fully implemented SSE and NEON cases of intrin.hpp; extended the HAL with some basic math functions
This commit is contained in:
@@ -79,7 +79,7 @@ public:
|
||||
|
||||
for ( int i = begin; i<end; i++ )
|
||||
{
|
||||
tdist2[i] = std::min(normL2Sqr_(data + step*i, data + stepci, dims), dist[i]);
|
||||
tdist2[i] = std::min(normL2Sqr(data + step*i, data + stepci, dims), dist[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -114,7 +114,7 @@ static void generateCentersPP(const Mat& _data, Mat& _out_centers,
|
||||
|
||||
for( i = 0; i < N; i++ )
|
||||
{
|
||||
dist[i] = normL2Sqr_(data + step*i, data + step*centers[0], dims);
|
||||
dist[i] = normL2Sqr(data + step*i, data + step*centers[0], dims);
|
||||
sum0 += dist[i];
|
||||
}
|
||||
|
||||
@@ -189,7 +189,7 @@ public:
|
||||
for( int k = 0; k < K; k++ )
|
||||
{
|
||||
const float* center = centers.ptr<float>(k);
|
||||
const double dist = normL2Sqr_(sample, center, dims);
|
||||
const double dist = normL2Sqr(sample, center, dims);
|
||||
|
||||
if( min_dist > dist )
|
||||
{
|
||||
@@ -384,7 +384,7 @@ double cv::kmeans( InputArray _data, int K,
|
||||
if( labels[i] != max_k )
|
||||
continue;
|
||||
sample = data.ptr<float>(i);
|
||||
double dist = normL2Sqr_(sample, _old_center, dims);
|
||||
double dist = normL2Sqr(sample, _old_center, dims);
|
||||
|
||||
if( max_dist <= dist )
|
||||
{
|
||||
|
Reference in New Issue
Block a user