Several exceptions added to the available FaceRecognizer classes and helper methods, so wrong input data is reported to the user. facerec_demo.cpp updated to latest cv::Algorithm changes and commented.

This commit is contained in:
Philipp Wagner
2012-06-10 11:57:33 +00:00
parent 6727e4cb6d
commit ee1b671279
4 changed files with 282 additions and 142 deletions

View File

@@ -16,7 +16,9 @@
* See <http://www.opensource.org/licenses/bsd-license>
*/
#include "opencv2/opencv.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/contrib/contrib.hpp"
#include <iostream>
#include <fstream>
@@ -38,65 +40,102 @@ static Mat toGrayscale(InputArray _src) {
static void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
std::ifstream file(filename.c_str(), ifstream::in);
if (!file)
throw std::exception();
if (!file) {
string error_message = "No valid input file was given, please check the given filename.";
CV_Error(CV_StsBadArg, error_message);
}
string line, path, classlabel;
while (getline(file, line)) {
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
if(!path.empty() && !classlabel.empty()) {
images.push_back(imread(path, 0));
labels.push_back(atoi(classlabel.c_str()));
}
}
}
int main(int argc, const char *argv[]) {
// check for command line arguments
// Check for valid command line arguments, print usage
// if no arguments were given.
if (argc != 2) {
cout << "usage: " << argv[0] << " <csv.ext>" << endl;
exit(1);
}
// path to your CSV
// Get the path to your CSV.
string fn_csv = string(argv[1]);
// images and corresponding labels
// These vectors hold the images and corresponding labels.
vector<Mat> images;
vector<int> labels;
// read in the data
// Read in the data. This can fail if no valid
// input filename is given.
try {
read_csv(fn_csv, images, labels);
} catch (exception&) {
cerr << "Error opening file \"" << fn_csv << "\"." << endl;
} catch (cv::Exception& e) {
cerr << "Error opening file \"" << fn_csv << "\". Reason: " << e.msg << endl;
// nothing more we can do
exit(1);
}
// get width and height
//int width = images[0].cols;
// Quit if there are not enough images for this demo.
if(images.size() <= 1) {
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
CV_Error(CV_StsError, error_message);
}
// Get the height from the first image. We'll need this
// later in code to reshape the images to their original
// size:
int height = images[0].rows;
// get test instances
// The following lines simply get the last images from
// your dataset and remove it from the vector. This is
// done, so that the training data (which we learn the
// cv::FaceRecognizer on) and the test data we test
// the model with, do not overlap.
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];
// ... and delete last element
images.pop_back();
labels.pop_back();
// build the Fisherfaces model
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
// The following lines create an Eigenfaces model for
// face recognition and train it with the images and
// labels read from the given CSV file.
// This here is a full PCA, if you just want to keep
// 10 principal components (read Eigenfaces), then call
// the factory method like this:
//
// cv::createEigenFaceRecognizer(10);
Ptr<FaceRecognizer> model = createEigenFaceRecognizer();
model->train(images, labels);
// test model
// The following line predicts the label of a given
// test image. In this example no thresholding is
// done.
int predicted = model->predict(testSample);
cout << "predicted class = " << predicted << endl;
cout << "actual class = " << testLabel << endl;
// get the eigenvectors
Mat W = model->eigenvectors();
// show first 10 fisherfaces
// Show the prediction and actual class of the given
// sample:
string result_message = format("Predicted class=%d / Actual class=%d.", predicted, testLabel);
cout << result_message << endl;
// Sometimes you'll need to get some internal model data,
// which isn't exposed by the public cv::FaceRecognizer.
// Since each cv::FaceRecognizer is derived from a
// cv::Algorithm, you can query the data.
//
// Here is how to get the eigenvalues of this Eigenfaces model:
Mat eigenvalues = model->getMat("eigenvalues");
// And we can do the same to display the Eigenvectors ("Eigenfaces"):
Mat W = model->getMat("eigenvectors");
// From this we will display the (at most) first 10 Eigenfaces:
for (int i = 0; i < min(10, W.cols); i++) {
string msg = format("Eigenvalue #%d = %.5f", i, eigenvalues.at<double>(i));
cout << msg << endl;
// get eigenvector #i
Mat ev = W.col(i).clone();
// reshape to original size AND normalize between [0...255]
// Reshape to original size & normalize to [0...255] for imshow.
Mat grayscale = toGrayscale(ev.reshape(1, height));
// show image (with Jet colormap)
// Show the image & apply a Jet colormap for better sensing.
Mat cgrayscale;
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
imshow(format("%d", i), cgrayscale);
}
waitKey(0);
return 0;
}