std::vector<DMatch>& matches)
{
matches.resize(0);
FileNodeIterator it = node.begin(), it_end = node.end();
for( ; it != it_end; )
{
DMatch m;
it >> m.queryIdx >> m.trainIdx >> m.imgIdx >> m.distance;
matches.push_back(m);
}
}
int FileNode::type() const { return !node ? NONE : (node->tag & TYPE_MASK); }
bool FileNode::isNamed() const { return !node ? false : (node->tag & NAMED) != 0; }

View File

@ -29,12 +29,12 @@
*
* OpenCV functions for MSER extraction
*
* 1. there are two different implementation of MSER, one for grey image, one for color image
* 2. the grey image algorithm is taken from: Linear Time Maximally Stable Extremal Regions;
* 1. there are two different implementation of MSER, one for gray image, one for color image
* 2. the gray image algorithm is taken from: Linear Time Maximally Stable Extremal Regions;
* the paper claims to be faster than union-find method;
* it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
* 3. the color image algorithm is taken from: Maximally Stable Colour Regions for Recognition and Match;
* it should be much slower than grey image method ( 3~4 times );
* it should be much slower than gray image method ( 3~4 times );
* the chi_table.h file is taken directly from paper's source code which is distributed under GPL.
* 4. though the name is *contours*, the result actually is a list of point set.
*/
@ -121,15 +121,129 @@ public:
};
typedef int PPixel;
struct WParams
{
Params p;
vector<vector<Point> >* msers;
vector<Rect>* bboxvec;
Pixel* pix0;
int step;
};
// the history of region grown
struct CompHistory
{
CompHistory() { shortcut = child = 0; stable = val = size = 0; }
CompHistory* shortcut;
CompHistory* child;
int stable; // when it ever stabled before, record the size
CompHistory()
{
parent_ = child_ = next_ = 0;
val = size = 0;
var = -1.f;
head = 0;
checked = false;
}
void updateTree( WParams& wp, CompHistory** _h0, CompHistory** _h1, bool final )
{
if( var >= 0.f )
return;
int delta = wp.p.delta;
CompHistory* h0_ = 0, *h1_ = 0;
CompHistory* c = child_;
if( size >= wp.p.minArea )
{
for( ; c != 0; c = c->next_ )
{
if( c->var < 0.f )
c->updateTree(wp, c == child_ ? &h0_ : 0, c == child_ ? &h1_ : 0, final);
if( c->var < 0.f )
return;
}
}
// find h0 and h1 such that:
// h0->val >= h->val - delta and (h0->parent == 0 or h0->parent->val < h->val - delta)
// h1->val <= h->val + delta and (h1->child == 0 or h1->child->val < h->val + delta)
// then we will adjust h0 and h1 as h moves towards latest
CompHistory* h0 = this, *h1 = h1_ && h1_->size > size ? h1_ : this;
if( h0_ )
{
for( h0 = h0_; h0 != this && h0->val < val - delta; h0 = h0->parent_ )
;
}
else
{
for( ; h0->child_ && h0->child_->val >= val - delta; h0 = h0->child_ )
;
}
for( ; h1->parent_ && h1->parent_->val <= val + delta; h1 = h1->parent_ )
;
if( _h0 ) *_h0 = h0;
if( _h1 ) *_h1 = h1;
// when we do not well-defined ER(h->val + delta), we stop
// the process of computing variances unless we are at the final step
if( !final && !h1->parent_ && h1->val < val + delta )
return;
var = (float)(h1->size - h0->size)/size;
c = child_;
for( ; c != 0; c = c->next_ )
c->checkAndCapture(wp);
if( final && !parent_ )
checkAndCapture(wp);
}
void checkAndCapture( WParams& wp )
{
if( checked )
return;
checked = true;
if( size < wp.p.minArea || size > wp.p.maxArea || var < 0.f || var > wp.p.maxVariation )
return;
if( child_ )
{
CompHistory* c = child_;
