java tests: added some new asserts, and new tests by Hussein Abdinoor
This commit is contained in:
parent
c11a7184c9
commit
edead9a2c2
@ -1,5 +1,8 @@
|
||||
package org.opencv.test;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
|
||||
public class ConvertersTest extends OpenCVTestCase {
|
||||
|
||||
|
@ -1,5 +1,7 @@
|
||||
package org.opencv.test;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
import junit.framework.TestCase;
|
||||
|
||||
import org.opencv.core.CvType;
|
||||
@ -14,10 +16,13 @@ public class OpenCVTestCase extends TestCase {
|
||||
|
||||
protected static int matSize = 10;
|
||||
protected static double EPS = 0.001;
|
||||
protected static double weakEPS = 0.5;
|
||||
|
||||
protected static Mat dst;
|
||||
protected static Mat truth;
|
||||
|
||||
protected static Scalar colorBlack;
|
||||
|
||||
// Naming notation: <channels info>_[depth]_[dimensions]_value
|
||||
// examples: gray0 - single channel 8U 2d Mat filled with 0
|
||||
// grayRnd - single channel 8U 2d Mat filled with random numbers
|
||||
@ -72,6 +77,8 @@ public class OpenCVTestCase extends TestCase {
|
||||
truth = new Mat();
|
||||
assertTrue(truth.empty());
|
||||
|
||||
colorBlack = new Scalar(0);
|
||||
|
||||
gray0 = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(0));
|
||||
gray1 = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(1));
|
||||
gray2 = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(2));
|
||||
@ -82,8 +89,7 @@ public class OpenCVTestCase extends TestCase {
|
||||
gray255 = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255));
|
||||
|
||||
gray_16u_256 = new Mat(matSize, matSize, CvType.CV_16U, new Scalar(256));
|
||||
gray_16s_1024 = new Mat(matSize, matSize, CvType.CV_16S, new Scalar(
|
||||
1024));
|
||||
gray_16s_1024 = new Mat(matSize, matSize, CvType.CV_16S, new Scalar(1024));
|
||||
|
||||
grayRnd = new Mat(matSize, matSize, CvType.CV_8U);
|
||||
Core.randu(grayRnd, new Scalar(0), new Scalar(256));
|
||||
@ -151,6 +157,16 @@ public class OpenCVTestCase extends TestCase {
|
||||
super.tearDown();
|
||||
}
|
||||
|
||||
public static void assertListEqual(List<Float> list1, List<Float> list2, double epsilon)
|
||||
{
|
||||
if (list1.size() != list2.size()) {
|
||||
throw new UnsupportedOperationException();
|
||||
}
|
||||
|
||||
for (int i = 0; i < list1.size(); i++)
|
||||
assertTrue(Math.abs(list1.get(i) - list2.get(i)) <= epsilon);
|
||||
}
|
||||
|
||||
public static void assertMatEqual(Mat m1, Mat m2) {
|
||||
compareMats(m1, m2, true);
|
||||
}
|
||||
@ -176,6 +192,11 @@ public class OpenCVTestCase extends TestCase {
|
||||
assertEquals(expected.class_id, actual.class_id);
|
||||
}
|
||||
|
||||
public static void assertPointEquals(Point expected, Point actual, double eps){
|
||||
assertEquals(expected.x, actual.x, eps);
|
||||
assertEquals(expected.y, actual.y, eps);
|
||||
}
|
||||
|
||||
static private void compareMats(Mat expected, Mat actual, boolean isEqualityMeasured) {
|
||||
if (expected.type() != actual.type() || expected.cols() != actual.cols()
|
||||
