#1205 fixed more bugs/typos in parameters

This commit is contained in:
Andrey Kamaev 2012-03-29 08:07:57 +00:00
parent 008a1c91fd
commit ec793df30f
13 changed files with 283 additions and 289 deletions

View File

@ -1214,27 +1214,27 @@ Class for computing stereo correspondence using the variational matching algorit
class StereoVar
{
StereoVar();
StereoVar( int levels, double pyrScale,
int nIt, int minDisp, int maxDisp,
int poly_n, double poly_sigma, float fi,
float lambda, int penalization, int cycle,
int flags);
StereoVar( int levels, double pyrScale,
int nIt, int minDisp, int maxDisp,
int poly_n, double poly_sigma, float fi,
float lambda, int penalization, int cycle,
int flags);
virtual ~StereoVar();
virtual void operator()(InputArray left, InputArray right, OutputArray disp);
int levels;
double pyrScale;
int nIt;
int minDisp;
int maxDisp;
int poly_n;
double poly_sigma;
float fi;
float lambda;
int penalization;
int cycle;
int flags;
int levels;
double pyrScale;
int nIt;
int minDisp;
int maxDisp;
int poly_n;
double poly_sigma;
float fi;
float lambda;
int penalization;
int cycle;
int flags;
...
};

View File

@ -317,15 +317,15 @@ DenseFeatureDetector
Class for generation of image features which are distributed densely and regularly over the image. ::
class DenseFeatureDetector : public FeatureDetector
{
public:
DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
class DenseFeatureDetector : public FeatureDetector
{
public:
DenseFeatureDetector( float initFeatureScale=1.f, int featureScaleLevels=1,
float featureScaleMul=0.1f,
int initXyStep=6, int initImgBound=0,
bool varyXyStepWithScale=true,
bool varyImgBoundWithScale=false );
protected:
protected:
...
};

View File

@ -211,7 +211,7 @@ gpu::FAST_GPU::calcKeyPointsLocation
-------------------------------------
Find keypoints and compute it's response if ``nonmaxSupression`` is true.
.. int gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask)
.. ocv:function:: int gpu::FAST_GPU::calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask)
:param image: Image where keypoints (corners) are detected. Only 8-bit grayscale images are supported.

View File

@ -769,7 +769,7 @@ Performs linear blending of two images.
:param img1: First image. Supports only ``CV_8U`` and ``CV_32F`` depth.
:param img1: Second image. Must have the same size and the same type as ``img1`` .
:param img2: Second image. Must have the same size and the same type as ``img1`` .
:param weights1: Weights for first image. Must have tha same size as ``img1`` . Supports only ``CV_32F`` type.
@ -789,7 +789,7 @@ Composites two images using alpha opacity values contained in each image.
:param img1: First image. Supports ``CV_8UC4`` , ``CV_16UC4`` , ``CV_32SC4`` and ``CV_32FC4`` types.
:param img1: Second image. Must have the same size and the same type as ``img1`` .
:param img2: Second image. Must have the same size and the same type as ``img1`` .
:param dst: Destination image.

View File

@ -78,13 +78,11 @@ Computes a matrix-matrix or matrix-scalar per-element product.
gpu::divide
---------------
-----------
Computes a matrix-matrix or matrix-scalar division.
.. ocv:function:: void gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::divide(const GpuMat& src1, const Scalar& src2, GpuMat& dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null())
.. ocv:function:: void gpu::divide(double src1, const GpuMat& src2, GpuMat& dst, int dtype = -1, Stream& stream = Stream::Null())
:param src1: First source matrix or a scalar.
@ -104,9 +102,8 @@ This function, in contrast to :ocv:func:`divide`, uses a round-down rounding mod
.. seealso:: :ocv:func:`divide`
addWeighted
---------------
gpu::addWeighted
----------------
Computes the weighted sum of two arrays.
.. ocv:function:: void gpu::addWeighted(const GpuMat& src1, double alpha, const GpuMat& src2, double beta, double gamma, GpuMat& dst, int dtype = -1, Stream& stream = Stream::Null())

View File

@ -47,6 +47,7 @@ Class computing the optical flow for two images using Brox et al Optical Flow al
gpu::GoodFeaturesToTrackDetector_GPU
------------------------------------
.. ocv:class:: gpu::GoodFeaturesToTrackDetector_GPU
Class used for strong corners detection on an image. ::
@ -120,6 +121,8 @@ Releases inner buffers memory.
gpu::FarnebackOpticalFlow
-------------------------
.. ocv:class:: gpu::FarnebackOpticalFlow
Class computing a dense optical flow using the Gunnar Farnebacks algorithm. ::
class CV_EXPORTS FarnebackOpticalFlow
@ -179,6 +182,7 @@ Releases unused auxiliary memory buffers.
gpu::PyrLKOpticalFlow
---------------------
.. ocv:class:: gpu::PyrLKOpticalFlow
Class used for calculating an optical flow. ::

View File

@ -76,7 +76,8 @@ Description of the filter, which corresponds to the part of the object.
vector describes penalty function (d_i in the paper)
pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2
.. ocv:member:: int sizeX, sizeY
.. ocv:member:: int sizeX
.. ocv:member:: int sizeY
Rectangular map (sizeX x sizeY),
every cell stores feature vector (dimension = p)

View File

@ -29,15 +29,6 @@ detail::ExposureCompensation::feed
.. ocv:function:: void detail::ExposureCompensation::feed(const std::vector<Point> &corners, const std::vector<Mat> &images, const std::vector<Mat> &masks)
:param corners: Source image top-left corners
:param images: Source images
:param masks: Image masks to update
detail::ExposureCompensation::feed
----------------------------------
.. ocv:function:: void detail::ExposureCompensation::feed(const std::vector<Point> &corners, const std::vector<Mat> &images, const std::vector<std::pair<Mat,uchar> > &masks)
:param corners: Source image top-left corners

View File

@ -10,7 +10,7 @@ The implemented stitching pipeline is very similar to the one proposed in [BL07]
.. image:: StitchingPipeline.jpg
References
----------
==========
.. [BL07] M. Brown and D. Lowe. Automatic Panoramic Image Stitching using Invariant Features. International Journal of Computer Vision, 74(1), pages 59-73, 2007.

View File

@ -245,4 +245,4 @@ Constructs a "best of 2 nearest" matcher.
:param num_matches_thresh1: Minimum number of matches required for the 2D projective transform estimation used in the inliers classification step
:param num_matches_thresh1: Minimum number of matches required for the 2D projective transform re-estimation on inliers
:param num_matches_thresh2: Minimum number of matches required for the 2D projective transform re-estimation on inliers

View File

@ -204,6 +204,7 @@ Implementation of the camera parameters refinement algorithm which minimizes sum
detail::BundleAdjusterRay
-------------------------
.. ocv:class:: detail::BundleAdjusterRay
Implementation of the camera parameters refinement algorithm which minimizes sum of the distances between the rays passing through the camera center and a feature. ::

View File

@ -101,7 +101,7 @@ Projects the image backward.
:param dst_size: Backward-projected image size
:param dst_size: Backward-projected image
:param dst: Backward-projected image
detail::RotationWarper::warpRoi
-------------------------------