for( ; c != 0; c = c->next_ )
{
if( c->var >= 0.f && var > c->var )
return;
}
}
if( parent_ && parent_->var >= 0.f && var >= parent_->var )
return;
int xmin = INT_MAX, ymin = INT_MAX, xmax = INT_MIN, ymax = INT_MIN, j = 0;
wp.msers->push_back(vector<Point>());
vector<Point>& region = wp.msers->back();
region.resize(size);
const Pixel* pix0 = wp.pix0;
int step = wp.step;
for( PPixel pix = head; j < size; j++, pix = pix0[pix].getNext() )
{
int y = pix/step;
int x = pix - y*step;
xmin = std::min(xmin, x);
xmax = std::max(xmax, x);
ymin = std::min(ymin, y);
ymax = std::max(ymax, y);
region[j] = Point(x, y);
}
wp.bboxvec->push_back(Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1));
}
CompHistory* child_;
CompHistory* parent_;
CompHistory* next_;
int val;
int size;
float var;
PPixel head;
bool checked;
};
struct ConnectedComp
@ -144,141 +258,87 @@ public:
head = tail = 0;
history = 0;
size = 0;
grey_level = gray;
dvar = false;
var = 0;
gray_level = gray;
}
// add history chunk to a connected component
void growHistory( CompHistory* h )
void growHistory( CompHistory*& hptr, WParams& wp, int new_gray_level, bool final, bool force=false )
{
h->child = h;
if( !history )
bool update = final;
if( new_gray_level < 0 )
new_gray_level = gray_level;
if( !history || (history->size != size && size > 0 &&
(gray_level != history->val || force)))
{
h->shortcut = h;
h->stable = 0;
CompHistory* h = hptr++;
h->parent_ = 0;
h->child_ = history;
h->next_ = 0;
if( history )
history->parent_ = h;
h->val = gray_level;
h->size = size;
h->head = head;
history = h;
h->var = FLT_MAX;
h->checked = true;
if( h->size >= wp.p.minArea )
{
h->var = -1.f;
h->checked = false;
update = true;
}
}
else
{
history->child = h;
h->shortcut = history->shortcut;
h->stable = history->stable;
}
h->val = grey_level;
h->size = size;
history = h;
gray_level = new_gray_level;
if( update && history )
history->updateTree(wp, 0, 0, final);
}
// merging two connected components
static void
merge( const ConnectedComp* comp1,
const ConnectedComp* comp2,
ConnectedComp* comp,
CompHistory* h,
Pixel* pix0 )
void merge( ConnectedComp* comp1, ConnectedComp* comp2,
CompHistory*& hptr, WParams& wp )
{
comp->grey_level = comp2->grey_level;
h->child = h;
// select the winner by size
if ( comp1->size < comp2->size )
comp1->growHistory( hptr, wp, -1, false );
comp2->growHistory( hptr, wp, -1, false );
if( comp1->size < comp2->size )
std::swap(comp1, comp2);
if( !comp1->history )
if( comp2->size == 0 )
{
h->shortcut = h;
h->stable = 0;
}
else
{
comp1->history->child = h;
h->shortcut = comp1->history->shortcut;
h->stable = comp1->history->stable;
}
if( comp2->history && comp2->history->stable > h->stable )
h->stable = comp2->history->stable;
h->val = comp1->grey_level;
h->size = comp1->size;
// put comp1 to history
comp->var = comp1->var;
comp->dvar = comp1->dvar;
if( comp1->size > 0 && comp2->size > 0 )
pix0[comp1->tail].setNext(comp2->head);
PPixel head = comp1->size > 0 ? comp1->head : comp2->head;
PPixel tail = comp2->size > 0 ? comp2->tail : comp1->tail;
// always made the newly added in the last of the pixel list (comp1 ... comp2)
comp->head = head;
comp->tail = tail;
comp->history = h;
comp->size = comp1->size + comp2->size;
}
float calcVariation( int delta ) const
{
if( !history )
return 1.f;
int val = grey_level;
CompHistory* shortcut = history->shortcut;
while( shortcut != shortcut->shortcut && shortcut->val + delta > val )