|| expected.rows() != actual.rows()) {
|
||||
|
@ -99,10 +99,8 @@ public class coreTest extends OpenCVTestCase {
|
||||
Mat covar = new Mat(matSize, matSize, CvType.CV_64FC1);
|
||||
Mat mean = new Mat(1, matSize, CvType.CV_64FC1);
|
||||
|
||||
Core.calcCovarMatrix(gray0_32f, covar, mean, 8 | 1/*
|
||||
* TODO:
|
||||
* CV_COVAR_NORMAL
|
||||
*/);
|
||||
Core.calcCovarMatrix(gray0_32f, covar, mean, Core.COVAR_ROWS | Core.COVAR_NORMAL);
|
||||
|
||||
assertMatEqual(gray0_64f, covar, EPS);
|
||||
assertMatEqual(gray0_64f_1d, mean, EPS);
|
||||
}
|
||||
@ -111,10 +109,7 @@ public class coreTest extends OpenCVTestCase {
|
||||
Mat covar = new Mat(matSize, matSize, CvType.CV_32F);
|
||||
Mat mean = new Mat(1, matSize, CvType.CV_32F);
|
||||
|
||||
Core.calcCovarMatrix(gray0_32f, covar, mean, 8 | 1/*
|
||||
* TODO:
|
||||
* CV_COVAR_NORMAL
|
||||
*/, CvType.CV_32F);
|
||||
Core.calcCovarMatrix(gray0_32f, covar, mean, Core.COVAR_ROWS | Core.COVAR_NORMAL, CvType.CV_32F);
|
||||
assertMatEqual(gray0_32f, covar, EPS);
|
||||
assertMatEqual(gray0_32f_1d, mean, EPS);
|
||||
}
|
||||
@ -744,11 +739,8 @@ public class coreTest extends OpenCVTestCase {
|
||||
Core.invert(src, dst);
|
||||
assertMatEqual(truth, dst, EPS);
|
||||
|
||||
// TODO: needs epsilon comparison
|
||||
// Mat m = grayRnd_32f.clone();
|
||||
// Mat inv = m.inv();
|
||||
// Core.gemm(m, inv, 1.0, new Mat(), 0.0, dst);
|
||||
// assertMatEqual(grayE_32f, dst);
|
||||
Core.gemm(grayRnd_32f, grayRnd_32f.inv(), 1.0, new Mat(), 0.0, dst);
|
||||
assertMatEqual(grayE_32f, dst, EPS);
|
||||
}
|
||||
|
||||
public void testInvertMatMatInt() {
|
||||
@ -852,10 +844,7 @@ public class coreTest extends OpenCVTestCase {
|
||||
public void testMahalanobis() {
|
||||
Mat covar = new Mat(matSize, matSize, CvType.CV_32F);
|
||||
Mat mean = new Mat(1, matSize, CvType.CV_32F);
|
||||
Core.calcCovarMatrix(grayRnd_32f, covar, mean, 8 | 1/*
|
||||
* TODO:
|
||||
* CV_COVAR_NORMAL
|
||||
*/, CvType.CV_32F);
|
||||
Core.calcCovarMatrix(grayRnd_32f, covar, mean, Core.COVAR_ROWS | Core.COVAR_NORMAL, CvType.CV_32F);
|
||||
covar.inv();
|
||||
|
||||
Mat line1 = grayRnd_32f.submat(0, 1, 0, grayRnd_32f.cols());
|
||||
@ -1222,18 +1211,12 @@ public class coreTest extends OpenCVTestCase {
|
||||
Mat xCoordinate = new Mat();
|
||||
Mat yCoordinate = new Mat();
|
||||
|
||||
// x.put(0, 0, 3.0, 6.0, 5,0);
|
||||
// y.put(0, 0, 4.0, 8.0, 12.0);
|
||||
// magnitude.put(0, 0, 5.0, 10.0, 13.0);
|
||||
// angle.put(0, 0, 0.92729962, 0.92729962, 1.1759995);
|
||||
|
||||
magnitude.put(0, 0, 5.0, 10.0, 13.0);
|
||||
angle.put(0, 0, 0.92729962, 0.92729962, 1.1759995);
|
||||
|
||||
x.put(0, 0, 3.0, 6.0, 5, 0);
|
||||
y.put(0, 0, 4.0, 8.0, 12.0);
|
||||
|
||||
// TODO: needs epsilon comparison
|
||||
Core.polarToCart(magnitude, angle, xCoordinate, yCoordinate);
|
||||
assertMatEqual(x, xCoordinate, EPS);
|
||||
}
|
||||
@ -1504,11 +1487,11 @@ public class coreTest extends OpenCVTestCase {
|
||||
Mat submat = gray0.submat(0, gray0.rows() / 2, 0, gray0.cols() / 2);
|
||||
submat.setTo(new Scalar(1.0));
|
||||
|
||||
Core.sort(gray0, dst, 0/* TODO: CV_SORT_EVERY_ROW */);
|
||||
Core.sort(gray0, dst, Core.SORT_EVERY_ROW);
|
||||
submat = dst.submat(0, dst.rows() / 2, dst.cols() / 2, dst.cols());
|
||||
assertTrue(submat.total() == Core.countNonZero(submat));
|
||||
|
||||
Core.sort(gray0, dst, 1/* TODO: CV_SORT_EVERY_COLUMN */);
|
||||
Core.sort(gray0, dst, Core.SORT_EVERY_COLUMN);
|
||||
submat = dst.submat(dst.rows() / 2, dst.rows(), 0, dst.cols() / 2);
|
||||
assertTrue(submat.total() == Core.countNonZero(submat));
|
||||
}
|
||||
@ -1522,7 +1505,7 @@ public class coreTest extends OpenCVTestCase {
|
||||
truth.put(1, 0, 0, 2, 1);
|
||||
truth.put(2, 0, 0, 1, 2);
|
||||
|
||||
Core.sortIdx(a, b, 0 + 0/* TODO: CV_SORT_EVERY_ROW + CV_SORT_ASCENDING */);
|
||||
Core.sortIdx(a, b, Core.SORT_EVERY_ROW + Core.SORT_ASCENDING);
|
||||
assertMatEqual(truth, b);
|
||||
}
|
||||
|
||||
|
@ -1,19 +1,16 @@
|
||||
package org.opencv.test.features2d;
|
||||
|
||||
import java.util.LinkedList;
|
||||
import java.util.List;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.RotatedRect;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.core.Size;
|
||||
import org.opencv.features2d.KeyPoint;
|
||||
import org.opencv.features2d.StarDetector;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
|
||||
import java.util.LinkedList;
|
||||
import java.util.List;
|
||||
|
||||
public class StarDetectorTest extends OpenCVTestCase {
|
||||
|
||||
|
@ -3,6 +3,7 @@ package org.opencv.test.imgproc;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import org.opencv.Converters;
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
@ -11,8 +12,10 @@ import org.opencv.core.Rect;
|
||||
import org.opencv.core.RotatedRect;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.core.Size;
|
||||
import org.opencv.core.TermCriteria;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
|
||||
|
||||
public class imgprocTest extends OpenCVTestCase {
|
||||
@ -42,8 +45,8 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
}
|
||||
|
||||
public void testAccumulateMatMat() {
|
||||
truth = new Mat(imgprocSz, imgprocSz, CvType.CV_64F, new Scalar(2));
|
||||
Imgproc.accumulate(gray_64f_2, dst64F);
|
||||
truth = new Mat(imgprocSz, imgprocSz, CvType.CV_64F, new Scalar(2));
|
||||
assertMatEqual(truth, dst64F, EPS);
|
||||
|
||||
dst = new Mat(matSize, matSize, CvType.CV_32FC1, new Scalar(0));
|
||||
@ -52,9 +55,8 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
}
|
||||
|
||||
public void testAccumulateMatMatMat() {
|
||||
Imgproc.accumulate(gray_64f_2, dst64F, mask); //TODO: use better mask
|
||||
truth = new Mat(imgprocSz, imgprocSz, CvType.CV_64F, new Scalar(2));
|
||||
|
||||
Imgproc.accumulate(gray_64f_2, dst64F, mask); // TODO: use better mask
|
||||
assertMatEqual(truth, dst64F, EPS);
|
||||
}
|
||||
|
||||
@ -65,13 +67,11 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
src2.put(0, 0, 2, 1);
|
||||
src2.put(1, 0, 1, 2);
|
||||
|
||||
Mat dstImage = new Mat(imgprocSz, imgprocSz, CvType.CV_64F, new Scalar(0));
|
||||