shortcut = shortcut->shortcut;
CompHistory* child = shortcut->child;
while( child != child->child && child->val + delta <= val )
{
shortcut = child;
child = child->child;
}
// get the position of history where the shortcut->val <= delta+val and shortcut->child->val >= delta+val
history->shortcut = shortcut;
return (float)(size - shortcut->size)/(float)shortcut->size;
// here is a small modification of MSER where cal ||R_{i}-R_{i-delta}||/||R_{i-delta}||
// in standard MSER, cal ||R_{i+delta}-R_{i-delta}||/||R_{i}||
// my calculation is simpler and much easier to implement
}
bool isStable(const Params& p)
{
// tricky part: it actually check the stablity of one-step back
if( !history || history->size <= p.minArea || history->size >= p.maxArea )
return false;
float div = (float)(history->size - history->stable)/(float)history->size;
float _var = calcVariation( p.delta );
bool _dvar = (var < _var) || (history->val + 1 < grey_level);
bool stable = _dvar && !dvar && _var < p.maxVariation && div > p.minDiversity;
var = _var;
dvar = _dvar;
if( stable )
history->stable = history->size;
return stable;
}
// convert the point set to CvSeq
Rect capture( const Pixel* pix0, int step, vector<Point>& region ) const
{
int xmin = INT_MAX, ymin = INT_MAX, xmax = INT_MIN, ymax = INT_MIN;
region.clear();
for( PPixel pix = head; pix != 0; pix = pix0[pix].getNext() )
{
int y = pix/step;
int x = pix - y*step;
xmin = std::min(xmin, x);
xmax = std::max(xmax, x);
ymin = std::min(ymin, y);
ymax = std::max(ymax, y);
region.push_back(Point(x, y));
gray_level = comp1->gray_level;
head = comp1->head;
tail = comp1->tail;
size = comp1->size;
history = comp1->history;
return;
}
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
CompHistory* h1 = comp1->history;
CompHistory* h2 = comp2->history;
gray_level = std::max(comp1->gray_level, comp2->gray_level);
history = comp1->history;
wp.pix0[comp1->tail].setNext(comp2->head);
head = comp1->head;
tail = comp2->tail;
size = comp1->size + comp2->size;
bool keep_2nd = h2->size > wp.p.minArea;
growHistory( hptr, wp, -1, false, keep_2nd );
if( keep_2nd )
{
h1->next_ = h2;
h2->parent_ = history;
}
}
PPixel head;
PPixel tail;
CompHistory* history;
int grey_level;
int gray_level;
int size;
float var; // the current variation (most time is the variation of one-step back)
bool dvar; // the derivative of last var
};
void detectRegions( InputArray image,
@ -296,7 +356,7 @@ public:
heapbuf.resize(cols*rows + 256);
histbuf.resize(cols*rows);
Pixel borderpix;
borderpix.setDir(4);
borderpix.setDir(5);
for( j = 0; j < step; j++ )
{
@ -349,6 +409,12 @@ public:
Pixel** heap[256];
ConnectedComp comp[257];
ConnectedComp* comptr = &comp[0];
WParams wp;
wp.p = params;
wp.msers = &msers;
wp.bboxvec = &bboxvec;
wp.pix0 = ptr0;
wp.step = step;
heap[0] = &heapbuf[0];
heap[0][0] = 0;
@ -359,9 +425,9 @@ public:
heap[i][0] = 0;
}
comptr->grey_level = 256;
comptr->gray_level = 256;
comptr++;
comptr->grey_level = ptr->getGray(ptr0, imgptr0, mask);
comptr->gray_level = ptr->getGray(ptr0, imgptr0, mask);
ptr->setDir(1);
int dir[] = { 0, 1, step, -1, -step };
for( ;; )
@ -427,48 +493,32 @@ public:
ptr = *heap[curr_gray];
heap[curr_gray]--;
if( curr_gray < comptr[-1].grey_level )
{
// check the stablity and push a new history, increase the grey level
if( comptr->isStable(params) )
{
msers.push_back(vector<Point>());