Imgproc.accumulateProduct(src1, src2, dstImage);
|
||||
truth = new Mat(imgprocSz, imgprocSz, CvType.CV_64F, new Scalar(2));
|
||||
truth.put(0, 0, 2, 1);
|
||||
truth.put(1, 0, 1, 2);
|
||||
|
||||
Mat dstImage = new Mat(imgprocSz, imgprocSz, CvType.CV_64F, new Scalar(
|
||||
0));
|
||||
Imgproc.accumulateProduct(src1, src2, dstImage);
|
||||
assertMatEqual(truth, dstImage, EPS);
|
||||
}
|
||||
|
||||
@ -358,18 +358,35 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
}
|
||||
|
||||
public void testConvertMapsMatMatMatMatInt() {
|
||||
Mat map1 = new Mat(1, 4, CvType.CV_32FC1, new Scalar(1));
|
||||
Mat map2 = new Mat(1, 4, CvType.CV_32FC1, new Scalar(1));
|
||||
Mat map1 = new Mat(1, 4, CvType.CV_32FC1, new Scalar(1.0));
|
||||
Mat map2 = new Mat(1, 4, CvType.CV_32FC1, new Scalar(2.0));
|
||||
Mat dstmap1 = new Mat(1, 4, CvType.CV_16SC2);
|
||||
Mat dstmap2 = new Mat(1, 4, CvType.CV_16UC1);
|
||||
|
||||
// FIXME: dstmap1 - Documentation says Cvtype but requires integer
|
||||
Imgproc.convertMaps(map1, map2, dstmap1, dstmap2, CvType.CV_32F);
|
||||
fail("Not yet implemented");
|
||||
|
||||
Imgproc.convertMaps(map1, map2, dstmap1, dstmap2, CvType.CV_16SC2);
|
||||
Mat truthMap1 = new Mat(1, 4, CvType.CV_16SC2);
|
||||
truthMap1.put(0, 0, 1, 2, 1, 2, 1, 2, 1, 2);
|
||||
assertMatEqual(truthMap1, dstmap1);
|
||||
|
||||
Mat truthMap2 = new Mat(1, 4, CvType.CV_16UC1, new Scalar(0));
|
||||
assertMatEqual(truthMap2, dstmap2);
|
||||
}
|
||||
|
||||
public void testConvertMapsMatMatMatMatIntBoolean() {
|
||||
fail("Not yet implemented");
|
||||
Mat map1 = new Mat(1, 3, CvType.CV_32FC1, new Scalar(2.0));
|
||||
Mat map2 = new Mat(1, 3, CvType.CV_32FC1, new Scalar(4.0));
|
||||
Mat dstmap1 = new Mat(1, 3, CvType.CV_16SC2);
|
||||
Mat dstmap2 = new Mat(1, 3, CvType.CV_16UC1);
|
||||
|
||||
|
||||
Imgproc.convertMaps(map1, map2, dstmap1, dstmap2, CvType.CV_16SC2, false);
|
||||
Mat truthMap1 = new Mat(1, 3, CvType.CV_16SC2);
|
||||
truthMap1.put(0, 0, 2, 4, 2, 4, 2, 4);
|
||||
assertMatEqual(truthMap1, dstmap1);
|
||||
|
||||
Mat truthMap2 = new Mat(1, 3, CvType.CV_16UC1, new Scalar(0));
|
||||
assertMatEqual(truthMap2, dstmap2);
|
||||
}
|
||||
|
||||
public void testConvexHullMatMat() {
|
||||
@ -518,13 +535,29 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
truth.put(1, 0, 0.92708343, 0.92708343, 0.92708343);
|
||||
truth.put(2, 0, 0.58680564, 0.92708343, 0.68055564);
|
||||
|
||||
Imgproc.cornerMinEigenVal(src, dst, blockSize, ksize,
|
||||
Imgproc.BORDER_REFLECT);
|
||||
Imgproc.cornerMinEigenVal(src, dst, blockSize, ksize, Imgproc.BORDER_REFLECT);
|
||||
assertMatEqual(truth, dst, EPS);
|
||||
}
|
||||
|
||||
public void testCornerSubPix() {
|
||||
fail("Not yet implemented");
|
||||
Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(128));
|
||||
|
||||
Point truthPosition = new Point(img.cols()/2, img.rows()/2);
|
||||
|
||||
Rect r = new Rect(new Point(0, 0), truthPosition);
|
||||
Core.rectangle(img, r.tl(), r.br(), new Scalar(0), -1/*TODO: CV_FILLED*/);
|
||||
|
||||
List<Point> corners = new ArrayList<Point>();