vector<Point>& mser = msers.back();
Rect box = comptr->capture( ptr0, step, mser );
bboxvec.push_back(box);
}
comptr->growHistory( histptr++ );
comptr[0].grey_level = curr_gray;
}
if( curr_gray < comptr[-1].gray_level )
comptr->growHistory(histptr, wp, curr_gray, false);
else
{
// keep merging top two comp in stack until the grey level >= pixel_val
// keep merging top two comp in stack until the gray level >= pixel_val
for(;;)
{
comptr--;
ConnectedComp::merge(comptr+1, comptr, comptr, histptr++, ptr0);
if( curr_gray <= comptr[0].grey_level )
comptr->merge(comptr, comptr+1, histptr, wp);
if( curr_gray <= comptr[0].gray_level )
break;
if( curr_gray < comptr[-1].grey_level )
if( curr_gray < comptr[-1].gray_level )
{
// check the stablity here otherwise it wouldn't be an ER
if( comptr->isStable(params) )
{
msers.push_back(vector<Point>());
vector<Point>& mser = msers.back();
Rect box = comptr->capture( ptr0, step, mser );
bboxvec.push_back(box);
}
comptr->growHistory( histptr++ );
comptr[0].grey_level = curr_gray;
comptr->growHistory(histptr, wp, curr_gray, false);
break;
}
}
}
}
}
for( ; comptr->gray_level != 256; comptr-- )
{
comptr->growHistory(histptr, wp, 256, true, true);
}
}
Mat tempsrc;

View File

@ -347,3 +347,97 @@ TEST( Features2d_DescriptorExtractor_AKAZE, regression )
Hamming(), AKAZE::create());
test.safe_run();
}
TEST( Features2d_DescriptorExtractor, batch )
{
string path = string(cvtest::TS::ptr()->get_data_path() + "detectors_descriptors_evaluation/images_datasets/graf");
vector<Mat> imgs, descriptors;
vector<vector<KeyPoint> > keypoints;
int i, n = 6;
Ptr<ORB> orb = ORB::create();
for( i = 0; i < n; i++ )
{
string imgname = format("%s/img%d.png", path.c_str(), i+1);
Mat img = imread(imgname, 0);
imgs.push_back(img);
}
orb->detect(imgs, keypoints);
orb->compute(imgs, keypoints, descriptors);
ASSERT_EQ((int)keypoints.size(), n);
ASSERT_EQ((int)descriptors.size(), n);
for( i = 0; i < n; i++ )
{
EXPECT_GT((int)keypoints[i].size(), 100);
EXPECT_GT(descriptors[i].rows, 100);
}
}
TEST( Features2d_Feature2d, no_crash )
{
const String& pattern = string(cvtest::TS::ptr()->get_data_path() + "shared/*.png");
vector<String> fnames;
glob(pattern, fnames, false);
sort(fnames.begin(), fnames.end());
Ptr<AKAZE> akaze = AKAZE::create();
Ptr<ORB> orb = ORB::create();
Ptr<KAZE> kaze = KAZE::create();
Ptr<BRISK> brisk = BRISK::create();
size_t i, n = fnames.size();
vector<KeyPoint> keypoints;
Mat descriptors;
orb->setMaxFeatures(5000);
for( i = 0; i < n; i++ )
{
printf("%d. image: %s:\n", (int)i, fnames[i].c_str());
if( strstr(fnames[i].c_str(), "MP.png") != 0 )
continue;
bool checkCount = strstr(fnames[i].c_str(), "templ.png") == 0;
Mat img = imread(fnames[i], -1);
printf("\tAKAZE ... "); fflush(stdout);
akaze->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tKAZE ... "); fflush(stdout);
kaze->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tORB ... "); fflush(stdout);
orb->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tBRISK ... "); fflush(stdout);
brisk->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
}
}

View File

@ -543,3 +543,13 @@ TEST( Features2d_DescriptorMatcher_FlannBased, regression )
DescriptorMatcher::create("FlannBased"), 0.04f );
test.safe_run();
}
TEST( Features2d_DMatch, read_write )
{
FileStorage fs(".xml", FileStorage::WRITE + FileStorage::MEMORY);
vector<DMatch> matches;
matches.push_back(DMatch(1,2,3,4.5f));
fs << "Match" << matches;
String str = fs.releaseAndGetString();
ASSERT_NE( strstr(str.c_str(), "4.5"), (char*)0 );
}

View File

@ -41,171 +41,121 @@
//M*/
#include "test_precomp.hpp"
#include "opencv2/imgproc/imgproc_c.h"
#if 0
#include "opencv2/highgui.hpp"
#include <vector>
#include <string>
using namespace std;
using namespace cv;
class CV_MserTest : public cvtest::BaseTest
#undef RENDER_MSERS
#define RENDER_MSERS 0
#if defined RENDER_MSERS && RENDER_MSERS
static void renderMSERs(const Mat& gray, Mat& img, const vector<vector<Point> >& msers)
{
public:
CV_MserTest();
protected:
void run(int);
int LoadBoxes(const char* path, vector<CvBox2D>& boxes);
int SaveBoxes(const char* path, const vector<CvBox2D>& boxes);
int CompareBoxes(const vector<CvBox2D>& boxes1,const vector<CvBox2D>& boxes2, float max_rel_diff = 0.01f);
};
CV_MserTest::CV_MserTest()
{
}
int CV_MserTest::LoadBoxes(const char* path, vector<CvBox2D>& boxes)
{
boxes.clear();
FILE* f = fopen(path,"r");
if (f==NULL)
cvtColor(gray, img, COLOR_GRAY2BGR);
RNG rng((uint64)1749583);
for( int i = 0; i < (int)msers.size(); i++ )
{
return 0;
}
uchar b = rng.uniform(0, 256);
uchar g = rng.uniform(0, 256);
uchar r = rng.uniform(0, 256);
Vec3b color(b, g, r);
while (!feof(f))
{
CvBox2D box;
int values_read = fscanf(f,"%f,%f,%f,%f,%f\n",&box.angle,&box.center.x,&box.center.y,&box.size.width,&box.size.height);
CV_Assert(values_read == 5);
boxes.push_back(box);
}
fclose(f);
return 1;
}
int CV_MserTest::SaveBoxes(const char* path, const vector<CvBox2D>& boxes)
{
FILE* f = fopen(path,"w");
if (f==NULL)
{
return 0;
}
for (int i=0;i<(int)boxes.size();i++)
{
fprintf(f,"%f,%f,%f,%f,%f\n",boxes[i].angle,boxes[i].center.x,boxes[i].center.y,boxes[i].size.width,boxes[i].size.height);
}
fclose(f);
return 1;
}
int CV_MserTest::CompareBoxes(const vector<CvBox2D>& boxes1,const vector<CvBox2D>& boxes2, float max_rel_diff)
{
if (boxes1.size() != boxes2.size())
return 0;
for (int i=0; i<(int)boxes1.size();i++)
{
float rel_diff;
if (!((boxes1[i].angle == 0.0f) && (abs(boxes2[i].angle) < max_rel_diff)))
{
float angle_diff = (float)fmod(boxes1[i].angle - boxes2[i].angle, 180);
// for angular correctness, it makes no sense to use a "relative" error.
// a 1-degree error around 5 degrees is equally bas as around 250 degrees.
// in correct cases, angle_diff can now be a bit above 0 or a bit below 180
if (angle_diff > 90.0f)
{
angle_diff -= 180.0f;
}
rel_diff = (float)fabs(angle_diff);
if (rel_diff > max_rel_diff)
return i;
}
if (!((boxes1[i].center.x == 0.0f) && (abs(boxes2[i].center.x) < max_rel_diff)))
{
rel_diff = abs(boxes1[i].center.x-boxes2[i].center.x)/abs(boxes1[i].center.x);
if (rel_diff > max_rel_diff)
return i;
}
if (!((boxes1[i].center.y == 0.0f) && (abs(boxes2[i].center.y) < max_rel_diff)))
{
rel_diff = abs(boxes1[i].center.y-boxes2[i].center.y)/abs(boxes1[i].center.y);
if (rel_diff > max_rel_diff)
return i;
}
if (!((boxes1[i].size.width == 0.0f) && (abs(boxes2[i].size.width) < max_rel_diff)))
{
rel_diff = abs(boxes1[i].size.width-boxes2[i].size.width)/abs(boxes1[i].size.width);
if (rel_diff > max_rel_diff)
return i;
}
if (!((boxes1[i].size.height == 0.0f) && (abs(boxes2[i].size.height) < max_rel_diff)))
{
rel_diff = abs(boxes1[i].size.height-boxes2[i].size.height)/abs(boxes1[i].size.height);
if (rel_diff > max_rel_diff)
return i;
}
}
return -1;
}
void CV_MserTest::run(int)
{