|
||||
corners.add(new Point(truthPosition.x+1, truthPosition.y+1));
|
||||
|
||||
Size winSize = new Size(2, 2);
|
||||
Size zeroZone = new Size(-1, -1);
|
||||
TermCriteria criteria = new TermCriteria(2/*TODO: CV_TERMCRIT_EPS*/, 0, 0.01);
|
||||
|
||||
Mat cornersMat = Converters.vector_Point2f_to_Mat(corners);
|
||||
Imgproc.cornerSubPix(img, cornersMat, winSize, zeroZone, criteria);
|
||||
Converters.Mat_to_vector_Point(cornersMat, corners);
|
||||
assertPointEquals(truthPosition, corners.get(0), weakEPS);
|
||||
}
|
||||
|
||||
public void testCvtColorMatMatInt() {
|
||||
@ -759,8 +792,7 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
}
|
||||
|
||||
public void testFitEllipse() {
|
||||
Mat points = new Mat(1, 5, CvType.CV_32FC2); // TODO: use the list of
|
||||
// Points
|
||||
Mat points = new Mat(1, 5, CvType.CV_32FC2); //TODO: use the list of Points
|
||||
points.put(0, 0, 0.0, 0.0, -1.0, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0);
|
||||
|
||||
RotatedRect rrect = new RotatedRect();
|
||||
@ -1064,12 +1096,20 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
}
|
||||
|
||||
public void testHoughCirclesMatMatIntDoubleDouble() {
|
||||
// double minDist = gray255.row(0)/4;
|
||||
// Imgproc.HoughCircles(gray255, dst, Imgproc.CV_HOUGH_GRADIENT, 2.0,
|
||||
// 0.5);
|
||||
// TODO : How do we test this?
|
||||
int sz = 512;
|
||||
Mat img = new Mat(sz, sz, CvType.CV_8U, new Scalar(128));
|
||||
|
||||
fail("Not yet implemented");
|
||||
Mat circles = new Mat();
|
||||
|
||||
Imgproc.HoughCircles(img, circles, Imgproc.CV_HOUGH_GRADIENT, 2.0, img.rows()/4);
|
||||
assertEquals(0, circles.cols());
|
||||
|
||||
Point center = new Point(img.cols()/2, img.rows()/2);
|
||||
int radius = Math.min(img.cols()/4, img.rows()/4);
|
||||
Core.circle(img, center, radius, colorBlack, 3);
|
||||
|
||||
Imgproc.HoughCircles(img, circles, Imgproc.CV_HOUGH_GRADIENT, 2.0, img.rows()/4);
|
||||
assertEquals(1, circles.cols());
|
||||
}
|
||||
|
||||
public void testHoughCirclesMatMatIntDoubleDoubleDouble() {
|
||||
@ -1129,9 +1169,9 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
Mat map1 = new Mat();
|
||||
Mat map2 = new Mat();
|
||||
|
||||
// FIXME: dstmap1 - Documentation says Cvtype but requires integer
|
||||
Imgproc.initUndistortRectifyMap(cameraMatrix, distCoeffs, R,
|
||||
newCameraMatrix, size, CvType.CV_32F, map1, map2);
|
||||
//TODO: complete this test
|
||||
Imgproc.initUndistortRectifyMap(cameraMatrix, distCoeffs,
|
||||
R, newCameraMatrix, size, CvType.CV_32F, map1, map2);
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
@ -1320,12 +1360,10 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
public void testLaplacianMatMatIntIntDouble() {
|
||||
Mat src = Mat.eye(imgprocSz, imgprocSz, CvType.CV_32F);
|
||||
|
||||
Imgproc.Laplacian(src, dst, CvType.CV_32F, 1, 2.0);
|
||||
truth = new Mat(imgprocSz, imgprocSz, CvType.CV_32F);
|
||||
|
||||
truth.put(0, 0, -8, 8);
|
||||
truth.put(1, 0, 8, -8);
|
||||
|
||||
Imgproc.Laplacian(src, dst, CvType.CV_32F, 1, 2.0);
|
||||
assertMatEqual(truth, dst, EPS);
|
||||
}
|
||||
|
||||
@ -1355,13 +1393,11 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
Mat contour2 = new Mat(1, 4, CvType.CV_32FC2);
|
||||
|
||||
contour1.put(0, 0, 1.0, 1.0, 5.0, 1.0, 4.0, 3.0, 6.0, 2.0);
|
||||
contour1.put(0, 0, 1.0, 1.0, 6.0, 1.0, 4.0, 1.0, 2.0, 5.0);
|
||||
contour2.put(0, 0, 1.0, 1.0, 6.0, 1.0, 4.0, 1.0, 2.0, 5.0);
|
||||
|
||||
// TODO: returns random comparers
|
||||
double comparer = Imgproc.matchShapes(contour1, contour2,
|
||||
Imgproc.CV_CONTOURS_MATCH_I1, 1.0);
|
||||
double expComparer = 2.98;
|
||||
assertEquals(expComparer, comparer);
|
||||
double comparer = Imgproc.matchShapes(contour1, contour2, Imgproc.CV_CONTOURS_MATCH_I1, 1.0);
|
||||
double truthComparer = 2.98;
|
||||
assertEquals(truthComparer, comparer, weakEPS);
|
||||
}
|
||||
|
||||
public void testMatchTemplate() {
|
||||
@ -1393,22 +1429,28 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
points.put(0, 0, 1.0, 1.0, 5.0, 1.0, 4.0, 3.0, 6.0, 2.0);
|
||||
|
||||
RotatedRect rrect = Imgproc.minAreaRect(points);
|
||||
// TODO - how to test rotated rectangle
|
||||
fail("Not yet implemented");
|
||||
assertEquals(new Size(2, 5), rrect.size);
|
||||
assertEquals(-90.0, rrect.angle);
|
||||
assertEquals(new Point(3.5, 2), rrect.center);
|
||||
}
|
||||
|
||||
public void testMinEnclosingCircle() {
|
||||
Mat points = new Mat(1, 4, CvType.CV_32FC2);
|
||||
Point actualCenter = new Point();
|
||||
Point expCenter = new Point(0, 0);
|
||||
float radius = 0.0f;
|
||||
// float expectedRadius = 1.0f;
|
||||
points.put(0, 0, -1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, -1.0);
|
||||
// TODO: Unexpected radius is returned i.e 0
|
||||
|
||||
OpenCVTestRunner.Log(points.toString());
|
||||
OpenCVTestRunner.Log(points.dump());
|
||||
|
||||
Point actualCenter = new Point();
|
||||
float radius = 347.0f; //FIXME: Unexpected radius is returned i.e 0
|
||||
Imgproc.minEnclosingCircle(points, actualCenter, radius);
|
||||
assertEquals(expCenter, actualCenter);
|
||||
// assertEquals(expectedRadius, radius);
|
||||
fail("Not yet implemented");
|
||||
|
||||
Point truthCenter = new Point(0, 0);
|
||||
assertEquals(truthCenter, actualCenter);
|
||||
|
||||
float truthRadius = 1.0f;
|
||||
OpenCVTestRunner.Log("" + radius);
|
||||
assertEquals(truthRadius, radius, weakEPS);
|
||||
}
|
||||
|
||||
public void testMomentsMat() {
|
||||
@ -1548,9 +1590,10 @@ public class imgprocTest extends OpenCVTestCase {
|
||||
|
||||
public void testPyrMeanShiftFilteringMatMatDoubleDouble() {
|
||||
Mat src = new Mat(matSize, matSize, CvType.CV_8UC3, new Scalar(0.0));
|
||||
Imgproc.pyrMeanShiftFiltering(src, dst, 2.0, 4.0);
|
||||
// TODO : size of destination matrix not understandable
|
||||
fail("Not yet implemented");
|
||||
|
||||
Imgproc.pyrMeanShiftFiltering(src, dst, 10.0, 50.0);
|
||||
truth = src.clone();
|
||||
assertMatEqual(truth, dst);
|
||||
}
|
||||
|
||||
public void testPyrMeanShiftFilteringMatMatDoubleDoubleInt() {
|
||||
|
Loading…
x
Reference in New Issue
Block a user