string image_path = string(ts->get_data_path()) + "mser/puzzle.png";
Mat img = imread( image_path );
if (img.empty())
{
ts->printf( cvtest::TS::LOG, "Unable to open image mser/puzzle.png\n");
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
Mat yuv;
cvtColor(img, yuv, COLOR_BGR2YCrCb);
vector<vector<Point> > msers;
MSER()(yuv, msers);
vector<CvBox2D> boxes;
vector<CvBox2D> boxes_orig;
for ( size_t i = 0; i < msers.size(); i++ )
{
RotatedRect box = fitEllipse(msers[i]);
box.angle=(float)CV_PI/2-box.angle;
boxes.push_back(box);
}
string boxes_path = string(ts->get_data_path()) + "mser/boxes.txt";
string calc_boxes_path = string(ts->get_data_path()) + "mser/boxes.calc.txt";
if (!LoadBoxes(boxes_path.c_str(),boxes_orig))
{
SaveBoxes(boxes_path.c_str(),boxes);
ts->printf( cvtest::TS::LOG, "Unable to open data file mser/boxes.txt\n");
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
return;
}
const float dissimularity = 0.01f;
int n_box = CompareBoxes(boxes_orig,boxes,dissimularity);
if (n_box < 0)
{
ts->set_failed_test_info(cvtest::TS::OK);
}
else
{
SaveBoxes(calc_boxes_path.c_str(), boxes);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
ts->printf( cvtest::TS::LOG, "Incorrect correspondence in box %d\n",n_box);
const Point* pt = &msers[i][0];
size_t j, n = msers[i].size();
for( j = 0; j < n; j++ )
img.at<Vec3b>(pt[j]) = color;
}
}
TEST(Features2d_MSER, DISABLED_regression) { CV_MserTest test; test.safe_run(); }
#endif
TEST(Features2d_MSER, cases)
{
uchar buf[] =
{
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255
};
Mat big_image = imread(cvtest::TS::ptr()->get_data_path() + "mser/puzzle.png", 0);
Mat small_image(14, 26, CV_8U, buf);
static const int thresharr[] = { 0, 70, 120, 180, 255 };
const int kDelta = 5;
Ptr<MSER> mserExtractor = MSER::create( kDelta );
vector<vector<Point> > msers;
vector<Rect> boxes;
RNG rng((uint64)123456);
for( int i = 0; i < 100; i++ )
{
bool use_big_image = rng.uniform(0, 7) != 0;
bool invert = rng.uniform(0, 2) != 0;
bool binarize = use_big_image ? rng.uniform(0, 5) != 0 : false;
bool blur = rng.uniform(0, 2) != 0;
int thresh = thresharr[rng.uniform(0, 5)];
/*if( i == 0 )
{
use_big_image = true;
invert = binarize = blur = false;
}*/
const Mat& src0 = use_big_image ? big_image : small_image;
Mat src = src0.clone();
int kMinArea = use_big_image ? 256 : 10;
int kMaxArea = (int)src.total()/4;
mserExtractor->setMinArea(kMinArea);
mserExtractor->setMaxArea(kMaxArea);
if( invert )
bitwise_not(src, src);
if( binarize )
threshold(src, src, thresh, 255, THRESH_BINARY);
if( blur )
GaussianBlur(src, src, Size(5, 5), 1.5, 1.5);
int minRegs = use_big_image ? 7 : 2;
int maxRegs = use_big_image ? 1000 : 15;
if( binarize && (thresh == 0 || thresh == 255) )
minRegs = maxRegs = 0;
mserExtractor->detectRegions( src, msers, boxes );
int nmsers = (int)msers.size();
ASSERT_EQ(nmsers, (int)boxes.size());
if( maxRegs < nmsers || minRegs > nmsers )
{
printf("%d. minArea=%d, maxArea=%d, nmsers=%d, minRegs=%d, maxRegs=%d, "
"image=%s, invert=%d, binarize=%d, thresh=%d, blur=%d\n",
i, kMinArea, kMaxArea, nmsers, minRegs, maxRegs, use_big_image ? "big" : "small",
(int)invert, (int)binarize, thresh, (int)blur);
#if defined RENDER_MSERS && RENDER_MSERS
Mat image;
imshow("source", src);
renderMSERs(src, image, msers);
imshow("result", image);
waitKey();
#endif
}
ASSERT_LE(minRegs, nmsers);
ASSERT_GE(maxRegs, nmsers);
}
}